APP下载

缺氧诱导因子对急性心肌梗死后心肌细胞及细胞外基质的影响

2016-03-09张宇红邓丽玉顾新元唐利龙

国际心血管病杂志 2016年1期
关键词:急性心肌梗死心肌细胞

张宇红 邓丽玉 林 彬 涂 胜 顾新元 唐利龙



缺氧诱导因子对急性心肌梗死后心肌细胞及细胞外基质的影响

张宇红邓丽玉林彬涂胜顾新元唐利龙

【摘要】急性心肌梗死是指冠状动脉闭塞、血流中断,使部分心肌因严重的缺血缺氧而发生局部坏死。而缺氧诱导因子作为机体应对缺氧应激的适应性反应的调控因子,参与了急性心肌梗死时心脏的适应性保护。该文主要介绍缺氧诱导因子的结构、功能及其对急性心肌梗死后心肌细胞及细胞外基质的影响。

【关键词】急性心肌梗死;缺氧诱导因子;心肌细胞;细胞外基质;心脏保护

作者单位:350108福建医科大学附属协和医院心内科(张宇红,邓丽玉,林彬,涂胜);512000广东省韶关市粤北人民医院心内科(顾新元);411199湖南省湘潭市中心医院心内科(唐利龙)

1概述

缺氧诱导因子(hypoxia-inducible factor, HIF)是由α亚基和β亚基组成的异二聚体。哺乳动物有3种HIFα亚基的亚型,包括HIF1α、2α和3α,其蛋白稳定性受氧浓度影响;而HIF的β亚基则可稳定地在核内表达且不受氧浓度调节。α亚基和β亚基都是螺旋-环-螺旋肽蛋白家族的成员。

缺氧时,脯氨酸羟化酶的活性受抑制,HIF1α通过HLH和PAS区域与β亚基异源二聚体化,并与转录的共激活剂CBP/P300相结合,形成活性转录复合体,转位至细胞核,介导靶基因缺氧应答部分的反向激活。HIF异二聚体可以识别并结合靶基因上的缺氧应答序列,这些序列拥有共同的碱基片段5-(A/G)CGTG-3。

HIF1α在多细胞生物的各种类型细胞中均表达;而HIF2α仅在脊椎动物的特定细胞如角质形成细胞表达,参与缺氧条件下新生血管形成;HIF3α也仅在某些特定细胞通过与HIF1α、HIF2α、HIF1β结合,抑制负性调节HIF1α、HIF2α的转录活性。迄今,大量实验证明HIF可以调节超过200多种基因的转录活性,在应对缺氧应激损伤的适应性变化中发挥着重要作用。

2HIF对急性心肌梗死后心肌的影响

HIF是急性心肌梗死(AMI)后心脏适应性变化过程中的主要调节因子之一。在人和鼠都观察到,提高HIF活性后心肌梗死面积缩小,左室收缩功能提高,存活率提高[8-9]。HIF的心肌保护作用是由多因素介导的,包括一系列HIF靶基因的转录及其相应信号转导通路的活化。

2.1调节心肌收缩

心血管活性肽是心血管系统稳态的重要调节者,也是HIF1的靶基因之一,在AMI早期有维持心肌收缩功能的作用[10]。心肌梗死后24 h内,机体通过激活HIF通路使心血管活性肽水平急剧升高[11],心血管活性肽再通过磷酸肌醇信号途径PKCε和细胞外信号调节激酶途径ERK1/2,激活下游肌球蛋白轻链激酶。肌球蛋白轻链被磷酸化后,Ca2+敏感性增强,促进心肌肌丝交联,使心肌收缩力增强[12],从而实现心脏保护作用。

2.2调节心肌细胞能量代谢

HIF1α通过多种靶基因共同作用,减少AMI后基础氧耗,提高葡萄糖利用效率。HIF介导AMI后心肌有氧代谢受抑,无氧酵解增强的过程。实验发现,HL-1心肌细胞在缺氧后24 h,葡萄糖转运体-1和乳酸水平分别增高5和15倍;线粒体电子传递链上的各种酶类包括复合体Ⅰ、Ⅳ和顺乌头酸酶的活性也不同程度地降低[13]。HIF1α促进正葡萄糖转运蛋白-1(GLUT-1)、正葡萄糖转运蛋白-3(GLUT-3)和己糖激酶Ⅰ基因(HK-1)、己糖激酶Ⅱ基因(HK-2)基因表达,使葡萄糖形成脱氧葡萄糖而不能进一步代谢[14]; HIF1α促进蛋白激酶(PDK)基因表达,磷酸化丙酮酸脱氢酶(PDH)的催化区域使之失活,使丙酮酸进入糖酵解途径[15-16];HIF1α促进乳酸脱氢酶(LDH)和MOT4基因的表达,使丙酮酸转化为乳酸排出体外,同时减少线粒体源性自由基形成以减少心肌细胞死亡[17];另外正丙酮酸激酶PKM2既参与糖酵解过程,也与HIF1α结合促进其反向激活功能,以正反馈机制实现缺氧状态下心肌细胞代谢转化[18]。

2.3调节线粒体功能

HIF通过综合作用使线粒体产生的自由基减少,起到心肌保护作用。线粒体源性自由基增加会对细胞造成氧化应激损伤[19],HIF1有助于维持AMI后自由基的稳态。HIF上调线粒体中线粒体蛋白BNIP3的水平,与自噬基因Beclin1竞争结合癌基因Bcl2后,游离的Beclin1协同磷脂酰肌醇激酶3激活缺氧诱导性线粒体自溶[20]; HIF抑制线粒体电子传递链中复合体1和4的活性[21]; HIF激活微小核糖核酸miRNA-210,抑制铁硫蛋白ISCU1/2,抑制三羧酸循环顺乌头酶和电子传递链复合体1的活性[22]。

2.4调节炎症反应

炎症趋化因子(如基质细胞衍生因子-12和单核细胞趋化蛋白-5)以及血管黏附分子(如细胞间黏附素和血管源性细胞黏附素)的mRNA表达在心肌梗死区域升高[23]。而HIF1可控制炎症反应,起心脏保护作用。有实验表明,在缺血再灌注前激活HIF活性,可减少心肌细胞表达趋化因子如角质细胞源性趋化因子、巨噬细胞炎症蛋白-2、单核细胞趋化因子-1、中性粒细胞趋化因子和细胞间黏附分子-1的表达,从而抑制中性粒细胞的聚集,明显降低了梗死面积[24]。

3心脏细胞外基质组成和功能

正常情况下,细胞外基质(ECM)由结构蛋白、非结构蛋白和由基质金属蛋白酶(MMP)、金属蛋白酶组织抑制物(TIMP)组成的蛋白水解系统构成。AMI后,左室细胞外基质发生了一系列形态和功能的变化,称为心室重构。异常的心室重构会导致心脏纤维化或心室过度扩张[25-26]。

心脏细胞外基质主要由纤维母细胞活化、增殖分化形成的心肌成纤维细胞合成[27]。基质结构蛋白包括胶原纤维、层黏连蛋白和纤连蛋白,基质非结构蛋白包括结缔组织生长因子、血栓调节蛋白、骨桥蛋白、骨黏连蛋白等[28]。其中,结构蛋白参与维持心室正常结构和功能;非结构蛋白通过细胞表面受体、生长因子、蛋白酶等参与调节结构蛋白。

心脏细胞外基质的MMP,主要包括MMP-1、MMP-2、MMP-3、MMP-9、MMP-14。MMP可降解心脏所有基质成分,受促炎因子如白细胞介素-1、肿瘤坏死因子-α和促纤维化因子如转化生长因子-β、血管紧张素Ⅱ的调节[29-30]。MMP也受心肌成纤维细胞来源的TIMP调节,主要包括TIMP-1和TIMP-2[31]。TIMP是内源性MMP活性抑制剂,在维持成纤维细胞和MMP对细胞外基质的合成降解平衡中起重要作用[32]。

4HIF对AMI后细胞外基质的影响

AMI时心肌细胞不可逆性死亡,梗死区域炎症细胞浸润,使心肌成纤维细胞迅速被激活、增殖,释放炎症介质以及MMP,降解细胞外基质并吞噬组织碎片[33-34]。HIF在该过程中通过促基质细胞迁移、低氧条件下细胞存活、细胞分化、生长因子释放和基质合成等发挥重要作用[35]。组织缺氧时,HIF1α上调P4HA2、P4HA2和PLOD2的基因表达,从而促进胶原沉积[36];HIF1α直接诱导TIMP-1、纤溶酶原激活物抑制剂-1、结缔组织生长因子的表达[37],促进损伤部位胶原沉积;HIF1α激活心脏成纤维细胞内的DNA甲基转移酶-1、DNA甲基转移酶-3β,引起细胞内广泛的DNA甲基化,激活转化生长因子-β信号通路,使细胞表达促纤维化基因产物如Ⅰ型、Ⅲ型胶原和α平滑肌肌动蛋白[38]。HIF1α过度表达则可使成纤维细胞过度增殖、分化,导致过多的基质形成及心脏舒张功能障碍。

5HIF促进AMI后新生血管合成

AMI后HIF1通过刺激各种来源的促血管生成基因的转录和表达,如刺激血管内皮生长因子、胎盘生长因子、血管生成素Ⅰ和Ⅱ、血小板源性生长因子和基质细胞因子1以促进缺血部位新生血管与侧支循环形成,从而减少梗死面积、保存心功能及降低患者死亡率[39]。在冠状动脉疾病患者中,HIF1α水平上调与侧支循环形成密切相关[40]。在大鼠心肌实验观察到HIF还可通过激活丝氨酸/苏氨酸激酶-AMP依赖的蛋白激酶信号途径,参与微血管内皮细胞的血管形成[41]。HIF1α可通过各种信号通路启动组织缺氧损伤后的组织修复进程,但其特异性调节机制尚未了解。

参考文献

[1]Semenza GL. Hypoxia. Cross talk between oxygen sensing and the cell cycle machinery. Am J Physiol Cell Physiol, 2011, 301(3):C550-552.

[2]Lee JW, Bae SH, Jeong JW, et al. Hypoxia- inducible factor (HIF-1) alpha: its protein stability and biological functions. Exp Mol Med, 2004, 36(1):1-12.

[3]Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel- Lindau ubiquitylation complex by O2-regulated prolylhydroxylation. Science, 2001, 292(5516):468-472.

[4]Cowburn AS, Alexander LE, Southwood M, et al.Epidermal deletion of HIF-2α stimulates wound closure. J Invest Dermatol, 2014, 134(3):801-808.

[5]Nauta TD, van Hinsbergh VW, Koolwijk P. Hypoxic signaling during tissue repair and regenerative medicine. Int J Mol Sci, 2014, 15(11):19791-19815.

[6]Ong SG, Hausenloy DJ. Hypoxia-inducible factor as a therapeutic target for cardioprotection. Pharmacol Ther, 2012, 136(1):69-81.

[7]Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell, 2012,148(3):399-408.

[8]Lee SH, Wolf PL, Escudero R, et al. Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med, 2000, 342(9):626-633.

[9]Kerkelä R, Karsikas S, Szabo Z, et al. Activation of hypoxia response in endothelial cells contributes to ischemic cardioprotection. Mol Cell Biol, 2013, 33(16):3321-3329.

[10]Salceda S, Caro J. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem, 1997, 272(36):22642-22647.

[11]Ronkainen VP, Ronkainen JJ, et al. Hypoxia inducible factor regulates the cardiac expression and secretion of apelin. FASEB J. 2007, 21(8):1821-1830.

[12]Perjés á, Skoumal R, Tenhunen O, et al. Apelin increases cardiac contractility via protein kinase Cε- and extracellular signal-regulated kinase-dependent mechanisms. PLoS One, 2014, 9(4):e93473.

[13]Kleinz MJ, Davenport AP. Emerging roles of apelin in biology and medicine. Pharmacol Ther, 2005, 107(2):198-211.

[14]Colson BA, Locher MR, Bekyarova T, et al. Differential roles of regulatory light chain and myosin binding protein-c phosphorylations in the modulation of cardiac force development.J Physiol, 2010, 588(Pt 6):981-993.

[15]Ambrose LJ, Abd-Jamil AH, Gomes RS, et al. Investigating mitochondrial metabolism in contracting HL-1 cardiomyocytes following hypoxia and pharmacological HIF activation identifies HIF-dependent and independent mechanisms of regulation. J Cardiovasc Pharmacol Ther, 2014, 19(6):574-585.

[16]Iyer NV, Kotch LE, Agani F, et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev, 1998, 12(2):149-162.

[17]Ullah MS, Davies AJ, Halestrap AP. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J Biol Chem, 2006, 281(14):9030-9037.

[18]Luo W, Hu H, Chang R, et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell, 2011, 145(5):732-744.

[19]Goswami SK, Maulik N, Das DK. Ischemia-reperfusion and cardioprotection: a delicate balance between reactive oxygen species generation and redox homeostasis. Ann Med, 2007, 39(4):275-289.

[20]Zhang H, Bosch-Marce M, Shimoda LA, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem, 2008, 283(16):10892-10903.

[21]Cockman ME, Masson N, Mole DR, et al. Hypoxia inducible factor-alpha binding and ubiquitylation by the von hippel-lindau tumor suppressor protein. J Biol Chem, 2000, 275 (33):25733-25741.

[22]Chan SY, Zhang YY, Hemann C, et al. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab, 2009, 10(4):273-284.

[23]Everaert BR, Nijenhuis VJ, Reith FC, et al. Adiponectin deficiency blunts hypoxia-induced mobilization and homing of circulating angiogenic cells. Stem Cells Int, 2013, 2013:260156.

[24]Natarajan R, Salloum FN, Fisher BJ, et al. Activation of hypoxia-inducible factor-1 via prolyl-4 hydoxylase-2 gene silencing attenuates acute inflammatory responses in postischemic myocardium. Am J Physiol Heart Circ Physiol, 2007, 293(3):H1571-H1580.

[25]Ling L, Cheng Y, Ding L, et al. Association of serum periostin with cardiac function and short-term prognosis in acute myocardial infarction patients. PLoS One, 2014, 9(2):e88755.

[26]Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics: 2013 update: a report from the American Heart Association. Circulation,2013, 127(1):e6-e245.

[27]李秀,刘巍.肌成纤维细胞在心肌梗死后重构中的作用及机制.国际心血管病杂志,2014,41(2):88-90.

[28]Frangogiannis NG. Matricellular proteins in cardiac adaptation and disease. Physiol Rev, 2012, 92(2):635-688.

[29]Li YY, McTiernan CF, Feldman AM. Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc Res, 2000, 46(2):214-224.

[30]Turner NA, Porter KE. Regulation of myocardial matrix metalloproteinase expression and activity by cardiac fibroblasts. IUBMB Life, 2012, 64(2):143-150.

[31]Turner NA, Warburton P, O′Regan DJ, et al. Modulatory effect of interleukin-1α on expression of structural matrix proteins, MMPs and TIMPs in human cardiac myofibroblasts: role of p38 MAP kinase. Matrix Biol, 2010, 29(7):613-620.

[32]Ma Y, Halade GV, Lindsey ML. Extracellular matrix and fibroblast communication following myocardial infarction. J Cardiovasc Transl Res, 2012, 5(6):848-857.

[33]Frey H, Schroeder N, Manon-Jensen T, et al. Biological interplay between proteoglycans and their innate immune receptors in inflammation. Febs J, 2013, 280(10):2165-2179.

[34]Watson CJ, Collier P, Tea I, et al. Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Hum Mol Genet, 2014, 23(8):2176-2188.

[35]Hong WX, Hu MS, Esquivel M, et al. The Role of hypoxia-inducible factor in wound healing. Adv Wound Care (New Rochelle), 2014, 3(5):390-399.

[36]Ruthenborg RJ, Ban JJ, Wazir A, et al. Regulation of wound healing and fibrosis by hypoxia and hypoxia-inducible factor-1. Mol Cells, 2014, 37(9):637-643.

[37]Gilkes DM, Bajpai S, Chaturvedi P, et al. Hypoxia-inducible factor 1 (HIF-1) fibroblasts P4HA1, P4HA2, and PLOD2 expression in under hypoxic conditions by inducing promotes extracellular matrix remodeling. J Biol Chem, 2013, 288(15):10819-10829.

[38]Watson CJ, Collier P, Tea I, et al. Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Hum Mol Genet, 2014, 23(8):2176-2188.

[39]Ahluwalia A, Tarnawski AS. Critical role of hypoxia sensor--HIF-1alpha in VEGF gene activation. Implications for angiogenesis and tissue injury healing. Curr Med Chem, 2012, 19(1):90-97.

[40]Chen SM, Li YG, Zhang HX, et al. Hypoxia-inducible factor-1alpha induces the coronary collaterals for coronary artery disease. Coron Artery Dis, 2008, 19(3):173-179.

[41]张普,刘铭雅,朱伟,等.Apelin经Akt/AMPK信号通路促进心肌微血管内皮细胞血管生成.国际心血管病杂志,2013,40(1):44-48.

(收稿:2015-06-08修回:2015-08-03)

(本文编辑:丁媛媛)

通信作者:顾新元,Email:guxinyuanbob@sina.com

基金项目:国家自然科学基金项目资助(81170241)

doi:10.3969/j.issn.1673-6583.2016.01.013

猜你喜欢

急性心肌梗死心肌细胞
左归降糖舒心方对糖尿病心肌病MKR鼠心肌细胞损伤和凋亡的影响
活血解毒方对缺氧/复氧所致心肌细胞凋亡的影响
曲美他嗪联合黄芪甲苷对心力衰竭犬心肌细胞Ca2+水平的影响
冠心舒通胶囊对心肌细胞Ca2+ -CaM-CaMPK Ⅱ δ信号系统的影响
急性心肌梗死患者的中医辨证治疗分析
心肌细胞慢性缺氧适应性反应的研究进展
槲皮素通过抑制蛋白酶体活性减轻心肌细胞肥大