煤直接液化工艺条件对液化反应的影响
2016-01-15刘忠亮
刘忠亮
(中国神华煤制油化工有限公司鄂尔多斯煤制油分公司,内蒙古 鄂尔多斯 017209)
引言
早在1913年德国人就发明了煤直接液化的技术,在二战期间该技术就得到的实际的应用和推广。在二次世界大战结束之后,由于中东地区大量廉价的石油涌入市场,煤直接液化企业在其面前没有丝毫的抵御能力纷纷倒闭了。大约在20世纪70年代的时候,在世界范围内出现了经济的危机,煤炭的直接液化技术又开始被重新重视起来。尤其是美国、日本以及德国等国家在煤直接液化的技术的基础上对其进行了工艺方面的极大的改良,这些工作的目的只有一个那就是尽可能的降低煤直接液化的反应的苛刻的条件,进而在最大程度上降低煤直接液化所耗费电的成本。目前世界上比较有代表性的煤直接液化的技术流派主要分为三种分别为美国、德国以及日本的技术。这些煤液化的新技术中所具有的共性就是,反应的条件和原来相比已经不是那么苛刻。神华集团的液化工艺是具有完全自主知识产权的煤直接液化的技术,该技术不论是从反应条件或者是反应的出油上和其他技术相比都具有相当的优势。
一、煤直接液化反应的原理以及相应的工艺流程
1.煤直接液化的反应机理
将煤炭处于高温、高压以及氢气的环境下,通过催化剂的反应的催化作用,会发生煤炭和氢气之间的反应,然后对反应后的产品进行液化蒸馏将其分成轻重两个部分。通过大量的理论研究与实践证明,煤炭在高温、高压以及氢气的环境下和氢气发生反应液化的过程大致可以分为三个步骤。首先煤炭所处的温度在300摄氏度以上的时候,煤炭就是开始受热分解,在煤炭中大分子结构的较弱的连接键开始断裂,这使得煤炭的分子结构产生了相应的变化,通过煤炭的这种分解产生了较大数量的单元分子结构的自由基,自由基的分子的数量在数百左右(虽然其不带电但是有自身所带电子的碎片)。接着在供氢溶剂比较充足并且氢气的压力较大的环境下,自由基通过和氢气进行结合形成较为稳定的结构,最终成为沥青烯及液化油的分子。氢气分子本身并不能与相应的自由基结合,能够和自由基相结合的是氢气的自由基,也就是氢气的原子,或者是经过活化的氢气分子,氢原子或者是活化的氢气分子的来源是煤炭中的氢、以及供氢溶剂碳氢键断裂产生的氢自由基、氢气中的氢气分子被催化激活、或者是化学反应放出的氢等。
如果在反应系统中加入水和一氧化碳,那么就会产生放出氢气的反应。如果具有活性的氢气不足的情况下,自由基就会发生相应的反应而产生脱氢的状况,最后就会生产半焦炭或者是焦炭。然后对于沥青烯及液化油分子继续加氢裂化使其进行分解成为更小的组成部分。
2.煤直接液化的工艺流程
在煤直接液化的工艺中较为关键的步骤有煤的烘干、破碎、制备煤浆、以及加入氢气进行液化的过程(在反应的过程中采用串联的反应器)、然后对于固体和液体进行分离、对于气体进行净化、对液体产品进行蒸馏和精制,最后在液化气中提取氢气。液化过程就是将上述步骤过程中制成的煤浆,然后与氢气进行结合送入反应器。在反应器当中,煤炭首先会受热发生分解,逐渐变成自由基碎片,这些自由基碎片会和反应器中的氢气进行结合发生反应,形成一种具有较小分子量的氢化物。反应器中所产生的反应物非常的复杂,既包括气体又包括液体和固体。气相的主要组成部分是氢气,在进行膜分离之后可以作为循环氢再进入反应器进行重复的使用;固体物质主要是没有反应的煤和无机矿物质、或者是催化剂等。液体的油经过提质加工就会变成日常生活中所使用的汽油、以及柴油或者是航空煤油等。重质的液体会进一步进行分解得到重油或者是其他物质,而重油又可以作为循环溶剂进行使用。
二、煤直接液化工艺条件对液化反应的影响
煤的转化率、油灰渣转化率、气体收率和液体收率是煤直接液化工艺性能的重要衡量指标。在这些重要的指标当中,最重要的是使煤转化率、油灰渣转化率和液体收率达到最高,同时使气体收率降到最低。
在煤直接液化的工艺当中最为可控以及可调节的因素就是反应器的温度、以及反应器的压力、空速和气体同液体的比例。操作的参数会对工艺的性能产生影响,通过对这些参数进行研究和调整能够在很大程度上改善系统的性能。通过对过程参数的调整能够达到对产品的质量以及成本进行控制的目的,接下来本文对于工艺生产过程中的这些参数对于反应的影响进行了分析。
1.反应的温度
在煤直接液化反应的过程中最为主要的就是通过控制煤液化的温度来保证煤具有较高的转化率。所以温度是工艺控制过程中最为主要的变量之一。由于反应器的类型为返混式反应器,所以其内循环或者是煤浆的循环速度较高,这就导致温度的梯度非常的低。反应器的实际加权平均床层温度应该和反应器出口的温度相差大致在2-4摄氏度之间。从整个的反应过程来看,如果温度较高的话有利于分裂反应,但是不利于加氢反应,较低的温度才较为适合加氢反应。
2.反应的压力
操作的压力并没有真正实际的物理意义,所以自工艺设计阶段就应该将该量进行设定。与该压力有关的就是氢气的分压,如果氢分压较高的话就会有利于加氢反应,就会降低聚合反应以及沉积反应,所以可以改善其可操作性。足够的氢气分压能够使得反应环境维持在较好的状态。大量试验研究证明煤液化反应速度与氢分压的一次方成正比,所以氢分压越高越有利于煤的液化反应。
3.干煤空速
反应器中需要大量的循环供氢溶剂以及足够的氢气,干煤的停留是和空速之比成正比的,在流量发生相应改变的情况下,空速的变化就会和相应的流量成一定的比例。每台反应器都具有一定的干煤响应的速度。但是较低的空速对于油渣的转化、以及液体收率和气体收率是非常有帮助的。在这种情况下空速对于煤的转化率的影响比较小并且可以忽略不计,所以煤的转化率和空速之间的关系并不是很大。
4.气液比的调节
一般用气体标准化的体积流量和煤浆的体积流量的比值来表示,该比值是一个没有量纲的参数。煤浆的密度一般来讲大于1000kg每立方米,所以一般用标准气体状态下的气体流量与煤浆流量之比来进行表示。如果提高气体和煤浆液体的比值,那么液体状态的分子就会进入到气体分子中,气体在反应器内的停留的时间就会比液体停留的时间短,这样就会使得小分子液化油发生分裂的可能性继续减小,但是这会在很大程度上增加大分子的沥青烯以及前沥青烯在反应器中停留的时间,进而使得转化率进一步得到提高。气液比值的提高也会使得气液混合体流动的速度增加,这也非常有利于反应器的内部反应。但是气液比值的提高并不只是带来好的效果,气液比值的提高会提高反应器内部气体的含量,可以使得液体分子在反应器内部的停留时间减少,这样对于液体的反应是极为不利的。另外气液比值的提高也会在很大程度上增加循环压缩机的负荷,提高能量的消耗。所以应该设定气液之比到一个较为合适的数值。
三、结语
煤直接液化技术在我国应用已经有多年的历史了,煤直接液化的工艺步骤中的各种参数如温度、压力、空速比和气液比等都会对煤直接液化的过程产生重要的影响如能量的消耗以及转化率等,本文通过实验确定了煤直接液化工艺过程中所需要的合适的参数。这对于推动我国煤直接液化技术的发展具有一定的作用,为该技术的进步奠定了实践基础。
[1]董子平,闫大海,何洁,罗琳,黄泽春.煤直接液化残渣掺烧的燃烧特性及其苯系物的排放特征[J].环境科学研究.2015(08)
[2]郭靖,马凤云.新疆五彩湾煤直接催化液化工艺研究[J].当代化工.2013(11)
[4]王云池.煤制油直接液化工艺技术剖析[J].中国石油和化工标准与质量.2012(11)