许昌市街道灰尘重金属含量及其粒径效应
2016-03-06张俊丽
闫 慧,肖 军,张俊丽
(1. 许昌学院 城乡规划与园林学院,许昌 461000;2. 中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,西安 710061)
许昌市街道灰尘重金属含量及其粒径效应
闫 慧1,肖 军2,张俊丽1
(1. 许昌学院 城乡规划与园林学院,许昌 461000;2. 中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,西安 710061)
对许昌市街道灰尘样品进行了重金属含量和粒度测试,研究了重金属在各粒径上的富集规律及其原因。结果表明:许昌市街道灰尘主要以粉砂为主(平均为57.62%),砂粒次之(平均值为25.18%),粘粒含量最少(平均值为17.21%)。街道灰尘中Cr、Cu、Zn、Pb、Mn、Ni和Co含量范围分别为60.9—277.4 μg·g-1、15.5—116.4 μg·g-1、76.5—398.7 μg·g-1、25.1—63.7 μg·g-1、356—519 μg·g-1、9.0—25.6 μg·g-1和7.9—10.4 μg·g-1,平均值分别为96.8 ± 42.7 μg·g-1、35.4 ± 23.8 μg·g-1、145.3 ± 67.2 μg·g-1、41.9 ± 10.4 μg·g-1、408 ± 35.7 μg·g-1、18.5 ± 4.1 μg·g-1和9.0 ± 0.7 μg·g-1。Zn、Pb、Cu和Cr的平均值均高于土壤背景值,分别为背景值的2.42倍、2.14倍、1.80倍和1.52倍,污染较重。而Mn、Ni和Co值富集程度较低,污染较轻。研究发现,Cu、Pb、Zn和Cr与50—100 μm粗粉砂相关性显著,Mn和Ni与10—50 μm细粉砂相关性较高,但其含量并未随着粒径的进一步减小而增强;而Co与< 10 μm的粘粒组分相关性较强,其粒径效应明显。街道灰尘中不同重金属含量粒径效应的不同可能与重金属的吸附作用和同晶替换作用的相对强弱有关。
街道灰尘;重金属;许昌;粒径效应
城市街道灰尘是指城市街道的垃圾灰尘粒径相对较粗或粗粒级占有较大比例的颗粒物(杜佩轩等,2004)。与城市土壤和大气颗粒物相比,城市街道灰尘是一种物质组成和来源更为复杂的环境介质。在人类活动的强烈干扰影响下,城市街道灰尘累积了大量的重金属,包含了特定的环境信息和污染指示作用,成为城市环境污染的重要来源(常静等,2008;强小科等,2010;李小飞等,2013; 于瑞莲等,2014;Ferreira-Baptista and Miguel,2005)。一方面,城市街道灰尘在一定外动力条件下扬起,通过呼吸道和皮肤被人体吸收,在人体内被消化、吸收、积累,从而对人体健康产生危害;另一方面,城市街道灰尘在降水的冲刷作用下进入河道,对城市水环境造成直接污染。因此,城市地表灰尘中的重金属对城市环境质量和人体健康有很大的危害,日益受到学术界的关注(刘玉燕等,2009;郑小康等,2009;Karmacharya and Shakya,2012)。20世纪80年代以来国外学者对城市街道灰尘中重金属的积累分布、粒径效应及其生物有效性等展开了一系列研究(Viklander,1998;Ahmed and Ishiga,2006),国内学者主要侧重于研究地表灰尘重金属污染特征及其空间分异(李崇等,2008;史兴民和王建辉,2009),而对灰尘重金属污染粒径效应研究较少(田辉等,2007;常静等,2008,2009;方凤满等,2009;Zheng et al,2010)。Deletic and Orr(2005)研究发现灰尘中重金属含量在2—63 μm粒级中最高,其中Pb占70%以上。方凤满等(2009)发现地表灰尘中As和Hg在>200目粒径的平均富集比例分别为55.8%和63.5%。常静等(2008)发现地表灰尘的重金属含量主要富集在150 μm和75 μm粒径级别。大量研究(Al-Rajhi et al,1997;Viklander,1998;杜佩轩等,2002;Deletic and Orr,2005;田辉等,2007;常静等,2009;方凤满等,2009;Zheng et al,2010;Karmacharya and Shakya,2012)表明重金属的含量更加容易富集在小粒径颗粒上,尤其是粒径<63—75 μm的颗粒物上,但由于来源和理化性质的不同,不同元素的富集规律也有一定差异。前人研究中,粒度分级基本都是用筛分法,最小粒径一般只做到<63 μm或<75 μm,更细粒径中重金属含量并没有分析。因此更细粒径的重金属含量变化也未得知。通过城市街道灰尘重金属的研究可以了解其有害元素含量及其赋存形式、迁移演化机理以及与城市各类污染的关系,为预防和治理城市大气污染提供科学依据,而灰尘粒径组成研究是以上研究的基础(杜佩轩等,2002)。
许昌市地处中原腹地,随着经济的飞速发展,环境问题日益突出。雾霾天气的频发是其最直接的表现,雾霾除直接对人体造成危害外,其富集的重金属将会加剧其对人体的危害。地表灰尘是大气颗粒污染物的重要来源,开展其重金属富集规律研究具有重要现实意义。目前关于许昌市地表灰尘重金属含量的粒径效应的研究还未见报道。鉴于此,本文以许昌市城区为例,对其街道灰尘样品进行了重金属含量和粒度测试,讨论了重金属含量与粒径的关系及其原因。本研究将为许昌市的城市重金属环境污染防治和环境质量评价提供数据支持和科学依据。
1 研究区概况与研究方法
1.1 研究区概况
许昌又称莲城,位于河南省中部(113°03′ —114°19′E、33°16′—34°24′ N),河南经济强市,中原经济区核心城市,中国历史文化名城。许昌市地处伏牛山余脉向豫东平原过渡地带,东西长117 km,南北宽75 km,面积约 5002 km2。许昌西部和西北部为低山丘陵,最高海拔1150.6 m;中部和东部为黄淮冲积平原,最低海拔50.4 m,地面坡度为2.6‰,平均海拔74 m。该区属于黄淮流域,气候为北暖温带半湿润季风气候,年平均气温14.3℃,年平均降水量706 mm,年平均相对湿度71%。全市土壤划分为棕壤、褐土、紫色土、红黏土、潮土和砂礓黑土等6个土类。天然河流有颍河、双洎河、清泥河等,人工河有颍汝总干渠等(吴国玺等,2009)。
1.2 样品采集与分析
在许昌市城区中心干道和外环路以及二者之间的市区主干道交叉处共采集22个灰尘样品(图1)。使用毛刷和不锈钢铲扫取采样点附近的街道灰尘样品,每个样点取样约30 g左右,装入自封袋密封,编号并记录采样点附近交通状况等环境特征。样品在实验室风干,并去除树叶等杂物,每个样品充分混匀后一分为二。一半利用玛瑙研钵把样品研磨至200目,取约4 g左右放入聚氯乙烯环内,利用PW4400型X射线荧光光谱仪分析Cu、Pb、Zn和Cr含量。测定过程用国家一级标样(GSS-1、GSS-2、GSS-3……GSS-8)和重复样品进行测量精度监控。另一半过2 mm不锈钢筛,取约1 g左右样品利用Malvern公司的Mastersizer 2000激光粒度分析仪进行分析,粒度测量范围是0.02—2000 μm,重复测量的误差小于2%。
图1 许昌市街道灰尘采样点分布图Fig.1 Sampling sites of street dust in Xuchang City
1.3 数据统计与分析
本文所有数据利用Excel 2003和SPSS 16.0 软件进行统计和相关性分析。
2 结果与讨论
2.1 许昌市街道灰尘粒径组成
据表1可知,许昌市街道灰尘主要以粉砂为主,占30.78%—79.05%,平均为57.62%,其中细粉砂和粗粉砂分别占14.30%—57.68%和12.22%—37.43%;砂粒组占0.00—57.93%,平均值为25.18%,砂粒比重较高的样品主要分布在城南地区;粘粒组含量最少,占7.80%—30.10%,平均值为17.20%。市中心11号样品砂粒组分最低,而粘粒组含量最高,为30.10%。
研究发现(Al-Rajhi et al,1997),粒径>125 μm的灰尘颗粒物对人体危害较小,而粒径< 125 μm的颗粒容易吸附在皮肤上,更容易被胃酸溶解而被人体吸收。而许昌市街道灰尘粒径基本都小于125 μm,因此对人体具有潜在的危害。另据韩永明等(2003)报道,城市街道灰尘中50—500 μm的颗粒物可以以跳跃形式进入大气,贡献一定比例的大气颗粒物。而近些年来许昌市大气污染严重(于伟娟,2014)。因此,许昌市街道灰尘对该市大气污染的贡献也应引起进一步关注。
2.2 许昌市街道灰尘样品重金属含量及相关性分析
如表2所示,许昌市街道灰尘中Cr、Cu、Zn、Pb、Mn、Ni和Co含量范围分别为60.9—277.4 μg·g-1、15.5—116.4 μg·g-1、76.5—398.7 μg·g-1、25.1—63.7 μg·g-1、356 —519 μg·g-1、9.0—25.6 μg·g-1和7.9—10.4 μg·g-1,平均值分别为96.8 ± 42.7 μg·g-1、35.4 ± 23.8 μg·g-1、145.3 ± 67.2 μg·g-1、41.9 ± 10.4 μg·g-1、408 ± 35.7 μg·g-1、18.5 ± 4.1 μg·g-1和9.0 ± 0.7 μg·g-1,分别为郑州市土壤背景值(成杭新等,2014)的1.38倍、1.97倍、2.64倍、2.0倍、0.9倍、0.84倍和1.0倍。而Mn、Ni和Co值相对于土壤没有富集。
变异系数(CV)通常为反映人为活动强度的一个指标,是指标准差与平均值的比值,依据变异系数大小分级标准为:CV <10%为弱变异;10% < CV < 30%为中等变异;CV >30%为强变异(代勇等,2015)。变异系数分析发现(表2),许昌市街道灰尘重金属元素中Cr、Cu、Zn为强变异,Pb和Ni为中等变异,Mn和Co为弱变异。这表明许昌市街道灰尘重金属的来源受外界干扰很大,尤其是Cr、Cu和Zn,空间变异很强,局部污染较重。这种强变异很大程度上是交通、工业、建筑等强烈人为活动空间分布不均造成的。
重金属元素含量之间的相关性在一定程度上反映其污染程度的相似性或相同的来源(张菊,2005)。Pearson相关分析结果见表3,Mn与Cr、Ni之间,Ni与Co之间,Pb与Cu、Zn之间相关性较好,表明这些金属具有共源性。街道灰尘中重金属的人为来源主要有交通污染、工业污染和城市建设污染等(刘春华和岑况,2007;王济等,2012)。交通污染主要表现为汽车尾气排放、汽车橡胶轮胎老化磨损、车体自身磨损、路面材料老化磨损等。工业污染主要为气排放。城市建设污染主要为建筑扬尘、建筑物金属部分的腐蚀脱落、各种建筑材料(如油漆)的老化脱落。Cr主要来源于工业污染,通常在工业区出现Cr值高峰(王丽丽等,2009),而Pb、Cu和Zn主要来源于交通污染(Banerjee,2003)。尾气排放是街道灰尘中Pb的主要来源,轮胎磨损、防腐镀锌汽车板的腐蚀和路面安全栏的腐蚀是Zn的主要污染源,Cu主要来自于制动器的磨损(Al-Rajhi and Seaward,1996;张晶等,1998;唐艳荣等,2010)。
表1 许昌市街道灰尘样品粒径组成(单位:%)Tab.1 The particle-size distribution (Unit: %) in street dust in Xuchang City
表2 许昌市街道灰尘样品重金属含量(单位:μg·g-1)Tab.2 The concentrations of heavy metals (Unit: μg·g-1) in street dust in Xuchang City
2.3 许昌市街道灰尘重金属含量的粒径效应分析
粒度是表征颗粒物行为的主要参数。粒径分布既决定了城市街道灰尘的可迁移性,也与其污染潜力密切相关。许昌市街道灰尘中重金属含量与各粒径含量的百分比相关性分析(表4)表明:Cu、Pb、Zn和Cr与50—100 μm粗粉砂相关性显著,相关系数分别为0.62、0.58、0.46、0.29;Mn和Ni与10—50 μm细粉砂相关性相对较高,相关系数分别为0.42、0.44;而Co与<10 μm的粘粒组分相关性较强,相关系数分为0.30。
表3 许昌市街道灰尘重金属含量相关关系分析Tab. 3 Pearson's correlation coef fi cients of heavy metals in street dust in Xuchang City
表4 街道灰尘重金属含量与粒径的相关性Tab.4 The relationship between heavy metals and particle size in street dust in Xuchang City
国内外同类研究虽然粒径划分不同,但结论基本相似,认为大多数重金属容易富集在较细的粒径中,尤其是粒径<63—75 μm的颗粒物上,并发现街道灰尘的重金属含量随着粒径的减小呈现出明显增加的趋势(Viklander,1998;常静等,2008;方凤满等,2009)。本研究发现,Cu、Zn、Pb和Cr含量与50—100 μm粗粉砂粒径相关性最显著,这与前人的研究基本一致(Al-Rajhi et al,1997;Viklander,1998;杜佩轩等,2002;Deletic and Orr,2005;田辉等,2007;常静等,2008;方凤满等,2009;Zheng et al,2010;刘德鸿等,2012;Karmacharya and Shakya,2012)。前人在研究中,粒度分级基本都是用筛分法,粒度分析时最小粒径一般只做到< 63 μm或< 75 μm,更细粒径中重金属含量并没有分析。因此,重金属含量随粒径的减小而增加的结论也是通过与更大粒径上重金属含量的对比而得出的,但在< 63 μm或<75 μm的颗粒中,是不是粒径越小,重金属含量越高却无法得知。
本研究利用激光粒度仪进行粒度分析,测量范围为0.02—2000 μm,可以计算更细粒组分的含量。本研究结果发现,随着粒径的进一步减小,Cu、Zn、Pb和Cr含量与10—50 μm细粉砂、<10 μm 粘粒的含量相关性并没有增加,说明街道灰尘的重金属含量在10—50 μm细粉砂、<10 μm 粘粒上并没有比50—100 μm粗粉砂中高。许昌市街道灰尘中Cu、Zn和Pb含量主要分布在50—100 μm粗粉砂中,Mn和Ni主要分布在细粉砂中。而Co含量却随着粒径的进一步减小而增加,因此粒径越小,Co含量越高。
Cornell and Schwertmann(1996)的研究表明,重金属元素主要通过2种途径富集在街道灰尘中,一是表面吸附作用,二是通过同晶替换作用进入街道灰尘中铁磁性矿物的晶格结构中。一般认为颗粒物粒径越小,其比表面积就越大,吸附力也就越强,重金属含量就越高。但同时可能通过同晶替换作用富集在街道灰尘中重金属含量在下降,总体导致重金属含量的降低。Maher(1988)通过对粒度与磁化率相关性研究发现,磁化率在125—16 μm(细砂、粗粉砂)与0.03—0.01 μm(细粘滞性与超顺磁颗粒)各出现一个峰值。0.03—0.01 μm颗粒一般代表的是风化成土作用的产物(卢升高,2000),而125—16 μm(细砂、粗粉砂)代表了人类活动产生的颗粒。磁化率在125—16 μm(细砂、粗粉砂)出现峰值,说明铁磁性矿物在125—16 μm(细砂、粗粉砂)范围含量最高。因此,在此粒度范围内通过同晶替代作用富集的重金属含量也最高,而随着粒度的减小,磁化率在降低,铁磁性矿物含量在降低,通过同晶替代作用富集的重金属含量也降低。由此,随着粒径的进一步减小(10—50 μm、<10 μm),由于同晶替换作用的减弱程度大于表面吸附作用,最终导致Cu、Zn、Pb和Cr含量并未随着粒径的进一步减小而增加。而Co含量的粒径效应可能是由于同晶替换作用的减弱程度小于表面吸附作用而致。因此,重金属在街道灰尘表面的吸附作用和同晶替换作用的相对强弱可能是不同重金属粒径效应的不同原因。但这还有待进一步的研究印证。
3 结论
(1)许昌市街道灰尘主要以粉砂为主,占30.78%—79.05%,平均为57.62%,其中细粉砂和粗粉砂分别占14.30%—57.68%和12.22%—37.43%;砂粒组占0.00—57.93%,平均值为25.18%,粘粒组含量最少,占7.80%—30.10%,平均值为17.21%。
(2)许昌市街道灰尘中不同重金属的平均含量高低分布为:Mn > Zn > Cr > Pb > Cu > Ni > Co。Zn、Pb、Cu、Cr的平均值均高于土壤背景值,富集程度较高,污染较重,而Mn、Ni和Co值富集程度较低,污染较轻。
(3)Cu、Pb、Zn和Cr与50—100 μm粗粉砂相关性显著;Mn和Ni与10—50 μm细粉砂相关性较高;而Co与<10 μm的粘粒组分相关性较强。
(4)重金属在街道灰尘表面的吸附作用和同晶替换作用的相对强弱最终导致了不同重金属粒径效应的不同。
常 静, 刘 敏, 李先华, 等. 2008. 上海市城市地表灰尘重金属污染粒级效应与生物有效性 [J].环境科学, 29(12): 3489 – 3495. [Chang J, Liu M, Li X H, et al. 2008. Fractionation and bioavailability of heavy metal contamination of urban surface dusts in Shanghai City [J].Environmental Science, 29(12): 3489 – 3495.]
常 静, 刘 敏, 李先华, 等. 2009. 上海地表灰尘重金属污染的健康风险评价 [J].中国环境科学, 29(5): 548 – 554. [Chang J, Liu M, Li X H, et al. 2009. Primary research on health risk assessment of heavy metals in road dust of Shanghai [J].China Environmental Science, 29(5): 548 – 554.]
成杭新, 李 括, 李 敏, 等. 2014. 中国城市土壤化学元素的背景值与基准值 [J].地学前缘, 21(3): 265 – 306. [Cheng H S, Li K, Li M, et al. 2014. Geochemical background and baseline value of chemical elements in urban soil in China [J].Earth Science Frontiers, 21(3): 265 – 306.]
代 勇, 李章平, 李燕燕, 等. 2015. 重庆市主城区街道灰尘重金属的污染特征分析[J].环境化学,34(1): 188 – 189. [Dai Y, Li Z P, Li Y Y, et al. 2015. Pollution characteristic analysis of main street dust in Chongqing City [J].Environmental Chemistry, 34(1): 188 – 189.]
杜佩轩, 田 辉, 韩永明, 等. 2002. 城市灰尘粒径组成及环境效应——以西安市为例 [J].岩石矿物学杂志, 21(1): 93 – 98. [Du P X, Tian H, Han Y M, et al. 2002. Urban dust composition of grain diameters and its environmental effect [J].Acta Petrologica et Mineralogica, 21(1): 93 – 98.]
杜佩轩,田 晖,韩永明. 2004.城市灰尘概念、研究内容与方法 [J].陕西地质, 22(1): 73 – 79. [Du P X, Tian H, Han Y M. 2004. Concept, research content, and method of urban dust [J].Geology of Shaanxi, 22(1): 73 – 79.]
方凤满, 张志明, 陈文娟, 等. 2009. 芜湖市区春季地表灰尘中汞和砷的空间及粒径分布规律 [J].环境科学学报, 29(9): 1871 – 1877. [Fang F M, Zhang Z M, Chen W J, et al. 2009. Spatial and particle size distribution of mercury and arsenic on surface dust in spring in the Wuhu urban district [J].Acta Scientiae Circumstantiae, 29(9): 1871 – 1877.]
韩永明, 杜佩轩, 李智明, 等. 2003. 西安市灰尘循环模式及搬运沉积 [J].物探与化探, 27(3): 227 – 229. [Han Y M, Du P X, Li M Z, et al. 2003. Cyclic model, transport and deposition of urban dust in Xi'an city [J].Geophysical andGeochemical Exploration, 27 (3): 227 – 229.]
李 崇, 李法云, 张 营, 等. 2008. 沈阳市街道灰尘中重金属的空间分布特征研究 [J].生态环境, 17(2): 560 – 564. [Li C, Li F Y, Zhang Y, et al. 2008. Spatial distribution characteristics of heavy metals in street dust in Shenyang City [J].Ecology and Environment, 17(2): 560 – 564.]
李小飞, 陈志彪, 张永贺, 等. 2013. 福州市公交枢纽站地表灰尘重金属含量、来源及其健康风险评价[J].环境科学研究, 26(8): 906 – 912. [Li X F, Chen Z B, Zhang Y H, et al. 2013. Concentrations, sources and health risk assessments of heavy metals in ground surface dust from urban bus terminals of Fuzhou City [J].Research of Environmental Sciences, 26(8): 906 – 912.]
刘春华, 岑 况. 2007. 北京市街道灰尘粒度特征及其来源探析 [J].环境科学学报, 27(6): 1006 – 1012. [Liu C H, Cen K. 2007. Particle size characteristics and possible sources of street dust in Beijing [J].Acta Scientiae Circumstantiae, 27(6): 1006 – 1012.]
刘德鸿, 王发园, 寇太记. 2012. 洛阳市不同功能区地表灰尘重金属的粒径分布特征 [J].生态环境学报, 21(4): 700 – 705. [Liu D H, Wang F Y, Kou T J. 2012. Particle size distribution of heavy metals in surface dusts from different functional zones of Luoyang city [J].Ecology and Environmental Sciences, 21(4): 700 – 705.]
刘玉燕, 刘浩峰, 刘 敏. 2009. 乌鲁木齐地表灰尘重金属含量及其健康风险[J].干旱区研究, 26(5): 750 – 754. [Liu Y Y, Liu H F, Liu M. 2009. Concentrations and health risk assessment of urban surface dust in Urumqi [J].Arid Zone Research, 26(5): 750 – 754.]
卢升高. 2000. 土壤频率磁化率与矿物粒度的关系及其环境意义 [J].应用基础与工程科学学报, 8(1): 9 – 15. [Lu G S. 2000. Relationship between frequency magnetic susceptibility and ferrimagnetic mineral grain size in soils and its environmental implications [J].Journal of Basic Science and Engineering, 8(1): 9 – 15.]
强小科, 李 鹏, 徐新文, 等. 2010. 城市道路灰尘磁学参数的环境污染指示意义 [J].地球环境学报, 1(2): 139 – 149. [Qiang X K, Li P, Xu X W, et al. 2010. The environmental implications of street dust magnetic properties [J].Journal of Earth Environment, 1(2): 139 – 149.]
史兴民,王建辉. 2009. 咸阳市区街道灰尘重金属污染及评价[J].地理科学进展, 28(3): 435 – 440. [Shi X M, Wang J H. 2009. Street surface dust heavy metal pollution state and assessment in Xianyang City [J].Process in Geography, 28(3): 435 – 440.]
唐艳荣, 吴 枫, 曹军骥, 等. 2010. 西安道路尘中元素分布特征及其来源分析 [J].环境污染与防治, 32(12): 22 – 30. [Tang Y R, Wu F, Cao J J, et al. 2010. Distribution characteristics and source analysis of road dust in Xi'an [J].Environmental Pollution and Control, 32(12): 22 – 30.]
田 辉, 周小峰, 姚超英. 2007. 杭州城市灰尘中Pb、Cd的粒径分布特征 [J].广东微量元素科学, 14(6):19 – 22. [Tian H, Zhou X F, Yao C Y. 2007. Size distributing characteristic of Pb, Cd in urban dust of Hangzhou [J].Guangdong Weiliang Yuansu Kexue, 14(6): 19 – 22.]
王 济, 张一修, 高 翔. 2012. 城市地表灰尘重金属研究进展及展望 [J].地理研究, 31(5): 821 – 830. [Zhang J, Zhang Y X, Gao X. 2012. The advances in research on heavy metals of the surface dust in urban areas [J].Geographical Research, (5): 821 – 830.]
王丽丽, 刘 敏, 欧冬妮, 等. 2009. 上海城市地表灰尘重金属粒级效应与赋存形态研究[J].华东师范大学学报:自然科学版, 11(6): 64 – 70. [Wang L L, Liu M, Ou D N, et al. 2009. Particle size distribution of heavy metals in urban surface dusts in Shanghai [J].Journal of East China Normal University (Natural Science), 11(6): 64 – 70.]
吴国玺, 殷学永, 申怀飞. 2009. 基于GIS 的许昌市土地利用/土地覆被变化研究 [J].水土保持研究, 16(3): 131 – 134. [Wu G X, Yin X Y, Shen H F. 2009. Study on land use / land cover changes in Xuchang City based on GIS [J].Research of Soil and Water Conservation, 16(3): 131 – 134.]
于伟娟. 2014.许昌地区雾霆天气成因及应对措施 [J].
科技传播,8: 141 – 158. [Yu W J. 2014. The reasons and solutions of fog and haze in Xuchang City [J].Kejichuanbo, 8: 141 – 158.]
于瑞莲, 胡恭任, 刘海婷, 等. 2014. 泉州市街道灰尘中重金属来源分析 [J].地球与环境, 42(3): 328 – 332. [Yu R L, Hu G R, Liu H T, et al. 2014. Source analysis of heavy metals in the street dust of Quanzhou City [J].Earth and Environment, 42(3): 328 – 332.]
张 晶, 陈宗良, 王 玮. 1998. 北京市大气小颗粒物的污染源解析 [J].环境科学学报, 18(1): 62 – 67. [Zhang J, Chen Z L, Wang W. 1998. Source apportionment on fi neparticulates in atmosphere in Beijing [J].Acta Scientiae Circumstantiae, 18(1): 62 – 67.]
张 菊. 2005. 上海市街道灰尘重金属污染研究 [D]. 上海:华东师范大学. [Zhang J. 2005. Pollution of heavy metals in road dust of Shanghai City [D]. Shanghai: East China Normal University.]
郑小康, 李春辉, 黄国和, 等. 2009. 保定城区地表灰尘污染物分布特征及健康风险评价 [J].环境科学学报, 29(10): 2195 – 2202. [Zheng X K, Li C H, Huang G H, et al. 2009. Pollutant distribution in urban dusts of Baoding and health risk assessment [J].Acta Scientiae Circumstantiae,29(10): 2195 – 2202.]
Ahmed F, Ishiga H. 2006. Trace metal concentrations in street dust of Dhaka city, Bangladesh [J].Atmospheric Environment, 40: 3835 – 3844.
Al-Rajhi M A, Al-Shayeb S M, Seaward M R D, et al. 1997. Particle size effect for metal pollution analysis of atmospherically deposited dust [J].Atmospheric Environment, 30(1): 145 – 153.
Al-Rajhi M A, Seaward M R D. 1996. Metal levels in indoor and outdoor dust in Riyadh, Saudi Arabia [J].Environment International, 22(3): 315 – 324.
Banerjee A D K. 2003. Heavy metals levels and solid phase speciation in street dusts of Delhi, India [J].EnvironmentalPollution, 123: 95 – 105.
Cornell R M, Schwertmann U. 1996. The iron oxides: structure, properties, reactions, occurrence and uses [M]. Wiley-VCH, New York.
Deletic A B, Orr D W. 2005. Pollution buildup on road surfaces [J].Journal of Environment Engineering, 131(1): 49 – 59.
Ferreira-Baptista L, Miguel E De. 2005. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment [J].Atmospheric Environment, 39: 4501 – 4512.
Karmacharya N, Shakya P R. 2012. Heavy metals in bulk and particle size fractions from street dusts of Kathmandu city as the possible basis for risk assessment [J].Scienti fi c World, 10(10): 84 – 88.
Maher B A. 1988.Magnetic properties of some synthetic submicron magnetites [J].Geophysical Journal International, 94: 83 – 96.
Viklander M. 1998. Particle size distribution and metal content in street sediments [J].Journal of Environmetal Engineering, 124(8): 761 – 766.
Zheng N, Liu J S, Wang Q C, et al. 2010. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China [J].Science of the Total Environment, 408: 726 – 733.
Concentrations and particle size effect of heavy metals in the street dust of Xuchang City
YAN Hui1, XIAO Jun2, ZHANG Junli1
(1. College of Urban-rural Planning and Landscape Architecture, Xuchang University, Xuchang 461000, China; 2. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China)
Background aim and scopeStreet dust is an important pathway for pollution material in the urban environment. Street dust often becomes a sink for both industrial and residential pollutants, including waste incineration residues, vehicle exhaust emissions, and products of tire wear, metallic fragments, fossil fuel combustion emissions and garden soil. Among the pollutants in street dust, heavy metals are often more severe than others. Heavy metal elements are often not decomposed by microorganisms and may become enriched through the food chain, affecting human health, especially that of children and elderly people. Moreover, heavy metals have more affinity to establish metallic bonds with ferrous material, which leads to enhancement of the magnetic susceptibility of street dust.Many studies have reported excellent relationships between magnetic susceptibility and the levels of some heavy metals in street dust or industrial/urban soils, this relationship forms the basis for the use of magnetic methods in pollution studies. Therefore, magnetic susceptibility characteristics of street dust can be used to re fl ect a city's heavy metal pollution. Furthermore, heavy metal enrichment regularity in street dust research has important signi fi cance. Along with the remarkably fast development of the economy and urbanization of China, environmental pollution is becoming a more serious problem in many cities. Xuchang City is one core city of the Central Megalopolis of China; industrial pollution and vehicle exhaust emissions have aggravated the city's pollution in recent years, especially the particulate matter pollution. At present particle size effect of heavy metal of Xuchang City street dust has not been reported. This present research studied the Xuchang City street dust particle size and heavy metals concentration. Our main aims are to analyze the particle size and heavy metal concentration and to identify the relationships between them. The results may provide useful information for the establishment of control policies and environmental risk assessment of street dust in China.Materials and methodsParticle size and heavy metals in street dust samples of Xuchang City were analyzed. The enrichment regularity of heavy metals in different partical size and the reason of it were discussed. Twenty two street dust samples were collected around Xuchang. Street dust samples were collected by ground sweeping with a polyethylene scoop and a brush, and then the sample was put into a pocketsized sealable plastic bag. All samples were air-dried in the laboratory for more than 24 hours, and then passed through a 1-mm sieve to remove leaves, refuse and small stones before measurement in the laboratory. All sieved samples were fi nely ground, passed through a 200 mesh sieve and pressed into a tablet. Particle sizes of samples were determined usingMastersizer 2000 Laser Particle Sizer. Heavy metal concentrations of samples were determined using a PANalytical PW2403/00 X-ray fl uorescence (XRF) analyzer. Blank samples and the China national reference materials GSD-9 were used for accuracy control; the analytical accuracy was better than 10%.ResultsThe results showed that street dust was dominated by silt (average = 57.62%), followed by sand (average = 25.18%), and clay (average = 17.20%). Cr, Cu, Zn, Pb, Mn, Ni, and Co content in street dust ranged 60.9—277.4 μg·g-1, 15.5—116.4 μg·g-1, 76.5—398.7 μg·g-1, 25.1—63.7 μg·g-1, 356—519 μg·g-1, 9.0—25.6 μg·g-1, and 7.9—10.4 μg·g-1, with an average value of 96.8 ± 42.7 μg·g-1, 35.4 ± 23.8 μg·g-1, 145.3 ± 67.2 μg·g-1, 41.9 ± 10.4 μg·g-1, 408 ± 35.7 μg·g-1, 18.5 ± 4.1 μg·g-1, and 9.0 ± 0.7 μg·g-1, respectively. The average values of Zn, Pb, Cu, and Cr were 2.42, 2.14, 1.80, and 1.52 times higher than that of soil background values, indicating heavy pollution of these metals.DiscussionThe enrichment degree of Mn, Ni, and Co was relatively low. The results showed that the concentrations of Cu, Pb, Zn, and Cr were relatively strong positive with coarse silt, while Mn and Ni were relatively strong positive with fine silt. But these heavy metals content did not further increase with decreasing particle size. The concentrations of Co were relatively strong positive with clay, and the particle size effect of it was obvious. The differences in particle size effect of different heavy metals may be related with the relative strength of adsorption and isomorphous replacement.ConclusionsXuchang City street dust was dominated by silt, followed by sand and clay. The average values of Zn, Pb, Cu, and Cr were 2.42, 2.14, 1.80, and 1.52 times higher than soil background values, indicating heavy pollution of these metals. Cu, Pb, Zn, and Cr were relatively strong positive with coarse silt, while Mn and Ni were relatively strong positive with fine silt. Co was relatively strong positive with clay.Recommendations and perspectivesInitial data and useful information for establishing relevant pollution-control guidelines are provided.
street dust; heavy metal; Xuchang; particle size effect
YAN Hui, E-mail: yanhuichj08@163.com
10.7515/JEE201602008
2015-11-17;录用日期:2016-02-04
Received Date:2015-11-17;Accepted Date:2016-02-04
河南省高等学校青年骨干教师资助计划(2013GGJS-167); 河南省科技厅项目(152102310364)
Foundation Item:Foundation of Excellent Young Teachers of Henan Province (2013GGJS-167); Project of Science and Technology Department of Henan Province (15210231036)
闫 慧,E-mail: yanhuichj08@163.com