APP下载

不同提取液中源区沙尘溶解性铁价态组成特征

2016-03-06罗云汉曹军骥

地球环境学报 2016年2期
关键词:价态溶解性沙尘

罗云汉,吴 枫,曹军骥,郭 晓

(1. 中国科学院地球环境研究所 中国科学院气溶胶化学与物理重点实验室,西安 710061;2. 中国科学院大学,北京 100049;3. 西安交通大学 全球环境变化研究院,西安710049;4. 海南热带海洋学院 理工学院,三亚 572022)

不同提取液中源区沙尘溶解性铁价态组成特征

罗云汉1,2,吴 枫1,曹军骥1,3,郭 晓1,4

(1. 中国科学院地球环境研究所 中国科学院气溶胶化学与物理重点实验室,西安 710061;2. 中国科学院大学,北京 100049;3. 西安交通大学 全球环境变化研究院,西安710049;4. 海南热带海洋学院 理工学院,三亚 572022)

利用pH 4.7醋酸铵溶液和pH 2硫酸溶液对四个沙尘总悬浮颗粒物(TSP)样品进行溶解性铁提取,分别模拟沙尘含铁矿物在雨水和大气酸作用下的溶解。结果显示:在pH 4.7醋酸铵溶液中沙尘铁的溶解性介于2.30%—5.74%,平均值为4.17%;在pH 2硫酸溶液中沙尘铁的溶解性为4.72%—7.27%,平均值为6.13%。两种溶液中溶解性铁的价态组成存在明显差异,在pH 4.7醋酸铵中,溶解性铁主要以三价铁(FeⅢ)形式存在,占全部溶解性铁的76.7%—98.3%,二价铁(FeⅡ)仅占溶解性铁的1.7%—23.3%;在pH 2硫酸溶液中FeⅡ的相对比例明显增加,占全部溶解性铁的17.3%—50.0%。推测在酸作用下富含二价铁的矿物(如碳酸盐矿物)发生迅速溶解,改变了溶解性铁的组成。忽视这一机制可能不利于准确理解沙尘铁溶解性增强机理。

腾格里沙漠;二价铁;三价铁;含铁矿物

沙尘携带的铁是海洋,尤其是高氮低叶绿素(HNLC)区域,表面海水铁的主要来源(Duce and Tindale,1991;Jickells et al,2005;Mahowald et al,2009)。沙尘铁的输送可以缓解这些区域生物可利用铁的不足,促进海洋浮游生物的生长,提高海洋的初级生产力,进而影响海洋和大气之间的CO2的交换,最终影响全球气候变化(Martin and Fitzwater,1988;Martin et al,1994;Jickells et al,2005;高会旺等,2009;孙佩敬等,2009)。冰心记录显示在冰期-间冰期旋回中粉尘铁通量与大气CO2浓度呈明显的负相关变化(Martin,1990;Shi et al,2012)。

沙尘铁元素的生物可利用性或溶解性是理解和评价沙尘全球生物地球化学效应最大的不确定性因素之一,有关其溶解性增强机制一直是大气化学研究领域的热点问题。过去20年,关于沙尘铁溶解性开展了很多研究,提出了多种铁溶解性增强机制,如重力-粒径分异作用(Baker and Jickells,2006)、大气酸(有机酸、无机酸)作用(Desboeufs et al,1999;Kieber et al,2005;Luo and Gao,2010;Paris and Desboeufs,2013)、大气光化学作用等(Zhu et al,1997;Chen and Siefert,2003;Fu et al,2010),但这些机制一方面并不能完全解释沙尘铁溶解性的巨大变异(0.1%—80%),另一方面尚缺乏统一的外场观测证据的支持(Baker and Croot,2010)。

研究沙尘溶解性铁的特征(溶解过程和价态特征)是认识铁溶解性增强机制的重要手段。例如,Zhuang et al(1992)发现北太平洋上气溶胶中的溶解性二价铁显著高于中国黄土或城市气溶胶中的溶解性二价铁,因而提出了沙尘气溶胶铁溶解性增强机制是光催化还原作用;Zhu et al(1997)对大西洋巴巴多斯岛上沙尘气溶胶研究发现,溶解性铁含量没有呈现明显的昼夜变化,但溶解性二价铁含量有明显的昼夜变化,因而认为沙尘铁溶解性增强不是光催化还原的结果;Trapp et al(2010)对大西洋巴巴多斯岛上气溶胶研究发现,气溶胶铁溶解性增加的同时溶解性二价铁的比例也会相应增加,认为这可能与含二价铁较高的生物质燃烧产生的气溶胶有关。

为了理解不同大气过程下沙尘铁溶解性的差异,用pH 4.7醋酸铵溶液和pH 2硫酸溶液对在亚洲沙尘源区(腾格里沙漠)采集的四个沙尘样品进行溶解性铁提取,结果发现尽管排除了溶液中氧化还原反应和光化学反应的影响,两种溶液中溶解性铁的价态组成仍存在明显差异。本文报道了这些结果,并讨论了可能的原因及实验结果对理解沙尘铁溶解性增强机制的意义。

1 材料与方法

1.1 样品采集

2015年4月,在内蒙古腾格里沙漠开展春季沙尘采样工作。采样站点位于腾格里沙漠东南缘一个自然村落(38°79′N,105°38′E;1235 m a.s.l.),该村落常住人口不足30人,阿拉善左旗县城距离站点东边约30 km。每年春季来自中国北部及西北部沙漠地区的沙尘频繁经过采样地区,然后被传输到人为污染密集的黄土高原、华北平原等地区(Fu et al,2014;李贵玲等,2014;Wang et al,2014;黄耀等,2015)。

采样仪器为意大利Zambelli Easy Pluse1 恒流量颗粒物采样器,仪器架设于村民民房屋顶,仪器进样口距地面约4 m;采样滤膜为酸洗过的直径为47 mm的whatman 41纤维素滤膜,这种滤膜元素背景值低,对沙尘颗粒物采集效率可达99%以上(Zhu et al,1997;Trapp et al,2010);采样流量固定为15 L·min-1,采样时长根据天气条件变化作相应的调整。利用便携式粒子计数器(Lighthouse 3016)记录采样期间空气颗粒物数浓度信息,同时利用便携式气象站(Kestrel NK4500)同步连续记录采样期间的气象条件。采样信息及采样期间气象记录见表1。

此次观测期间共采集四个沙尘样品,其中2015-04-22的样品采集于典型的局地扬沙天气,采样期间空气中粗粒子(粒径>1 μm)数浓度很高,是该地区正常天气的5倍(正常天气粗粒子数约1.5×105个/m3),风向为南风,最大风速约9.3 m·s-1;其余三个样品均采集于沙尘天气,采样期间粗粒子数浓度均很高,是正常天气的5—10倍,风向为北风或西北风,平均风速为3—9 m·s-1。

1.2 溶解性铁与全铁分析

选用pH 4.7醋酸铵溶液和pH 2硫酸溶液分别提取沙尘样品中的溶解性铁,这两种溶液常分别用来模拟沙尘含铁矿物在雨水和大气酸作用下的溶解。在进行溶解性铁提取之前,对提取溶液充分通入氮气以去除溶液中的溶解氧(通氮气约30 min)。溶解性铁提取的具体操作为:裁剪1/4滤膜样品,加入20 mL去氧提取溶液,随后用铝箔包裹样品以避免光照,然后超声1 h,脱色摇床再振荡1 h,之后经0.45 μm过滤器过滤提取溶液。

利用菲啰嗪-分光光度法测定提取溶液中溶解性铁的含量及价态组成。该方法基本原理是:在pH 4—9条件下,Fe2+与Ferrozine反应生成紫色络合物,该络合物在波长562 nm处有最大吸收。相对于其他溶解性铁的分析方法而言,该方法不仅能够测定总溶解性铁的含量,而且能够测定Fe3+(FeⅢ)和Fe2+(FeⅡ)各自的含量(Viollier et al,2000;Majestic et al,2006)。实验使用的分析试剂均选用分析纯级别,分光光度计使用紫外可见光分光光度计(Mapada UV6100S)并配备10 cm比色皿,该方法对溶解性铁(FeS)的检测限在5—10 nL·L-1。

表1 样品信息及采样期间气象条件Tab.1 Sampling information and meteorology

采用中国科学院气溶胶化学与物理重点实验室X射线荧光光谱(Epsilon 5 ED-XRF)测定滤膜样品的全铁含量(FeT),铁元素的仪器分析误差小于10%(Cao et al,2008;Cheng et al,2010)。

2 结果

表2总结了沙尘样品在两种提取溶液中的铁溶解性(FeS/FeT)及价态组成。在醋酸铵溶液中沙尘铁的溶解性介于2.30%—5.74%,平均值为4.17%,与前人类似的研究相比,本研究中沙尘铁溶解性结果处于较高值水平。例如Baker et al(2006a)利用pH 4.7溶液提取非洲沙尘气溶胶溶解性铁,铁溶解性在介于1.4%—4.1%,Desboeufs et al(2005)利用类似的提取方法获得亚利桑那沙尘(ATZD)铁溶解性为1.5%。沙尘铁溶解性差异可能与沙尘的来源不同有关(Shi et al,2011)。

表2 pH 4.7醋酸铵溶液和pH 2硫酸溶液中铁溶解性(单位:%)Tab.2 Fe solubility ( Unit: %) in the two extraction solutions

在稀硫酸溶液中沙尘铁的溶解性明显的增强,铁溶解性介于4.72%—7.27%,平均值为6.13%,较醋酸铵溶液平均增加了近47%,这与前人的研究结果相当。如Fu et al(2012)利用pH 2硫酸溶液提取中国黄土中溶解性铁,铁溶解性约4.3%,Cwiertny et al(2008)利用pH 1的硫酸溶液提取中国黄土中溶解性铁,铁的溶解性约为7.5%;Spokes and Jickells(1995)利用pH 2—5.3硫酸溶液长时间提取非洲沙尘气溶胶样品,获得非洲沙尘铁溶解性平均为5.5%,Shi et al(2011)利用相同的方法提取非洲沙尘源区表土样品,铁溶解性平均为8.2%。

两种提取溶液中溶解性铁的价态组成存在明显差异。在pH 4.7醋酸铵中,FeⅢ是溶解性铁主要存在形式,占全部溶解性铁的76.7%—98.3%,FeⅡ仅占溶解性铁的1.7%—23.3%,这符合传统的认识即在近环境中性条件下溶解性铁主要以FeⅢ形式存在或来自铁氧化物(主要含FeⅢ)的溶解。在pH 2硫酸溶液中FeⅡ和FeⅢ溶解性(FeⅡ/FeT和FeⅢ/FeT)都有所增强,其中FeⅡ溶解性增加的幅度更大,由pH 4.7醋酸铵溶液中的0.56%增加到pH 2硫酸溶液中的2.19%,平均增加了3倍;FeⅢ溶解性增加较小,由pH 4.7醋酸铵溶液中的3.60%增加到pH 2硫酸溶液中的3.94%,平均仅增加了9.4%。在硫酸溶液中溶解性FeⅡ占到全部溶解性铁的17.3%—50.0%,平均值为35.7%,明显高于醋酸铵溶液。FeⅡ与FeⅢ相对比例改变更为明显(图1),四个沙尘样品FeⅡ/FeⅢ的值均在硫酸溶液中大幅度的增加,在pH 4.7醋酸铵溶液中FeⅡ/FeⅢ均值为0.14,而在pH 2硫酸溶液中FeⅡ/FeⅢ均值为0.63,FeⅡ与FeⅢ的相对比例平均增加了3.5倍。

图1 pH 4.7醋酸铵溶液和pH 2硫酸溶液中溶解性铁价态组成Fig.1 Fe2+/ Fe3+in the two extraction solutions

3 讨论

两种溶液中铁溶解性和溶解性铁价态组成的差异表明溶液酸性的增强不仅会增加铁的溶解性,也会显著改变溶解性铁的价态组成。含铁矿物在酸介质中溶解的本质是溶液中H+与矿物晶体表面发生相互作用,这种相互作用会减弱晶体表面元素之间的化学键,破坏晶体表面的结构,使晶体表面的元素进入到溶液中,而溶液中H+浓度越高,这种相互作用就越强,晶体表面的元素就越容易进入到溶液中去(Desboeufs et al,1999)。这解释了pH 2的硫酸溶液中铁溶解性显著高于pH 4.7醋酸铵溶液中铁的溶解性的现象。

不同提取溶液中溶解性铁价态组成变化的原因较为复杂,主要包括提取溶液中的氧化还原作用,如溶解氧,试剂本身的氧化还原性质(Cwiertny et al,2008),光催化还原作用(Zhu et al,1993;Fu et al,2010)以及含不同价态铁的矿物的选择性溶解(Cwiertny et al,2008)。本研究在进行溶解性铁提取实验时选择的是醋酸铵和硫酸两种提取试剂。在以往的研究中pH 4.7醋酸铵溶液经常被用来模拟沙尘在雨水或云水中溶解(Desboeufs et al,2005;Baker et al,2006b),而硫酸溶液经常被用来模拟沙尘在大气酸作用下的溶解(Shi et al,2015),这两种试剂本身不会与溶解性铁发生氧化还原反应。此外,在进行溶解性铁提取之前,对提取溶液进行充分通氮气(约30 min)去氧。因而溶液中的氧化还原作用并不是造成两种溶液中溶解性铁价态组成巨大差异的原因。以往研究表明即使不去除溶液中溶解氧气,FeⅡ标样也可以在常规条件下(4℃)保存数天(Majestic et al,2006)。光照,尤其是紫外光辐射,会将溶液中的溶解性FeⅢ催化还原成FeⅡ,改变溶液中溶解性铁的价态组成,这种作用的强弱与光的波长和强度以及溶液的pH都有关(Zuo and Zhan,2005;Zuo et al,2005)。本次研究在进行溶解性铁实验过程中,对所有样品进行严格避光处理(铝箔包裹),并在提取实验完成后2小时内完成对样品的溶解性铁价态分析。数据质量控制实验表明,利用提取溶液配制的100 nL·L-1的FeⅡ、FeⅢ标样在常规实验室条件下(光照、24℃)可以稳定保存5—8 h。因而光催化还原作用也不是造成两种溶液中溶解性铁价态组成巨大差异的原因。

沙尘是地表岩石风化的产物,含铁矿物包括铁氧化物、含铁硅铝酸盐、碳酸盐矿物等由于矿物的成因不同,这些矿物中FeⅡ和FeⅢ含量存在着差异(Heron et al,1994)。其中铁氧化物中主要含FeⅢ(Zhu et al,1993),硅铝酸盐矿物中既含FeⅡ又含FeⅢ(Cwiertny et al,2008),碳酸盐矿物中主要含FeⅡ(Tessier et al,1979;Heron et al,1994)。这些含铁矿物的溶解速率受溶液pH的控制,溶液酸性的增强会引起这些含铁矿物溶解速率不同幅度的增加,这可能会导致不同提取溶液中溶解性铁的价态组成存在差异(Chou et al,1989;Köhler et al,2003;Golubev et al,2009)。以往研究发现黑暗条件下利用强酸溶液(pH 1—3)提取沙尘样品,溶液中有相当大比例(10%—40%)的二价铁存在,认为这些溶解性FeⅡ主要来自含FeⅡ矿物的溶解(Cwiertny et al,2008)。亚洲沙尘形成于干旱-半干旱地区,含有较高含量(约10%)的原生和次生碳酸盐矿物如方解石、白云石等(Cao et al,2005;Wang et al,2005),这些碳酸盐矿物在沉积过程中会混入微量的铁元素,铁元素主要以FeⅡ的形式赋存在这些矿物的晶格中(Tessier et al,1979;Heron et al,1994)。此外,这些碳酸盐矿物溶解速率对溶液pH的变化较其他含铁矿物更加敏感,溶液酸性的增强会引起其溶解速率发生大幅度的改变。例如,在pH 5溶液中白云石溶解速率约为10-11mol·cm-2·s-1,而在pH 2溶液中其溶解速率为10-8mol·cm-2·s-1,pH每降低1个单位其溶解性速率增加近1个数量级(Chou et al,1989);而铁氧化物如赤铁矿在pH 5溶液中溶解速率约为10-17mol·cm-2·s-1,在pH 2溶液中其溶解速率约为10-15—10-16mol·cm-2·s-1,pH降低2—3个单位其溶解性速率才能增加1个数量级(Meskhidze et al,2003)。因此推测在两种提取溶液中溶解性铁价态组成的巨大差异,是沙尘中含FeⅡ的碳酸盐矿物在溶液酸性增强后发生快速溶解的结果。

4 结论

利用pH 4.7醋酸铵溶液和pH 2硫酸溶液提取了亚洲沙尘源区沙尘TSP样品溶解性铁。研究发现,pH 2硫酸溶液中铁溶解性显著高于pH 4.7醋酸铵溶液,说明酸性的增强可明显增加沙尘铁溶解性。两种提取溶液中溶解性铁的价态组成存在显著的差异,在弱酸性或近环境中性(pH 4.7)溶液中,溶解性铁主要以FeⅢ形式存在,溶解性FeⅡ仅占溶解性铁的很小部分;在强酸性溶液中,FeⅡ含量大幅度增加。综合分析后,推测在两种提取溶液中溶解性铁价态组成的巨大差异,是由于沙尘中含FeⅡ的矿物(如碳盐酸)在溶液酸性增强后发生了快速的溶解。

沙尘在传输过程中,尤其是在大洋上传输过程中,往往会与人为污染气团或海盐气溶胶发生强烈的混合,这些人为污染气团中的酸性物质如H2SO4、SO2、HNO3、HCl等会与沙尘颗粒物发生反应,并在颗粒物表面形成酸性很强的吸湿层,例如Zhu et al(1997)利用化学模式估算出大西洋巴巴多斯岛上沙尘颗粒物表面吸湿层的pH能低至1;与之类似,Meskhidze et al(2003)对中国黄海上采集的沙尘气溶胶的研究发现,这些沙尘颗粒物与人为污染气团强烈混合,沙尘颗粒物表面吸湿层的pH在1左右。本研究的结果表明,在这种强酸性的吸湿层里,含二价铁的矿物如碳酸盐矿物会发生快速的溶解,即使不发生大气光还原反应或不与含较多二价铁的生物质燃烧产生的气溶胶发生混合,沙尘气溶胶溶解性二价铁比例也会升高。这种酸作用导致的溶解性铁价态组成的改变,在以后通过溶解性铁价态组成的变化来理解铁溶解性增强机制时是不应该被忽视的。

致谢:感谢海南热带海洋学院实习生郭冰桥帮助开展沙尘样品的采样工作。

高会旺, 祁建华, 石金辉, 等. 2009. 亚洲沙尘的远距离输送及对海洋生态系统的影响[J].地球科学进展, 24(1): 1 – 10. [Gao H W, Qi J H, Shi J H, et al. 2009. Lang-range transport of Asian dust and its effects on ocean ecosystem [J].Advances in Earth Science, 24(1): 1 – 10.]

黄 耀, 王格慧, 韩艳妮, 等. 2015. 沙尘暴期西安大气颗粒物化学组成及吸湿性能小时变化特征[J].地球环境学报, 6(1): 44 – 53. [Huang Y, Wang G H, Han Y N, et al. 2015. Hourly characteristics of chemical composition and hygroscopic property of TSP in Xi'an during dust storm [J].Journal of Earth Environment, 6(1): 44 – 53.]

李贵玲, 周 敏, 陈长虹,等. 2014. 2011年春季沙尘天气影响下上海大气颗粒物及其化学组分的变化特征[J].

环境科学, 35(5): 1644 – 1653. [Li G L, Zhou M, Chen C H, et al. 2014. Characteristics of particulate matters and its chemical compositions during the dust episodes in Shanghai in spring, 2011 [J].Environment Science, 35(5):1644 – 1653.]

孙佩敬, 李瑞香, 徐宗军, 等. 2009. 亚洲沙尘对三种海洋微藻生长的影响[J].海洋科学进展, 27(1): 59 – 65. [Sun P J, Li R X, Xu Z J, et al. 2009. Effects of Asian dust on the growth of three species of micro algae [J].Advances inMarine Science, 27(1): 59 – 65.]

Baker A R, Croot P L. 2010. Atmospheric and marine controls on aerosol iron solubility in seawater [J].Marine Chemistry, 120(1 / 2 / 3 / 4): 4 – 13.

Baker A R, French M, Linge K L. 2006a. Trends in aerosol nutrient solubility along a west-east transect of the Saharan dust plume [J].Geophysical Research Letters, 33(7),doi:10.1029/2005GL024764.

Baker A R, Jickells T D. 2006. Mineral particle size as a control on aerosol iron solubility [J].Geophysical Research Letters, 33(17),doi:10.1029/2006GL026557.

Baker A R, Jickells T D, Witt M, et al. 2006b. Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean [J].Marine Chemistry, 98(1): 43 – 58.

Cao J J, Chow J C, Watson J G, et al. 2008. Size-differentiated source profiles for fugitive dust in the Chinese Loess Plateau [J].Atmospheric Environment, 42(10): 2261 – 2275.

Cao J J, Lee S C, Zhang X Y, et al. 2005. Characterization of airborne carbonate over a site near Asian dust source regions during spring 2002 and its climatic and environmental significance [J].Journal of Geophysical Research-Atmospheres, 110(D3),doi:10.1029/2004JD005244.

Chen Y, Siefert R L. 2003. Determination of various types of labile atmospheric iron over remote oceans [J].Journal of Geophysical Research-Atmospheres, 108(D24),doi:10.1029/2003JD003515.

Cheng Y, Lee S C, Ho K F, et al. 2010. Chemically-speciated on-road PM2.5motor vehicle emission factors in Hong Kong [J].Science of the Total Environment, 408(7): 1621 – 1627.

Chou L, Garrels R M, Wollast R. 1989. Comparative-study of the kinetics and mechanisms of dissolution of carbonate minerals [J].Chemical Geology, 78(3 / 4): 269 – 282.

Cwiertny D M, Baltrusaitis J, Hunter G J, et al. 2008. Characterization and acid-mobilization study of ironcontaining mineral dust source materials [J].Journalof Geophysical Research-Atmospheres, 113(D5),doi:10.1029/2007JD009332.

Desboeufs K V, Losno R, Vimeux F, et al. 1999. The pH-dependent dissolution of wind-transported Saharan dust [J].Journal of Geophysical Research-Atmospheres, 104(D17): 21287 – 21299.

Desboeufs K V, So fi kitis A, Losno R, et al. 2005. Dissolution and solubility of trace metals from natural and anthropogenic aerosol particulate matter [J].Chemosphere, 58(2): 195 – 203.

Duce R A, Tindale N W. 1991. Atmospheric transport of iron and its deposition in the ocean [J].Limnology and Oceanography, 36(8): 1715 – 1726.

Fu H B, Cwiertny D M, Carmichael G R, et al. 2010. Photoreductive dissolution of Fe-containing mineral dust particles in acidic media [J].Journal of Geophysical Research-Atmospheres, 115(D11),doi:10.1029/2009JD012702.

Fu H B, Lin J, Shang G F, et al. 2012. Solubility of iron from combustion source particles in acidic media linked to iron speciation [J].Environmental Science & Technology, 46(20): 11119 – 11127.

Fu H B, Shang G F, Lin J, et al. 2014. Fractional iron solubility of aerosol particles enhanced by biomass burning and ship emission in Shanghai, East China [J].Science of the Total Environment, 481: 377 – 391.

Golubev S V, Bénézeth P, Schott J, et al. 2009. Siderite dissolution kinetics in acidic aqueous solutions from 25 to 100℃ and 0 to 50 atmpCO2[J].Chemical Geology, 265(1 / 2): 13 – 19.

Heron G, Crouzet C, Bourg A C M, et al. 1994. Speciation of Fe(Ⅱ) and Fe(Ⅲ) in contaminated aquifer sediments using chemical-extraction techniques [J].Environmental Science & Technology, 28(9): 1698 – 1705.

Jickells T D, An Z S, Andersen K K, et al. 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate [J].Science, 308(5718): 67 – 71.

Köhler S J, Dufaud F, Oelkers E H. 2003. An experimental study of illite dissolution kinetics as a function of pH from 1.4 to 12.4 and temperature from 5 to 50℃ [J].Geochimica et Cosmochimica Acta, 67(19): 3583 – 3594.

Kieber R J, Skrabal S A, Smith B J, et al. 2005. Organic complexation of Fe(Ⅱ) and its impact on the redox cycling of iron in rain [J].Environmental Science &Technology, 39(6): 1576 – 1583.

Luo C, Gao Y. 2010. Aeolian iron mobilisation by dustacid interactions and their implications for soluble iron deposition to the ocean: A test involving potential anthropogenic organic acidic species [J].Environmental Chemistry, 7(2): 153 – 161.

Mahowald N M, Engelstaedter S, Luo C, et al. 2009. Atmospheric iron deposition: Global distribution, variability, and human perturbations [J].Annual Review ofMarine Science, 1: 245 – 278.

Majestic B J, Schauer J J, Shafer M M, et al. 2006. Development of a wet-chemical method for the speciation of iron in atmospheric aerosols [J].Environmental Science & Technology, 40(7): 2346 – 2351.

Martin J H. 1990. Glacial-interglacial CO2change: The iron hypothesis [J].Paleoceanography, 5(1): 1 – 13.

Martin J H, Coale K H, Johnson K S, et al. 1994. Testing the iron hypothesis in ecosystems of the equatorial pacificocean [J].Nature, 371(6493): 123 – 129.

Martin J H, Fitzwater S E. 1988. Iron-deficiency limits phytoplankton growth in the northeast paci fi c subarctic [J].Nature, 331(6154): 341 – 343.

Meskhidze N, Chameides W L, Nenes A, et al. 2003. Iron mobilization in mineral dust: Can anthropogenic SO2emissions affect ocean productivity? [J].Geophysical Research Letters, 30(21),doi:10.1029/2003GL018035.

Paris R, Desboeufs K V. 2013. Effect of atmospheric organic complexation on iron-bearing dust solubility [J].Atmospheric Chemistry and Physics, 13(9): 4895 – 4905.

Shi Z B, Krom M D, Bonneville S, et al. 2011. Influence of chemical weathering and aging of iron oxides on the potential iron solubility of Saharan dust during simulated atmospheric processing [J].Global Biogeochemical Cycles, 25(2),doi:10.1029/2010GB003837.

Shi Z B, Krom M D, Bonneville S, et al. 2015. Atmospheric processing outside clouds increases soluble iron in mineral dust [J].Environmental Science & Technology, 49(3): 1472 – 1477.

Shi Z B, Krom M D, Jickells T D, et al. 2012. Impacts on iron solubility in the mineral dust by processes in the source region and the atmosphere: A review [J].Aeolian Research, 5: 21 – 42.

Spokes L J, Jickells T D. 1995. Factors controlling the solubility of aerosol trace metals in the atmosphere and on mixing into seawater [J].Aquatic Geochemistry, 1(4): 355 – 374.

Tessier A, Campbell P G C, Bisson M. 1979. Sequential extraction procedure for the speciation of particulate tracemetals [J].Analytical Chemistry, 51(7): 844 – 851.

Trapp J M, Millero F J, Prospero J M. 2010. Trends in the solubility of iron in dust-dominated aerosols in the equatorial Atlantic trade winds: Importance of iron speciation and sources [J].Geochemistry Geophysics Geosystems, 11(3),doi:10.1029/2009GC002651.

Viollier E, Inglett P W, Hunter K, et al. 2000. The ferrozine method revisited: Fe(Ⅱ)/Fe(Ⅲ) determination in natural waters [J].Applied Geochemistry, 15(6): 785 – 790.

Wang G H, Cheng C L, Huang Y, et al. 2014. Evolution of aerosol chemistry in Xi'an, inland China, during the dust storm period of 2013: Part 1: Sources, chemical forms and formation mechanisms of nitrate and sulfate [J].Atmospheric Chemistry and Physics, 14(21): 11571 – 11585.

Wang Y, Zhang X, Arimoto R, et al. 2005. Characteristics of carbonate content and carbon and oxygen isotopic composition of northern China soil and dust aerosol and its application to tracing dust sources [J].Atmospheric Environment, 39(14): 2631 – 2642.

Zhu X R, Prospero J M, Millero F J. 1997. Diel variability of soluble Fe(Ⅱ) and soluble total Fe in North African dust in the trade winds at Barbados [J].Journal of Geophysical Research, 102(D17): 21297 – 21305.

Zhu X R, Prospero J M, Savoie D L, et al. 1993. Photoreduction of iron(Ⅲ) in marine mineral aerosol solutions [J].Journal of Geophysical Research-Atmospheres, 98(D5): 9039 – 9046.

Zhuang G S, Yi Z, Duce R A, et al. 1992. Link between iron and sulfur cycles suggested by detection of Fe(Ⅱ) in remote marine aerosols [J].Nature, 355(6360): 537 – 539.

Zuo Y, Zhan J. 2005. Effects of oxalate on Fe-catalyzed photooxidation of dissolved sulfur dioxide in atmospheric water [J].Atmospheric Environment, 39(1): 27 – 37.

Zuo Y G, Zhan J, Wu T X. 2005. Effects of monochromatic UVVisible light and sunlight on Fe(Ⅲ)-catalyzed oxidation of dissolved sulfur dioxide [J].Journal of Atmospheric Chemistry, 50(2): 195 – 210.

pH-dependent dissolved iron speciation of dust collected in dust source region

LUO Yunhan1,2, WU Feng1, CAO Junji1,3, GUO Xiao1,4
(1. Key Laboratory of Aerosol Chemistry and Physics (KLACP), Chinese Academy of Sciences, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China; 4. College of Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China)

Background, aim, and scopeAbout 30% of the world oceans like the Equatorial Pacific and the Southern Oceans are comprised of high-nutrient low-chlorophyll (HNLC) regions where phytoplankton growth is limited by bioavailable iron(Fe) supply. It is believed that increased bioavailable Fe supply to these regions will stimulate phytoplankton growth, leading to enhanced atmospheric CO2sequestration and nitrogen fi xation by the ocean, which can have profound impacts on climate. Mineral dust originated from the world semi-arid and arid regions is the dominant source of Fe to the remote oceans. Direct fi eld measurements reported Fe solubility of mineral dust ranging from less than 0.1% to as much as 80% with higher solubility values generally observed over remote parts of the oceans, implying that atmospheric processing can increase the Fe solubility during dust transport. To understand how atmospheric process will influence Fe dissolution behavior of mineral dust, Fesolubility and dissolved Fe speciation of mineral dust in typical atmospheric solutions were investigated.Materials and methodsIn April 2015, four dust Total Suspended Particle (TSP) samples were collected at the Tengger Desert, a well-known Asian dust source region. A quarter of the dust fi lter sample was extracted with ammonium acetate (pH 4.7) and sulfuric acid (pH 2) to simulate Fe dissolution in the rainwater and acidic aerosol water, respectively. Dissolved Fe and Fe2+in the extraction solution were measured colorimetrically using the Ferrozine method. Total Fe on the fi lter was determined with X-Ray Fluorescence.ResultsFe solubility was 4.17% (2.30%—5.74%) in the ammonium acetate and 6.13% (4.72%—7.27%) in the sulfuric acid. Large difference in soluble iron speciation was observed in the two solutions. In the ammonium acetate, Fe3+was the dominant species accounting for 76.7%—98.3% of the total dissolved iron and Fe2+only constituted a minor part (1.73%—23.3%). In the sulfuric acid, Fe2+was significantly mobilized and accounted for a much higher fraction of total dissolved iron (17.3%—50.0%) than that in the ammonium acetate.DiscussionThe results show that both Fe solubility and dissolved Fe speciation were strongly dependent on the pH of the extraction solution. Since mineral dissolution in the acidic solution is a proton-promoted process, it is reasonable that Fe solubility was significantly enhanced when the solution become more acidic. However, there exists many factors that may lead to a difference in dissolved Fe speciation in the two extraction solutions. These factors include (1) redox reaction between dissolved Fe and the extractant, (2) Photo-reduction of dissolved Fe, (3) Selective dissolution of Fe-bearing mineral in different extraction solution. On one hand, no redox reaction between dissolved Fe and ammonium acetate or between dissolved Fe and sulfuric acid is expected to occur in the extraction solution. On the other hand, all of the extraction experiments were conducted under dark condition. The only possible reason for the difference in dissolved Fe speciation in the two solutions lies in the selective dissolution of Fe-bearing minerals. Asian dust has a very high content of carbonate minerals and some Fe was trapped in the crystal lattice these carbonate minerals in the form of Fe2+. Moreover, dissolution rate of carbonate minerals is much more sensitive to pH than other Fe-bearing minerals. We proposed the large difference in soluble iron speciation was caused by fast dissolution of Fe2+-bearing minerals like carbonate when the pH of the extraction was lowered.ConclusionsWe found that both that Fe solubility and dissolved Fe speciation of mineral dust were strongly pH-dependent. Lowered pH of atmospheric solution not only leads to enhanced Fe solubility but also results in significant change in dissolved Fe speciation. This large change in the dissolved Fe speciation was possibly caused by fast dissolution of Fe2+-bearing minerals like carbonate under more acidic solution. When dust is transported in the atmosphere, the atmospheric solution around dust particle may become extremely acidic, leading to mobilization of Fe2+-bearing minerals as well as change in the dissolved Fe speciation. A lack of awareness of this pH-initiated change in dissolved Fe speciation may hamper an accurate understanding of factors that control dust iron solubility.Recommendations and perspectivesThis study reveals a new mechanism that may lead to a change in dissolved Fe speciation of mineral dust when dust is subject to atmospheric processing. This pH-initiated change in dissolved Fe speciation should not be ignored when we explain the factors that control dust iron solubility.

Tengger Desert; Fe2+; Fe3+; Fe-bearing minerals

LUO Yunhan, E-mail: luoyh@ieecas.cn

10.7515/JEE201602009

2015-12-21;录用日期:2016-02-02

Received Date:2015-12-21;Accepted Date:2016-02-02

中国科学院战略性先导科技专项(XDB05000000);国家自然科学基金项目(40872211)

Foundation Item:Strategic Priority Research Program of Chinese Academy of Sciences (XDB05000000); National Natural Science Foundation of China (40872211)

罗云汉,E-mail: luoyh@ieecas.cn

猜你喜欢

价态溶解性沙尘
Sn在锆合金氧化膜中稳定价态的第一性原理研究
共沉淀引发的溶解性有机质在水铁矿/水界面的分子分馏特性*
垃圾渗滤液中溶解性有机质与重金属络合机制研究现状及展望
垃圾渗滤液溶解性有机物的分子指纹特征
超声提取—三氯化钛还原一原子荧光光谱法对土壤样品中不同价态碲的测定
可怕的沙尘天气
溶解性有机质对水中重金属生物有效性的影响研究
不同价态外源硒对小白菜生长及养分吸收的影响
化学问答