肺肿瘤CT引导下经皮射频消融后的影像评估进展
2016-03-09程增辉顾正章石亮荣
程增辉 顾正章 石亮荣 单 飞*
肺肿瘤CT引导下经皮射频消融后的影像评估进展
程增辉1,2顾正章3石亮荣4单飞1*
近年来,CT引导下经皮射频消融术在无法手术切除或转移性肺肿瘤的治疗中备受推崇。但因术后病理改变的复杂性,不同影像检查的表现既存在重叠,又存有差异,使得评估充满挑战。就不同影像方法(CT、PET/ CT、MRI)对肺肿瘤病人术后不同时期的评估进展予以综述,以期更好地指导临床。
肺肿瘤;射频消融;体层摄影术,X线计算机;CT引导
Int J Med Radiol,2016,39(4):382-385
肺癌是最常见的恶性肿瘤。由于肺癌危险因素变化及人口增长、老龄化的双重作用,肺癌已成为我国发病率及死亡率第一位的恶性肿瘤[1]。除此以外,肺还是转移性肿瘤的第二好发部位,约40.0%的肺外恶性肿瘤在其病程发展中可出现肺转移[2]。外科手术切除是治疗早中期支气管源性肺癌的首选方法。然而,约15.7%的肺癌因局部侵犯重要解剖结构或病人并存其他肺部疾病,并不适合手术切除治疗[3]。对于有限或低肿瘤负荷的转移性肺肿瘤,多次外科手术切除治疗会损失大量正常、有功能的肺组织,严重影响病人的生存质量[3]。因此,不适合手术切除治疗的肺癌和局灶性转移性肺癌可采用局部治疗法。
CT引导下经皮射频消融术(radiofrequency ablation,RFA)作为一种新型局部微创治疗方法,已运用于治疗肺肿瘤。RFA通过电极针传导的热能破坏肿瘤组织,而病灶周围肺实质的空气为消融提供绝缘条件,从而可聚集射频能量[4]。临床研究已证实RFA术治疗肺肿瘤的有效性、高成功率及良好的安全性[5-9]。
RFA术在肺肿瘤中的应用价值得到越来越多肯定,但术后如何及时、可靠地评估肿瘤消融反应一直是一项重要挑战。RFA术后被消融的肿瘤仍在体内,简单通过组织病理学直接判断肿瘤是否完全坏死并不可行。此外,通过针刺活检消融肿瘤的“安全区”[为降低肿瘤细胞不完全消融的危险,肿瘤周围0.5~1 cm的组织也需要消融,这个区域即RFA术的“安全区”,影像表现为围绕肺肿瘤的磨玻璃密度影(ground glass opacity,GGO)],可能因取样误差导致假阴性和“鬼影细胞”(指消融反应后消融区域的组织学表现,组织结构近乎完整,但缺少凝固性坏死的典型表现)现象导致的假阳性,结果亦并不可靠[4,10]。虽然通过特殊免疫组化(烟碱腺嘌呤二核苷酸,nicotinamide adenine dinucleotide,NADH)染色可提高诊断效能[10],但仍然会受到穿刺技术的有创性、复杂性和假阴性结果的影响,因此需要影像检查进一步评估RFA治疗效果。
1 CT
1.1增强CT增强CT检查是RFA术后评估最常用的一种影像方法。增强CT通过半定量血流灌注参数-净强化值判断肿瘤有无残留[11]。净强化值>15 HU被认为是RFA术后复发的依据[11-12]。因肿瘤的非均质性,兴趣区(region of interest,ROI)应被放置在大多数实性、可重复的病变区域上,同时避开大血管和支气管。Suh等[11]首先用此项技术发现肺肿瘤RFA术后1~2个月强化程度明显减低,3个月后出现肿瘤边缘部分强化值增高,但仍低于原始肿瘤的强化。增强CT评估肺肿瘤RFA术后残留的时间点为术后3~6个月[4]。此外,在强化方式上,RFA术后6个月,无强化或轻微均匀强化常提示消融彻底,而明显不均匀强化提示消融不彻底或复发[13]。
RFA术后早期(1周内),CT最常见表现是圆锥形、扇形的充血区周围出现特征性的GGO,GGO位于消融肿瘤周围或者部分覆盖消融病灶;病灶中亦可见空泡影[14]。相似的CT密度改变出现在兔肺部RFA术后,对应组织学上的肿瘤凝固性坏死,因此,病灶周围出现GGO是结束RFA术的标志。如果肿瘤位于肺血管或气道周围,因热衰减效应,消融区域温度<60℃,则可能导致消融不彻底[15]。消融后肺肿瘤周围的GGO对应3层不同的病理学改变:内层是含嗜酸性细胞浆的“保留”肺结构,中间层为肺泡积液,外层是含有存活肿瘤细胞的肺充血、出血及炎性反应区;内层和中间层是坏死组织,最外层包括活的肺组织,其平均厚度是2.6 mm,最大厚度是4.1 mm[10]。这也为RFA术肿瘤周围GGO宽度<5 mm表现出更高的复发率提供了组织病理学依据。但该区域病理学改变并不一致,CT平扫并不能区分含嗜酸性细胞浆的“保留”肺结构、肺泡积液及含有存活肿瘤细胞的肺充血、出血及炎性反应区,故认为仅粗略根据GGO区域的大小判断消融区域,可能会高估凝固性坏死面积。再加上“热衰减”效应及可能的术中消融时间不同,导致GGO区域病理学改变的空间分布更加复杂[4]。这一时期增强CT特征表现为消融中心区域凝固性坏死的无强化和周边区的薄环状强化;在消融区外周可见到厚度<5 mm的环形强化,系热学损伤所致生理性反应,始为反应性充血,后为纤维化和肥大细胞反应[15-16]。中央区域强化或边缘结节状强化,则是RFA术后肿瘤复发或消融不彻底的表现[11,16]。
RFA术后中期(1周~2个月),消融区域缩小,但体积仍大于原始病灶。术后约1个月消融区域GGO消失,但空洞常见,尤其体积较大的病灶[17],提示治疗有效[18-19]。除空洞外,消融区域还可见小空腔,系消融后肿瘤皱缩所致。研究表明肿瘤近支气管、直径<2 cm及治疗后1周消融区域大于原肿瘤2倍易形成空洞。此期,消融区域仍表现为无强化;而边缘环状强化可持续至术后6个月[18-19]。
RFA术后晚期(>2个月),在CT平扫影像上,消融区域表现为斑片状低密度区,中期出现的空洞/空腔持续缩小,最终消失,形成瘢痕[4]。连续CT随访也可见胸膜增厚、胸腔积液和气胸。病灶周围的卫星灶和沿电极路径形成的肺结节是肿瘤复发和进展的证据[4]。肺肿瘤RFA术后3个月的消融区域大小可作为随访的基线指标,病灶增大提示消融不完全和/或肿瘤进展[20]。术后3个月,消融区应与术前病灶大小相同或更大;术后6个月,应小于术前水平。超过3个月,病灶增大应怀疑肿瘤复发;超过6个月消融区域增大表明肿瘤残留或复发;超过12个月消融区域稳定,18~24个月病灶变大,应怀疑肿瘤复发[4,20]。值得注意的是,在术后3个月内的随访中,消融区域净强化值可能因血管再通而略增高,当强化值不超过肺肿瘤术前水平时,并不代表肿瘤生长[11]。
1.2能谱CT能谱CT具有辐射剂量低、可同时对肿瘤形态及内部碘、水含量进行分析的优点,可对肿瘤治疗后的疗效进行评估[21]。但RFA术后评估研究甚少,目前既有的研究发现RFA术后肿瘤的水含量明显升高,而坏死区内碘含量明显减低[22-23]。此外,对于“安全区”评估的可行性有待进一步研究。
1.3CT灌注(CT perfusion,CTP)CTP已被广泛应用于评估肺肿瘤血管生成、定性、预后及放化疗和/或靶向治疗疗效等方面[24]。已有运用CTP判断肝肿瘤RFA术后残留及预测局部进展的研究报道显示,消融成功的肝癌区域表现为低血流灌注,局部肿瘤残余或进展时表现为局部灌注增高[25]。目前CTP在肺肿瘤RFA术后评估方面的研究甚少,CTP作为肺部病变功能影像评价的一种重要手段,对肺肿瘤RFA术后疗效进行评估的优势可能在于它可同时反映肿瘤实质及周围肺实质血流灌注改变情况,借此对“安全区”进行相对可靠的术后评估。
2 PET/CT
PET/CT适用于CT提示肺肿瘤RFA术后进展或者局部转移的病例。PET较CT在评估消融后肿瘤局部残留及复发可能有优势。有研究显示在RFA术后评估中,PET/CT无论在术后近期 (10 d内),还是远期(术后2个月)皆较CT更准确[26]。Okuma等[27]通过对17个复发、转移的肺肿瘤进行RFA术后PET/CT与CT的随访发现,PET较CT能更早确定有无复发,术后2个月氟18-脱氧葡萄糖(fluorine 18 fluorodeoxyglucose,FDG)部分摄取或摄取率下降<60%者可能需要进一步干预。但在RFA术后早期的评估中,因消融区边缘的组织产生炎性反应使标准摄取值(standard uptake value,SUV)呈环状增高,容易出现假阳性。因此,其特异度很低,尤其是靠近胸膜的肿瘤[28]。动物实验表明最早评估时间为术后1个月[29]。而在人类,RFA术后3~9个月,PET/ CT预测肺肿瘤复发的敏感度为77.8%,特异度为85.7%~90.5%。最早进行PET/CT的有效复查时间点至少为术后3~6个月[30-32]。术后6个月采用最大SUV值进行评估可能较单纯测量大小更可靠[33]。
PET/CT在肺肿瘤RFA术后1~4个月有6种SUV摄取模式:弥漫性、局灶性、不均匀性、边缘性、对应病灶的边缘和局部摄取及与原始位置不对应的边缘和局部摄取[34]。提示良性的SUV摄取模式包括边缘性、扩散性、不均质性和与原始病灶位置不对应的边缘和局部摄取;而对应原始病灶的结节性边缘摄取和复发相关。不对应原始肿瘤区域的局部摄取为炎性反应所致[35]。
3 增强CT和PET/CT
肺肿瘤RFA术后最常见局部复发,其次是肺内复发、局部淋巴结转移及远处转移[35]。Singnurkar等[35]的研究显示原发性肺癌RFA术后的复发率约43%,中位无瘤生存时间(disease free survival,DFS)约23个月。局部胸内淋巴结转移更常见于中晚期肺肿瘤RFA术后[4]。需要注意的是RFA术后中期常见可逆性胸内局部淋巴结反应性增大及FDG代谢活性增高,应与淋巴结转移鉴别[4,36]。在肺肿瘤RFA术后1年内,约32%病人发生肺内复发,约30%病人发生远处转移。
CT和PET提示肺肿瘤RFA术后残留或复发的影像特征包括:①延迟期>180 s的CT增强影像上,中央消融区强化范围>10 mm或净强化值>15 HU或强化超过肿瘤基线水平。②RFA术后>3个月复查,原消融区域增大;>6个月后出现消融区域周围结节增大,肺结节密度从GGO发展为实质性;区域性或者远处淋巴结增大;胸内新病灶,或出现新的胸外病灶。③RFA术后>2个月出现代谢增高,消融区中央或边缘结节状残余FDG代谢活性或活性进展[4]。而术后SUV值大部分减低、特定的FDG摄取方式及瘤周FDG的摄取通常提示炎性反应[37]。
4 MRI
MRI用于评估RFA术后改变最早始于动物实验,正常猪肺术后即刻消融区内带呈T1WI等信号,T2WI低信号,增强无明显强化,病理上代表凝固性坏死。外带T1WI等信号,T2WI高信号,增强后环形强化,病理上代表肺泡积液和充血。术后1周,除了消融区凝固性坏死范围增大伴纤维血管环出现外,表现基本同于即刻;术后4~8周,无明显区带改变,凝固坏死区逐渐吸收[38]。人肺肿瘤RFA术后改变的MRI表现相仿[39]:术后1周内肺肿瘤内带表现为T1WI等信号,T2WI低信号,代表肿瘤组织的凝固性坏死,周围环状高信号,病理上代表嗜中性粒细胞炎性反应、肺泡积液、肺实变等,均与正常肺组织RFA术后改变相仿。术后3 d扩散加权成像(DWI)影像上信号减低,表观扩散系数(ADC)值显著高于术前肿瘤。6个月随访时,无局部复发组ADC值高于局部复发组,提示DWI可评估肺肿瘤RFA术后疗效,ADC值可预测是否复发。MRI形态和功能上虽可用于肺肿瘤RFA的评估,但ADC值的测量受限,无法区别消融残留区,更无法评估消融区的肺实质边缘。
总之,肺恶性肿瘤的RFA术后评估,尤其早期评估,是一项巨大挑战,而作为其主要评估手段——影像检查也在不断创新、完善。更先进、全面的评估手段将更有利于肺恶性肿瘤的发现、治疗及疗效评价。
[1] Chen W,Zheng R,Baade P,et al.Cancer Statistics in China,2015 [J].CA Cancer J Clin,2016,66:115-132.
[2] Davidson RS,Nwogu CE,Brentjens MJ,et al.The surgical management of pulmonary metastasis:current concepts[J].Surg Oncol,2001,10:35-42.
[3] Mery CM,PappasAN,Burt BM,et al.Diameter of non-small cell lung cancer correlates with long-term survival:implications for Tstage[J].Chest,2005,128:3255-3260.
[4]Abtin FG,Eradat J,Gutierrez AJ,et al.Radiofrequency ablation of lung tumors:imaging features of the postablation zone[J].Radiographics,2012,32:947-969.
[5]Garetto I,Busso M,Sardo D,et al.Radiofrequency ablation of thoracic tumours:lessons learned with ablation of 100 lesions[J].Radiol Med,2014,119:33-40.
[6] Koelblinger C,Strauss S,Gillams A.Outcome after radiofrequency ablation of sarcoma lung metastases[J].Cardiovasc Intervent Radiol,2014,37:147-153.
[7] Dupuy DE,Fernando HC,Hillman S,et al.Radiofrequency ablation of stage IA non-small cell lung cancer in medically inoperable patients:results from the American College of Surgeons Oncology Group Z4033(Alliance)trial[J].Cancer,2015,121:3491-3498.
[8]Li X,Zhao M,Wang J,et al.Percutaneous CT-guided radiofrequency ablation as supplemental therapy after systemic chemotherapy for selected advanced non-small cell lung cancers[J].AJR,2013,201:1362-1367.
[9] 刘宝东,刘磊,胡牧,等.肺癌切除术后肺内孤立性转移复发灶的射频消融治疗[J].中国肺癌杂志,2014,17:460-464.
[10]Yamamoto A,Nakamura K,Matsuoka T,et al.Radiofrequency ablation in a porcine lung model:correlation between CT and histopathologic findings[J].AJR,2005,185:1299-1306.
[11]Suh RD,Wallace AB,Sheehan RE,et al.Unresectable pulmonary malignancies:CT-guided percutaneous radiofrequency ablation--preliminary results[J].Radiology,2003,229:821-829.
[12]Swensen SJ,Viggiano RW,Midthun DE,et al.Lung nodule enhancement at CT:multicenter study[J].Radiology,2000,214:73-80.
[13]李家开,于淼,聂永康,等.肺恶性肿瘤射频消融术后系列CT评估[J].解放军医学院学报,2014,35:816-822.
[14]Gadaleta C,Mattioli V,Colucci G,et al.Radiofrequency ablation of 40 lung neoplasms:preliminary results[J].AJR,2004,183:361-368.
[15]Anderson EM,Lees WR,Gillams AR.Early indicators of treatment success after percutaneous radiofrequency of pulmonary tumors[J]. Cardiovasc Intervent Radiol,2009,32:478-483.
[16]Brown DB,Gould JE,Gervais DA,et al.Transcatheter therapy for hepatic malignancy:standardization of terminology and reporting criteria[J].J Vasc Interv Radiol,2009,20(7 Suppl):S425-434.
[17]胡牧,支修益,刘宝东,等.肺部恶性肿瘤射频消融治疗后CT影像学改变[J].放射学实践,2012,27:41-45.
[18]Steinke K,King J,Glenn D,et al.Radiologic appearance and complications of percutaneous computed tomography-guided radiofrequency-ablated pulmonary metastases from colorectal carcinoma[J].J Comput Assist Tomogr,2003,27:750-757.
[19]Bojarski JD,Dupuy DE,Mayo-Smith WW.CT imaging findings of pulmonary neoplasms after treatment with radiofrequency ablation:results in 32 tumors[J].AJR,2005,185:466-471.
[20]Hiraki T,Tajiri N,Mimura H,et al.Pneumothorax,pleural effusion,and chest tube placement after radiofrequency ablation of lung tumors:incidence and risk factors[J].Radiology,2006,241:275-283.
[21]Imafuji A,Hara M,Sasaki S,et al.Usefulness of dual-energy CT scanning at 80 kVp for identifying hilar and mediastinal structures:evaluation of contrast enhancement of the pulmonary vessels and lymph nodes[J].Jpn J Radiol,2012,30:69-77.
[22]Liu L,Zhi X,Liu B,et al.Utilizing gemstone spectral CT imaging to evaluate the therapeutic efficacy of radiofrequency ablation in lung cancer[J].Radiol Med,2016,121:261-267.
[23]刘磊,张毅,支修益,等.宝石能谱CT在肺癌射频消融术中的应用[J].中华胸心血管外科杂志,2015,31:490-493.
[24]Miles KA,Lee TY,Goh V,et al.Current status and guidelines for the assessment of tumour vascular support with dynamic contrast-enhanced computed tomography[J].Eur Radiol,2012,22:1430-1441.
[25]Ippolito D,Bonaffini PA,Capraro C,et al.Viable residual tumor tissue after radiofrequency ablation treatment in hepatocellular carcinoma:evaluation with CT perfusion[J].Abdom Imaging,2013,38:502-510.
[26]朱广卿,晋颖,张淼,等.PET-CT和CT在肺癌射频消融术后的应用价值[J].中国医师进修杂志,2012,35:4-7.
[27]Okuma T,Okamura T,Matsuoka T,et al.Fluorine-18-fluorodeoxyglucose positron emission tomography for assessment of patients with unresectable recurrent or metastatic lung cancers after CT-guided radiofrequency ablation:preliminary results[J].Ann Nucl Med,2006,20:115-121.
[28]Bonichon F,Palussiere J,Godbert Y,et al.Diagnostic accuracy of18F-FDG PET/CT for assessing response to radiofrequency ablation treatment in lung metastases:a multicentre prospective study[J].Eur J Nucl Med Mol Imaging,2013,40:1817-1827.
[29]Okuma T,Matsuoka T,Okamura T,et al.18F-FDG small-animal PET for monitoring the therapeutic effect of CT-guided radiofrequency ablation on implanted VX2 lung tumors in rabbits[J].J Nucl Med,2006,47:1351-1358.
[30]Higaki F,Okumura Y,Sato S,et al.Preliminary retrospective investigation of FDG-PET/CT timing in follow-up of ablated lung tumor [J].Ann Nucl Med,2008,22:157-163.
[31]Yoo DC,Dupuy DE,Hillman SL,et al.Radiofrequency ablation of medically inoperable stage IA non-small cell lung cancer:are early posttreatment PET findings predictive of treatment outcome[J].AJR,2011,197:334-340.
[32]Higuchi M,Honjo H,Shigihara T,et al.A phase II study of radiofrequency ablation therapy for thoracic malignancies with evaluation by FDG-PET[J].J Cancer Res Clin Oncol,2014,140:1957-1963.
[33]Alafate A,Shinya T,Okumura Y,et al.The Maximum standardized uptake value is more reliable than size measurement in early followup to evaluate potential pulmonary malignancies following radiofrequency ablation[J].Acta Med Okayama,2013,67:105-112.
[34]Beland MD,Wasser EJ,Mayo-Smith WW,et al.Primary non-small cell lung cancer:review of frequency,location,and time of recurrence after radiofrequency ablation[J].Radiology,2010,254:301-307.
[35]Singnurkar A,Solomon SB,Gonen M,et al.18F-FDG PET/CT for the prediction and detection of local recurrence after radiofrequency ablation of malignant lung lesions[J].J Nucl Med,2010,51:1833-1840.
[36]Purandare NC,Rangarajan V,Shah SA,et al.Therapeutic response to radiofrequency ablation of neoplastic lesions:FDG PET/CT findings[J].Radiographics,2011,31:201-213.
[37]Rasmussen F,Madsen HH.Imaging follow-up of RF ablation of lung tumours[J].Cancer Imaging,2011,11 Spec No A:S123-128.
[38]Oyama Y,Nakamura K,Matsuoka T,et al.Radiofrequency ablated lesion in the normal porcine lung:long-term follow-up with MRI and pathology[J].Cardiovasc Intervent Radiol,2005,28:346-353.
[39]Okuma T,Matsuoka T,Yamamoto A,et al.Assessment of early treatment response after CT-guided radiofrequency ablation of unresectable lung tumours by diffusion-weighted MRI:a pilot study[J].Br J Radiol,2009,82:989-994.
(收稿2015-12-08)
The advance of imaging evaluation after CT-guided percutaneous radiofrequency ablation for lung tumors
CHENG Zenghui1,2,GU Zhengzhang3,SHI Liangrong4,SHAN Fei1.1 Department of Radiology,Shanghai Public Health Clinical Center Affiliated to Fudan University,Shanghai 201508,China;2 Department of Radiology,Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University;3 Department of Radiology,4 Department of Oncology,The First People's Hospital of Changzhou
CT-guided percutaneous radiofrequency ablation(RFA)has been adopted to treat primary unresectable lung tumors and metastatic lung tumors,recently.However,evaluation after RFA is always challenging because of the overlap and difference in imaging manifestations under certain modalities based on the complexity of post-surgical pathology.We reviewed the advance of various medical imaging methods(CT,PET/CT,MRI)in evaluating patients with lung tumors after RFA with purpose of suitable selection of modality in evaluation.
Lung tumor;Radiofrequency ablation;Tomography,X-ray computed;CT-guided
国家自然科学基金(81301223)
10.19300/j.2016.Z4042
R734.2;R445
A
1复旦大学附属上海市公共卫生临床中心放射科,上海 201508;2复旦大学附属中山医院青浦分院放射科;常州市第一人民医院 3放射科,4肿瘤科
单飞,E-mail:shanfeiqz@gmail.com
*审校者