小学数学教学中建模思想的培育策略
2016-01-13李星云
李星云
数学建模作为数学教育的一个重要主题,自20世纪70年代开始逐步成为一门独立的学科分支。近20年来,其不仅成为英、美等国数学教育界一项重点研究课题,还成为国际数学教育大会讨论的热点之一。紧随国际数学教育发展的步伐,我国自20世纪80年代中期在借鉴英、美等国经验的基础上,逐步开设了“数学建模”课程并组织开展有关数学建模竞赛活动,但是对于数学建模思想的应用与探究大多聚焦于高等教育阶段,义务教育阶段的相关研究相对较少。建模作为连接数学与现实世界的桥梁,是实施“数学现实化”教育思想的重要手段之一。《义务教育数学课程标准(2011年版)》(以下简称《标准》)明确指出:“在向学生展示知识与技能的数学答案的同时,应重视学生已有的认知经验,使学生可以感受到从实际生活背景中抽象、概括出来的数学问题、建构数学模型、求解结果和问题答案的过程。”[1]可以看出,我国新一轮课程改革已将“数学建模”思想渗透到中小学数学课程中,重视与现实生活情境的结合,倡导建构数学模型并学会应用数学,而不仅仅是套用公式获得答案。由于建模本身的难度以及教师缺乏相关培训等原因,许多一线教师对于如何在数学教学中通过构建数学模型把数学知识应用于生活中感到比较陌生。在此,笔者对数学模型的概念、构建数学模型的意义及策略等问题进行分析阐述,期望为一线教师提供理论与实践层面的借鉴。
一、数学模型的基本概况
(一)数学模型的概念
数学模型的概念比较宽泛,它是指用准确的数学语言,包括公式,描述和表达现实问题中的等量关系、空间图形等,其特点是用数学语言的形式将生活中客观事物或现象的核心特征、关系大概地或近似地呈现出来,形成一种数学模型。从外延上说,数学知识就是数学模型,一切数学教科书中所涵盖的概念、公式、方程式、函数及相应的计算系统都可称为数学模型。[2]
简单来说,数学模型就是那些能够反映、刻画客观事物本质属性与内在规律的数学结构,如数学符号、公式、图表等。小学数学涉及的数学结构较为简单,因而小学阶段所建构的数学模型,是指用课堂上所学的数字(1~10)、字母(a、b等)及各种不同的数学符号排列组合而成的公式等,学生所学的平面几何图形等都是数学模型。
数学建模即建构数学模型解决现实情境问题的求解过程。如我们将所考察的生活中的实际问题转化为数学知识的求解,建构出相应的数学模型,通过对数学模型进行求解,使得原来生活中的实际问题得以解答,这种解题方法叫做建构数学模型的方法,也就是数学建模。[3]
(二)构建数学模型的意义
《标准》指出,小学阶段的主要任务是培养小学生的数学建模思想,锻炼数学建模能力,使学生学会把所学的数学理论知识应用于生活实践中。有效的建模活动不仅有利于发展学生的思维,还能激发学生学习数学的兴趣,培养学生的探究意识和学习主动性。可见,数学建模思想在日常教学的有效融入,对提升小学生的数学核心素养起着非常关键的作用。
1.有利于培养学生运用数学思维的方法观察分析生活中的问题
建构数学模型,即教师引导学生运用所学的数学知识、语言文字来描述和表达生活情境中的问题,将所学的理论知识运用到实际生活中解决真实的问题,深化“数学源于生活,又应用于生活”的理念内涵。数学建模不同于传统意义的应用题,它是对实际的复杂问题进行分析,并在发现其中的规律与数学关系的基础上运用数学知识解决问题。这个过程本身为学生提供了自我学习、独立思考、综合应用分析的机会,学生从不同的问题中探索出问题的本质,从而丰富了学生的想象力,提高了洞察力和创新思维能力。同时,“数学模型的组建依赖于建模者对实际问题的理解,并需要一定的创造性和想象力将有关的变量按照实际问题的要求组合在一起”[4],且对于同一问题,学生能够建立出多种不同的模型,因而在开放的构建模型过程中,有助于提高学生的创新意识和创新能力。
2.有利于培养学生的合作探究能力
数学建模作为一种新型的数学学习方式,为学生相互合作、主动探究提供了平台。不管是日益成熟的中国大学生数学建模竞赛(CUMCM),还是逐步兴起的美国中学生数学建模竞赛(HIMCM),均以团队为单位参赛,3—4人为一组,在规定的时间内共同解决问题。在这个过程中,学生不仅需要具备扎实的数学基础,还要具有较强的合作精神和探究意识。因此,将数学建模融入日常数学教学时,教师引领学生通过小组合作学习的方式,在小组内彼此交流思想、集思广益,共同探究出问题的答案,同样锻炼了学生的探究与合作学习的能力。正如《标准》中所提出的:“数学教学理念必须创设有意义的教学情境,激发学生学习的兴趣,调动学生学习的欲望,引发学生学会动脑筋思考问题;尤其对低年段的小学生要注重培养学生养成良好的学习习惯、掌握有效的学习方法和技巧。”[5]学生的学习生活应当是充满创造性和欢乐的过程,除传统教学观所提倡的学生接受学习的方式外,教师应当鼓励学生动手实践、探究,让学生学会与同伴合作探讨的自主学习方式。此外,教师还应给予学生充足的时间和空间,使学生可以经历假设、判断、推理等探索过程。
3.有利于提高学生的数学素养
数学素养是指学生通过数学学习,在学习过程中逐渐内化而成的数学推断能力、思考能力及数学品质。[6]小学阶段要求学生具备的数学素养,包括数学知识及以数学思维思考问题的意识、解决问题的能力、探索数学的意愿等。数学建模是“从现实生活情境中抽象出数学问题”。发展建模能力一方面可以促进学生认识现实世界,因为数学模型思想主要是培养学生发现问题的意识以及动手实践的能力。如“用字母列方程来表示数学问题求解中的等量关系”,在这个环节,学生首先要通过分析等量关系中有哪些量是等值的,然后找出题目中等式两边的量,最后判断分析,求得结果。另一方面,丰富的日常生活经验能够帮助学生理解数学学习。如学习“数对”,学生需要“在具体情境中,能在方格纸上用数对表示位置,知道数对与方格纸上点的对应”。而在日常生活中,学生购买电影票去电影院看电影的经历以及通过教室内的座位表确定同学的位置等情境,有助于他们理解“数对”的概念以及“数对”与点之间的对应关系。在数学教学过程中,构建数学模型能够使学生各方面的能力得到开发,如理解能力、推理能力、发现问题的能力、分析能力等,而学生的数学素养也在不知不觉中获得了提高。
4.有利于学生真正体会到学习数学的乐趣
数学一直被许多小学生认为是最难的科目,原因是对数学的作用与价值认识不足,学生“不知道为什么要学习数学”“数学学了有什么用处”,这令他们感到数学与生活距离非常遥远,从而逐步丧失了学习数学的兴趣。因此,在教学中,教师需要设计与生活相关的数学活动,鼓励学生在活动体验中体会数学与生活的联系,帮助他们增加对数学应用价值的认识。《标准》指出,构建数学模型是学生理解数学知识与实际生活相联系的桥梁。因此,在数学教学中,教师可以通过利用有趣的、与生活相关的问题开展构建数学模型的教学,帮助学生在解决问题中了解数学与生活的联系,认识到数学在解决问题中的作用,激发学生学习数学的兴趣,使学生认识到数学学习与生活息息相关,利用学到的数学知识可以高效地解决问题,进而认识到学习数学的意义。[7]
二、建构数学模型的策略
数学模型的建构对于利用数学知识解决生活中的问题至关重要,但是不同学段对学生掌握建模思想的要求不一样:第一学段的学生年龄相对较小,主要以具体形象思维为思考方式,要掌握建模的方法困难比较大,因此,教师要引导他们经历现实生活情境,在情境中抽象出一般的学习规律,总结出一些数学结构,也就是数学建模;第二学段的学生处于从具体形象思维逐渐过渡到抽象逻辑思维的关键期,已初步具备抽象—概括的思维能力,但是仍以具体形象思维为主,以抽象逻辑思维为辅,故在教学中应使学生经历一些具体的生活情境,让他们自己发现问题,通过独立思考、合作交流,最终总结出一般的数学模式,如路程、速度、时间的关系式。结合学段教学要求以及小学生的心理发展特点,笔者总结了以下几种建构数学模型的策略。
(一)创设问题情境,激发学生学习数学建模的兴趣
问题作为数学建模教学的载体,其设计合理与否直接影响着学生对数学建模情感的激发与维持。在数学建模教学中,教师首先需要思考所设计的问题是否有趣,能否让学生具有亲切感,能否吸引学生。有趣的、贴近生活的问题不仅容易激发学生学习数学的好奇心,吸引其进一步思考和解决问题,还有助于学生理解问题。因此,教师要为学生创设贴近生活以及学生熟悉的问题情境,激发他们学习的兴趣和探索的热情。
例如,“利息=本金×利率×时间”这一数学结构是小学数学六年级上册的一个学习内容,结合第二学段数学建模教学对学生的要求以及学生的心理特点,教师在教学中可以这样做:首先,为学生提供“帮助妈妈选择银行存款项目”这一具体生活情境,激发学生的学习兴趣和兴奋点;其次,教师通过给出不同类型存款方式的利率,鼓励学生为妈妈选择一项适合自家理财计划的存款项目,让学生身临其境,感知不同类型存款方式利率的变化、利息的变化,以及如何满足自家生活开支与理财需求;最后,教师导出“利息”的模型,帮助学生理解利息这一模型的背景及用途。将数学课本中的知识与生活中的具体实例结合在一起,学生可以在体验中感知和体会数学与生活的关系及作用。
(二)积累表象,培育建构数学模型基础
数学建模的前提就是学生的头脑中要有与原认知相关联的知识。这需要教师为学生创设一个良好的学习情境,刺激学生的感官,使其对所接触的生活情境形成一定的感知,进行表象的积累,并不断锻炼思维敏感性,进而在熟能生巧的感知中自觉找到连接点,为建立数学模型奠定基础。当然,学生学会建构数学模型,离不开先行组织者的作用,因此,教师要善于应用先行组织者的教育真谛,帮助学生理解新学习的知识与已学知识之间的联系,使学生能够快速掌握新知识。
例如,认识平面图形“圆”,教师引导学生建构不同的模型来认识圆,能够使学生在头脑中建立不同的关于“圆”的表象,进而抽象概括出不同模型的连接点,加深对“圆”基本特征的认识。再如,学习“编号”模型,由于学生在生活中对于邮政编码、学号、饭店房间号等具有一定的了解,教师可以通过对有关编码中数字含义的解释,帮助学生构建不同的关于“编号”的表象,在对各种编号的感知过程中建立数与现实生活之间的联系,引导学生运用数来描述事物的某些特征,进一步体会数在日常生活中的作用。
(三)抽象出生活问题的本质,初步建构数学模型
数学源于生活,在生活中抽象出数学学习的本质,是建构数学模型的有效途径。具体的生活情境为学生在头脑中建构数学模型的表象提供了可能,而真正使数学与生活相结合,通过数学模型解决生活问题,学生需要通过现象看到本质,总结出事物的共性。
例如,学习“轴对称图形”这一内容,学生已有的生活经验中常常会碰到有关轴对称的图形或图标、建筑或其他事物,如奥运五环、天安门、蝴蝶等。如果教师仅仅以具体实物告诉学生什么是轴对称图形,那么就如心理学中的“鱼牛图”定理一般,由于学生的认知不同,在头脑中呈现出来的关于“轴对称图形”的知识也就不尽相同或不够全面。因此,教师可以通过出示相关图片或组织学生分组收集日常生活中看到的图形,引导他们在对具体事物发现和寻找过程中逐渐抽象出其内涵,进而认识到轴对称图形的基本特征——图形沿着对称轴折叠能够互相重合。这样,学生不仅能够掌握对称轴的画法与简单轴对称图形的补全,还能在这些操作活动中丰富和积累数学活动经验。
(四)巧妙使用数学教材,扩展数学模型的应用范围
数学教材作为数学教学活动的核心,是连接课程与教学的桥梁,是师生之间交流互动的重要媒介。各版本数学教材依据《标准》在“教材编写建议”中提出的“体现‘知识背景—建立模型—求解验证的过程”这一理念与要求,对教材内容进行了有效编排,以问题为导向,重视对数学建模思想的渗透以及数学模型的建构。因而在教学中,教师要结合教材内容寻找并提炼相关的数学建模问题,以一个数学模型为依托,通过设计不同的问题情境,引导学生在解决问题过程中认清事物的本质,学会灵活处理各种问题并进行有效的迁移。
例如,六年级数学教材中的“植树”模型,教师可以结合教材内容设计出各种不同的问题,帮助学生理解“植树”模型的各种情况,如对于两端都栽树的棵树的数学模型,可以以学生熟悉的“手”出发,引导学生理解手指与间隔的关系,同时结合展示“等距的灯笼”“排列整齐的杉树”的画面理解“等距”“间隔”“间距”等概念,然后组织学生在动手实践中建构出模型为“间隔数+1”。小学生的思维以具体形象思维为主、抽象逻辑思维为辅,仅仅教授一种数学模型,他们未必会拓展延伸。因此,在两头都栽树的基础上,教师可以引导学生继续探寻树与间隔的关系,将“植树”模型进一步扩展为两端都不栽树的情况,其数学模型为“间隔数-1”,仅一端栽树的情况,其数学模型为“间隔数”,并在此基础上进一步引导学生观察循环植树与仅一端植树之间的关系,启发学生探寻出其数学模型也为“间隔数”。通过参与探究一系列数学活动实践,学生对各种不同的“植树”数学模型有了真正的认识和理解。以教材为依托,教师还可以结合学生熟悉的生活情境,设计以下问题:围棋盘最外层一共可以摆多少颗棋子?在团体操表演中,四年级学生排成方阵,最外层每边站12人,最外层一共有多少名学生?进一步扩展其应用范围,学生通过对一系列层层递进的问题链的学习,做到举一反三,从而真正理解数学知识,提升运用数学知识解决实际问题的能力。
参考文献:
[1][5][7]教育部基础教育课程教材专家工作委员会.义务教育数学课程标准(2011年版)解读[M].北京:北京师范大学出版社,2012:3-4.
[2]陈淑娟.浅谈小学数学建模[J].读与写,2011(5):161.
[3]王亚辉.数学方法论[M].北京:北京出版社,2007:38.
[4]李明振.数学建模认知研究[M].南京:江苏教育出版社,2013:3.
[6]周燕.小学数学教学中数学建模思想的融入[D].上海师范大学,2013.
(作者系南京师范大学小学教育研究所所长,教授、博士生导师,主要从事课程与教学论研究。)
(责编 欧孔群)