小麦穗发芽抗性的分子机制和育种研究进展
2015-12-18董静秦丹丹许甫超李梅芳徐晴葛双桃周伟乐
董静 秦丹丹 许甫超 李梅芳 徐晴 葛双桃 周伟乐
摘要:小麦(Triticum aestivum Linn.)穗发芽(PHS)是世界性的气象危害,严重影响小麦产量和品质。小麦穗发芽抗性复杂,影响因素众多。大量与PHS相关的QTLs已被定位,但仅有少数的基因被确定和深入研究,如R、Vp-1、MET和Sdr。重点综述了穗发芽抗性位点定位,及上述基因调控穗发芽的进展,并对目前研究中存在的问题和未来方向进行了讨论。
关键词:小麦(Triticum aestivum Linn.);穗发芽;抗性;分子机制;育种
中图分类号:S512.1 文献标识码:A 文章编号:0439-8114(2015)22-5509-06
DOI:10.14088/j.cnki.issn0439-8114.2015.22.004
Abstract: Pre-harvest sprouting (PHS) of wheat is a worldwide climate disaster, which has severe effects on grain yield and quality. The genetics of PHS resistance of wheat is complex and many factors are involved. A lot of quantitative trait loci (QTLs) that associated with PHS have been mapped, but only a few major genes have been identified and deeply studied, such as R(red grain color gene),Vp-1(viviparous-1),MFT(MOTHER OF FT AND TFL1) and Sdr (seed dormancy resistance gene).Progress on mapping of QTLs, molecular mechanism of genes above and breeding for PHS resistance were reviewed. Furthermore,deficiencies existing in current researches and the future direction of improving PHS resistance were discussed.
Key words: wheat(Triticum aestivum Linn.);pre-harvest sprouting;resistance;molecular mechanism;breeding
小麦穗发芽(pre-harvest sprouting,PHS)是指小麦(Triticum aestivum Linn.)在收获前遇到阴雨或在潮湿环境下的穗上发芽。穗发芽不仅影响产量,而且严重降低小麦的加工品质和种用价值[1]。日本、英国、德国、瑞典、美国、加拿大、巴西、澳大利亚等国均曾遭受到穗发芽危害,加拿大和澳大利亚尤为严重[2]。中国长江中下游冬麦区、西南冬麦区和东北春麦区频繁发生,黄淮冬麦区和北方冬麦区也时有发生[3]。最近的小麦穗发芽灾害暴发于2008、2009和2010年,造成河北、河南、山东、江苏、安徽、湖北和四川等省份商品麦质量大幅度下降、种源紧缺,损失严重[4]。其中,仅2009年湖北省襄阳市就有约20.53万hm2小麦发生穗发芽,占当地小麦收获面积的66%,约12亿kg小麦质量劣化。培育和种植抗穗发芽品种是解决小麦穗发芽危害的根本途径。对近年来小麦穗发芽基因发掘、育种研究领域的进展的总结,对未来小麦抗穗发芽育种将起到一定的促进作用。
1 小麦穗发芽的影响因素
穗发芽抗性受基因型、环境及二者互作影响[5]。外部环境因素光、温、水和营养从多方面影响a-淀粉酶活性和其他水解酶活性及植物激素含量,从而影响子粒发芽[6,7]。内在因素中,子粒休眠特性和种皮颜色被认为是影响穗发芽的重要因子,子粒和穗部其他物理因素如种皮厚度、茎秆坚韧度、小穗疏密度、有无绒毛、小花开放程度、穗子蜡粉程度、芒长、弯曲程度、颖壳坚韧度、包裹子粒紧实度和子粒在穗子上的部位等也对穗发芽有一定影响[8-11]。而参与的生理生化因子包括α-淀粉酶、α-淀粉酶抑制剂、迟熟α-淀粉酶、赤霉素(GA)和脱落酸(ABA)、硫氧还蛋白h(Trxh)、多酚氧化酶等[1,3,12-16]。
2 小麦穗发芽抗性的分子机制
2.1 小麦穗发芽QTLs定位
小麦穗发芽是多基因调控的数量性状,表型受环境影响较大,通过分子标记辅助选择(MAS),为穗发芽数量性状位点的确定和利用提供了便利条件。早在1993年,Anderson等[17]利用衍生于两个白粒小麦的F5代RIL(Recombinant inbred lines)群体进行数量性状分析,定位了10个与穗发芽抗性相关的RFLP标记。迄今,基于双亲DH(Double haploid)或RIL等人工作图群体,在小麦的21条染色体上均发现了与穗发芽抗性相关的QTLs[18-20],其中以3A、3B、3D和4A报道最为集中[5,19,21-25]。1A、2B、2D、4B、5D、7A、7D也有不依赖于种皮色泽的具有较大效应QTLs存在的报道[18,26-29]。
由于双亲作图群体具有局限性,近年来利用自然群体关联分析(Association analysis)发现了一些新的小麦穗发芽抗性位点,并证实了部分已定位的位点。Kulwal等[30]通过进行全基因组关联分析,检测到位于1BS、2BS、2BL、2DS、4AL、6DL和7DS上已报道的QTL,还鉴定出位于7BS的新位点。Arif等[31]在15条染色体检测到含有穗发芽抗性位点,13条染色体含有休眠抗性位点,其中2D、5B 和7A是抗性位点的密集区域。Lohwasser等[32]再度检测到Vp-1(Viviparous-1)与穗发芽和休眠显著相关,新发现4A上1个水通道蛋白家族基因与穗发芽和休眠显著相关。朱玉磊等[33]找到20个显著位点分布于小麦染色体1AS、2DS、3AS、3BL、4AL、5AS、5BL、6BS、6DS、7AL 和7BL上,其中有两个稳定的抗性位点,在7BL鉴定出1个新位点。endprint
综合定位结果发现,在小麦的基因组上均发现了大量的与穗发芽抗性相关的QTLs,但仅少数QTLs具有较大的效应,大多数QTLs效应较小,且受环境和基因型影响。
2.2 小麦穗发芽抗性基因研究
2.2.1 种皮色泽相关基因 种皮颜色是影响种子休眠性的一个重要因素。小麦种子分为红白两色,红色主要由类黄酮生物合成途径产生的儿茶酸、原花青素和花青素组成。一般而言,红粒品种比白粒品种的穗发芽抗性强。闫长生等[3]对起源于中国的小麦品种进行穗发芽抗性鉴定后发现表现为抗穗发芽的品种很少。
Flintham等[34]发现控制粒色的R(red grain color gene)基因为母性遗传,位于3A、3B、3D染色体的长臂上。进一步研究发现,R基因属于Myb类转录因子,TaMyb10是其候选基因,调控类黄酮代谢途径中重要基因的转录,如查尔酮合成酶(CHS)、查尔酮异构酶(CHI)、黄烷酮3-羟化酶(F3H)和二羟基黄酮醇还原酶(DFR)基因在红粒小麦的未成熟种皮中表达,在白粒小麦中几乎完全被抑制[35-37]。R与Vp-1(Viviparous-1)在物理图谱上大约有30 cM的距离,Vp-1可以与R基因启动子区域的顺势作用元件结合影响R基因的表达[38]。
对TaDFR基因进一步研究发现,3A、3D染色体基因没有功能变异,而3B染色体有两种等位变异,TaDFR-Bb型具有较高的穗发芽抗性,其启动子区含有一个8 bp的插入序列,推测该序列影响TaMyb10与TaDFR-Bb启动子的结合效率,从而导致该类型红粒品种型具有较高穗发芽抗性[39]。
2.2.2 内源激素调控途径基因 种子内源激素GA和ABA对种子休眠起着重要作用。GA能够促进胚乳中储藏物代谢,可以解除种子休眠,诱发萌发。ABA能阻止小麦子粒胚萌发,并保持胚的正常发育。二者存在拮抗效应,且彼此抑制对方的代谢和信号基因[40],种子休眠还是萌发,主要取决于ABA和GA激素的相互的平衡。
ABA合成相关基因的突变会使植株表现出低休眠性,尤其是参与ABA合成的9-顺环氧类胡萝卜素双加氧酶NCED基因和ABA降解的ABA-8-羟化酶CYP707A基因[41]。Okamoto等[42]认为CYP707A1基因在拟南芥种子成熟中期起到分解代谢ABA的作用,而CYP707A2在种子晚熟阶段发挥作用。Chono等[43]在大麦中克隆出CYP707A1基因,认为HvCYP707A1是CYP707A基因家族中的主要成员,在种子吸胀过程中,该基因在胚中的表达模式与胚中ABA含量一致。
Zhang等[44]以大麦HvCYP707A1基因的cDNA序列为探针,同源克隆了普通小麦6BL染色体上TaCYP707Al基因的全序列,该基因与大麦HvCYP707A1基因的cDNA序列相似性达94.9%,推测其与大麦很可能具有相同功能。
在拟南芥中利用ABA不敏感和超敏感突变体已经鉴定出了控制种子休眠性和与穗发芽抗性相关的侯选基因有Abi3、Fus3以及Leci等,这些基因都具有双重功效,既抑制萌发又促进与胚成熟有关的过程,而且这几个基因都编码一个含高度保守的B3区段的氨基酸序列,该保守域最早在玉米的转录因子Vp-1中被发现[45,46]。
Vp-1是玉米胚成熟过程中的一个重要转录调节因子,也是ABI3的同源蛋白,主要通过影响ABA信号的传导,调节胚对ABA的敏感性,促进与胚成熟相关基因的表达,并抑制与萌发相关基因的活性,从而对种子休眠和萌发起重要的调控作用[47,48]。
小麦Vp-1基因也是ABA信号传导途径中的重要转录因子,它调控子粒的休眠性,定位于第三部分同源群的长臂上[49]。小麦胚中Vp-1基因A、B、D三个等位基因产生的前体mRNA都会发生错误剪接,从而无法编码全长蛋白,进而不同品种表现出对穗发芽敏感性的不同[50]。将燕麦和玉米Vp-1基因在小麦中超表达,显著提高了种子休眠性和穗发芽抗性[51,52]。中国科学家对欧洲、中国等地小麦种质资源以及小麦近缘种Vp-1的等位基因进行了研究,Vp-1D没有发现等位变异,TaVp-1B、TaVp-1A染色体均发现了与穗发芽抗性相关的等位变异,并据此开发出相关的功能标记[53-57]。
AIP2(ABI3-interacting protein 2)是1个含C3H2C3型环指基序的E3连接酶,其能使ABI3蛋白多聚泛素化通过26 s蛋白途径降解,从而通过翻译后降解来反式调控ABA信号的传导过程,从而影响穗发芽[58,59]。
高东尧[60]从小麦中分离得到AIP2基因的两种cDNA序列TaAIP2-1和TaAIP2-2,其中TaAIP2-2基因与穗发芽性相关,在感穗发芽品种中的表达量明显高于抗穗发芽品种,在拟南芥突变体aip2中表达TaAIP2-2,激活了拟南芥ABI1、ABI2基因的表达,转基因种子对ABA的敏感性减弱。TaAIP2蛋白与拟南芥中的AIP2蛋白一致性达88.5%,都含有典型的锌指环结构域,进化分析发现,AIP2基因在植物中非常保守[61]。
GA20-氧化酶是GA生物合成和调控的关键酶,其催化赤霉素生物合成倒数第二步的限速酶。GA20-氧化酶通常由小的多基因家族编码,在拟南芥中已有5个成员被成功克隆。Appleford等[62]定位了3个GA20-ox1的等位基因,分别位于小麦的5BL、5DL、4AL染色体,同时确定了其与小麦茎的生长和休眠特性相关。Li等[45]在大麦5H长臂上定位了一个穗发芽和休眠主效QTL,可解释70%的表型变异,通过与水稻进行比较基因组学分析,发现TaGA20-ox1是该QTL的候选基因,同时发现其也可能是小麦4AL上穗发芽抗性QTL的候选基因[20,45]。目前相关后续研究还未见报道。
2.2.3 其他休眠基因 MFT(MOTHER OF FT AND TFL1)基因属于磷脂酰乙醇胺结合蛋白(PEBP)基因家族,广泛存在于多细胞陆生植物中。Xi等[63]证明拟南芥AtMFT基因通过一个调控ABA信号途径的负反馈环促进种子萌发,AtMFT基因表达能减弱ABA对种子萌发的抑制作用,受GA信息途径中的DELLA蛋白正向调控。endprint
Nakamura等[64]通过对小麦TaMFT基因的表达、转化分析证明小麦TaMFT基因促进休眠和抑制种子萌发,也受到低温调控;其解释了3A短臂上的抗穗发芽主效QTL。liu等[65]利用白皮抗穗发芽小麦品种Rio Blanco图位克隆了3AS的主效穗发芽抗性QTL,命名为TaPHS1,该基因被证实是TaMFT的同源基因,对小麦穗发芽抗性起正向调节作用,该基因能在较高温度下对穗发芽抗性起作用。TaMFT基因可能在小麦穗发芽育种中发挥较大的效益。
Sugimoto等[66]利用Nipponbare/Kasalath RIL群体图位克隆了水稻第7染色体的休眠QTL,Sdr4 (Seed dormancy 4)。OsSdr4有3个等位基因即OsSdr4-n、OsSdr4-k、OsSdr4-k,OsSdr4-n只存在于粳稻中,籼稻中则含有OsSdr4-k、OsSdr4-k两种类型,OsSdr4-n基因型的休眠性通常低于OsSdr4-k基因型。OsSdr4基因启动子区存在Vp-1基因B3结构域作用的靶位点(RY元件),受OsVpl基因调控;同时OsSdr4正向调控OsDOGl-llke基因,表明OsSdr4处于种子休眠调控途径的中间环节。
Zhang等[67]通过比较基因组学,克隆了小麦的Sdr4同源基因,定位于第2部分同源群,根据TaSdr-Bl基因-11位点的SNP,开发了CAPS标记Sdr2B,产生TaSdr-Bla和TaSdr-Blb两种基因型,TaSdr-Blb基因型GI值显著高于TaSdr-Bla基因型,显示种子休眠强弱有关。该基因可能是Munkvold等和Somyong报道的2B染色体穗发芽抗性主效QTL的候选基因。由于小麦TaVp-1和TaDOGl基因同样参与子粒休眠性的调控,小麦TaSdr-Bl可能与水稻OsSdr4一样,处于Vp-1和DOG1基因调控途径的中间环节。
Alonso-Blanco等[68]利用低休眠拟南芥品种Ler和强休眠品种Cvi构建NIL群体,定位到与子粒休眠相关的QTL,命名为DOG(delay of germination)。Bentsink等[69]图位克隆了拟南芥的DOG1基因,这是第一个通过图位克隆方法得到的控制种子休眠的基因。该基因属于植物特异性基因家族,在拟南芥中共鉴定出4个同源基因,称为DOG1-like基因。该基因启动子区鉴定出1个子粒特异表达元件RY重复元件(CATGCA) 和ABA响应元件ABRE元件(TACGTGTC)。其可能编码与bZIP相作用的蛋白, 能够提高种子对ABA和糖的感应性,从而有利于维持或增强种子的休眠。
Ashikawa等[70]克隆了小麦和大麦DOGl-like基因的cDNA序列,二者序列高度相似,但与拟南芥DOG1序列相似性较低。在表达模式上,小麦和大麦的DOGl-like基因与拟南芥D0G1也存在差异, 拟南芥DOG1在子粒中特异表达,而小麦和大麦的DOGl-like基因在叶片、根和胚中都表达。在拟南芥中表达TaDOGL1基因,能够提高子粒的休眠性,因此TaDOG1基因可能与拟南芥D0G1具有相似的作用,可用于提高小麦的穗发芽抗性。
3 小麦抗穗发芽育种进展
在抗穗发芽育种方面,何震天等[71]综述了通过常规育种途径如杂交、回交、诱变育种等方法育种抗穗发芽种质的进展。肖世和等[1]也在专著中全面总结了小麦穗发芽抗性资源、育种及机理方面的进展。Depauw等[72]通过报道加拿大利用红粒抗穗发芽种质RL4137育成Columbus、AC Domain、Snowbird等抗穗发芽品种,评价了整穗发芽率和子粒发芽测定、自然降雨和人工模拟降雨筛选、降落值法(FN)测定a-淀粉酶活性间接筛选等方法在育种应用中的效果。但总体上抗穗发芽小麦品种比例仍然较低,且多为红皮品种,白皮品种的选育困难较大。
近年来分子标记辅助在穗发芽抗性育种中得到应用。Kottearachchi等[73]、Xiao等[74]、Tyagi等[75]分别利用红皮抗穗发芽品种Zen、万县白麦子及SPR8198的3A主效QTL提高了白皮小麦穗发芽抗性,但苗西磊[76]在群体中利用Vp1-1B进行穗发芽抗性筛选,发现效果较小,认为单靠一两个分子标记筛选来提高穗发芽抗性效果欠佳。分子标记辅助穗发芽育种目前发展没有达到预期的可能原因是:①当前多数分子标记定位得到的信息重复性差,与抗穗发芽基因的连锁距离也较远,实际应用较难;②多数高抗穗发芽种质为地方或农家品种,农艺性状差,难以被育种家直接应用;而对育种家常用的育种亲本材料穗发芽抗性表型及穗发芽抗性因子解析不够。
4 问题与展望
总体上看,在穗发芽抗性基因发掘上取得了不错的进展,但抗穗发芽品种培育进展相对缓慢,从基因到品种还需要做出很多的努力。
长江中下游麦区是穗发芽的高发区,要破解小麦穗发芽难题需从三个方面入手:①在穗发芽高危区通过优化品种布局降低穗发芽风险,如布局扬麦11、扬麦12、鄂麦352等抗性品种。②进一步发掘优良抗穗发芽基因和适于育种需求的种质资源,解析穗发芽抗性遗传机制。长江流域麦区是万县白麦子、永川白麦子、秃头麦、大玉花等抗穗发芽地方品种的原产区,该地区生产应用品种和育种家材料中也理应蕴含较高频率的优异穗发芽抗性基因,对该区域小麦种质进行抗性评价和解析,对抗穗发芽育种将起到事半功倍的效果。③加大科研协作力度,创造一批具有不同抗性来源的中间材料,丰富育种亲本,从而聚合到优良的抗穗发芽品种。
参考文献:
[1] 肖世和,闰长生,张海萍.小麦穗发芽研究[M].北京:中国农业科学技术出版社,2004.10-184.
[2] 杨 燕,张春利,何中虎,等.小麦抗穗发芽研究进展[J].植物遗传资源学报,2007,8(4):503-509.endprint
[3] 闫长生,张海萍,海 林,等.中国小麦品种穗发芽抗性差异的研究[J].作物学报,2006,32:580-587.
[4] 董 静,李梅芳,许甫超,等.湖北小麦材料穗发芽抗性评价[J].湖北农业科学,2011,50(24):5040-5043.
[5] IMTIAZ M, OGBONNAYA F C, OMAN J, et al. Characterization of quantitative trait loci controlling genetic variation for preharvest sprouting in synthetic backcross-derived wheat lines[J].Genetics, 2008, 178: 1725-1736.
[6] TORADA A, AMANO Y.Effect of seed coat color on seed dormancy in different environments[J]. Euphytica,2002,126:99-105.
[7] JACOBSEN J V, BARRERO J M, HUGHES T, et al. Roles for blue light, jasmonate and nitric oxide in the regulation of dormancy and germination in wheat grain(Triticum aestivum L.) [J]. Planta, 2013, 238:121-138.
[8] MAO B R, WU Z S. Study on inheritance of seed dormancy in wheat and its mechanism[J]. Scientia Agricultura Sinica, 1983,6:53-58.
[9] 肖世和.国外小麦抗穗发芽研究概况[J].国外农学-麦类作物,1985(6):13-16.
[10] DERERA N F,BHATT G M,MONASTER G J.On the problem of pre-harvest sprouting of wheat[J]. Euphytica, 1977, 26(2):299-308.
[11] 沈正兴,俞世蓉,吴兆苏.小麦品种穗发芽抗性研究[J].中国农业科学,1991,24(5):44-50.
[12] 刘 雷,尹 钧,任江萍,等.反义trxs基因的导入对小麦种子发芽的影响[J].作物学报,2004,30(8):801-805.
[13] 王凤宝,董立峰,付金锋.小麦抗穗发芽酶反应生化标记选择法[J].农业生物技术学报,2007,15(3):482-88.
[14] SREENIVASULU N, USADEL B, WINTER A, et al. Barley grain maturation and germination:metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools[J]. Plant Physiol,2008, 146:1738-1758.
[15] HOWELL K A, NARSAI R, CARROLL A, et al. Mapping metabolic and transcript temporal switches during germination in ricehighlights specific transcription factors and the role of RNA instability in the germination process[J]. Plant Physiol ,2009,149:961-980.
[16] MARES D J, MRVA K. Wheat grain preharvest sprouting and late maturity alpha-amylase[J]. Planta,2014,240:1167-1178.
[17] ANDERSON J A, SORRELLS M E, TANKSLEY S D. RFLP analysis of genomic regions associated with resistance to preharvest sprouting in wheat[J]. Crop Sci,1993,33:453-459.
[18] MOHAN A, KULWAL P, SINGH R, et al. Genome-wide QTL analysis for pre-harvest sprouting tolerance in bread wheat[J]. Euphytica, 2009, 168: 319-329.
[19] KULWAL P L, MIR R R, KUMAR S, et al. QTL analysis and molecular breeding for seed dormancy and pre-harvest sprouting tolerance in bread wheat[J]. J Plant Biol, 2010, 37: 59-74.
[20] TYAGI S, GUPTA P K. Meta-analysis of QTLs involved in pre-harvest sprouting tolerance and dormancy in bread wheat[J]. Triticeae Genomics and Genetics, 2012, 3:9-24.endprint
[21] KATO K, NAKAMURA W, TABIKI T, et al. Detection of loci controlling seed dormancy on group 4 chromosomes of wheat and comparative mapping with rice and barley genomes[J]. Theor Appl Genet, 2001, 102:980-985.
[22] OSA M, KATO K, MORI M, et al. Mapping QTLs for seed dormancy and the Vp1 homologue on chromosome 3A in wheat[J]. Theor Appl Genet,2003,106:1491-1496.
[23] MORI M, UCHINO N, CHONO M, et al. Mapping QTLs for grain dormancy on wheat chromosome 3A and the group 4 chromosomes, and their combined effect[J]. Theor Appl Genet ,2005,110:1315-1323.
[24] CHEN C X, CAI B, BAI G H. A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace[J]. Mol Breed, 2008, 21:351-358.
[25] LIU S, BAI G. Dissection and fine mapping of a major QTL for preharvest sprouting in white wheat Rio Blanco[J]. Theor Appl Genet, 2010, 121:1395-1404.
[26] FOFANA B, HUMPHREYS D G, CLOUTIER S, et al. Mapping quantitative trait loci controlling pre-harvest sprouting resistance in a red 3 white seeded spring wheat cross[J]. Euphytica, 2009, 165:509-521.
[27] MUNCVOLD J D, TANAKA J, BENSCHER D, et al. Mapping quantitative trait loci for preharvest sprouting resistance in white wheat[J]. Theor Appl Genet,2009,119:1223-1235.
[28] RASUL G, HUMPHREYS D G, BRULE-BABEL A, et al. Mapping QTLs for pre-harvest sprouting traits in the spring wheat cross ‘RL4452/AC Domain[J]. Euphytica, 2009, 168: 363-378.
[29] SINGH R, MATUS-CADIZ M, BAGA M, et al. Identification of genomic regions associated with seed dormancy in white-grained wheat[J]. Euphytica,2010,174:391-408.
[30] KULWAL P, ISHIKAWA G, BENSCHER D, et al. Association mapping for preharvest sprouting resistance in white winter wheat[J]. Theor Appl Genet, 2012, 125:793-805.
[31] ARIF M A, NEUMANN K, NAGEL M, et al. An association mapping analysis of dormancy and pre-harvest sprouting in wheat[J]. Euphytica, 2012, 188: 409-417.
[32] LOHWASSER U, ARIF BORNER A. Discovery of loci determining pre-harvest sprouting and dormancy in wheat and barley applying segregation and association mapping[J].Biologia Plantarum, 2013,57(4): 663-674.
[33] 朱玉磊,王升星,赵良侠,等.以关联分析发掘小麦整穗发芽抗性基因分子标记[J].作物学报,2014,40(10):1725-1732.
[34] FLINTHAM J E. Different genetic components control coat-imposed and embryo-imposed dormancy in wheat[J]. Seed Sci Res, 2000, 10:43-50.
[35] HIMI E, NODA K. Isolation and location of three homoeologous dihydroflavonol-4-reductase (DFR) genes of wheat and their tissue-dependent expression[J]. J Exp Bot, 2004, 55: 365-375.endprint
[36] HIMI E, NODA K.Red grain color gene(R)of wheat is a Myb type transcription factor[J]. Euphytica,2005,143:239-242.
[37] HIMI E, MAEKAWA M, MIURA H, et al. Development of PCR markers for Tamyb10 related to R-1, red grain color gene in wheat[J]. Theor Appl Genet, 2011, 122:1561-1576.
[38] HATTORI T,VASLL V,ROSENKRANS L,et al.The ViviParous-1 gene and abscisic acid activate the CI regulatory gene for anthocyanin biosynthesis during seed maturation in maize[J].Genes Dev,1992,6:609-618.
[39] BI H H, SUN Y W, XIAO Y G, et al. Characterization of DFR allelic variations and their associations with pre-harvest sprouting resistance in a set of red-grained Chinese wheat germplasm[J]. Euphytica, 2014, 195: 197-207.
[40] VANSTRAELEN M,BENKOV?魣 E.Hormonal interactions in the regulation of plant development[J].Annual Review of Cell and Developmental Biology,2012,28:463-487.
[41] NAMBARA E, OKAMOTO M, TATEMATSU K, et a1.Abscisic acid and the control of seed dormancy and germination [J].Seed Sci Res, 2010,20 (2): 55.
[42] OKAMOTO M, KUWAHARA A, SEO M, et al. CYP707A1 and CYP707A2, which encode abscisic acid 8-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis[J]. Plant Physiol,2006,141:97-107.
[43] CHONO M, HONDA I, SHINOCK S, et a1.Field studies on the regulation of abscisic acid content and germinability during grain development of barley:molecular and chemical analysis of pre-harvest sprouting[J]. J Exp Bot,2006,57:2421-2434.
[44] ZHANG C L, HE X Y, HE Z H, et al. Cloning of TaCYP707Al gene that encodes ABA 8′-Hydroxylase in common wheat(Triticum aestivum L.)[J]. Agricultural Sciences in China,2009,8:902-909.
[45] LI C D,NI P X,FRANCKI M,et a1.Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison[J]. Funct Integr Genomics,2004,4:84-93.
[46] PATRICK B,MARGARET E S,RALPHL O.Raffinose accumulation in maize embryos in the absence of a fully functiona1 gene product[J].Planta,l997,203:222-228.
[47] MCCARTY D R, HATTORI T, CARSON C B, et al. the Viviparous-1 developmental gene of maize encodes a novel transcriptional activator[J]. Cell,1991, 66:895-905.
[48] HOECKER U,VASIL I K,MCCARTY D R.Integrated control of seed maturation and germination programs by activator and repressor functions of Viviparous-1 of maize[J]. Genes Dev,1995,9:2459-2469.
[49] BAILEY P C,MCKIBBIN R S.Lenton J R. Genetic map location for orthologous genes in wheat and rice[J]. Theor Appl Genet, 1999, 98:281-284.endprint
[50] MCKIBBIN R S, WILKINSON M D, BAILEY P C, et al. Transcripts of Vp-1 homeologues are misspliced in modern wheat and ancestral species[J]. Proc Natl Acad Sci USA, 2002, 99:10203-10208.
[51] JONES H D, PETERS N C, HOLDSWOTH M J.Genotype and environment interact to control dormancy and differential expression of the VIVIPAR0US l homologue in embryos of a vena fatua[J]. The Plant Journal, l997, 12:911-920.
[52] HUANG T, QU B, LI H P, et al. A maize viviparous 1 gene increases seed dormancy and preharvest sprouting tolerance in transgenic wheat[J]. J Cereal Sci, 2012, 55:166-173.
[53] YANG Y, ZHAO X L, XIA L Q, et al. Development and validation of a Viviparous-1 STS marker for pre-harvest sprouting tolerance in Chinese wheats[J]. Theor Appl Genet, 2007, 115:971-980.
[54] XIA L Q, GANAL M W, SHEWRY P R, et al. Exploiting the diversity of Viviparous-1 gene associated with preharvestsprouting tolerance in European wheat varieties[J]. Euphytica, 2008,159:411-417.
[55] CHANG C,ZHANG H P,ZHAO Q X,et al. Rich allelic variations of Viviparous-1A and their associations with seed dormancy/pre-harvest sprouting of common wheat[J].Euphytica,2011,179:343-353.
[56] SUN Y W, JONES D H, YANG Y, et al. Haplotype analysis of Viviparous-1 gene in CIMMYT elite bread wheat germplasm[J]. Euphytica, 2012, 186: 25-43.
[57] YANG Y, ZHANG C L, LIU S X, et al. Characterization of the rich haplotypes of Viviparous-1A in Chinese wheats and development of a novel sequence tagged site marker for pre-harvest sprouting resistance[J]. Mol Breed,2014,33:75-88.
[58] KURUP S, JONES H D, HOLDSWORTH M J. Interactions of the developmental regulator ABA with proteins identified from developing Arabidopsis seeds[J]. Plant J,2000,21:143-155.
[59] ZHANG X R,GARRETON V,CHUA N H.The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation[J].Gene Dev,2005,19:1532-1543.
[60] 高东尧.小麦穗发芽抗性相关Vp-1B和AIP2基因的克隆及功能分析[D].北京:中国农业科学院,2010.
[61] 胡翠花,李晓燕,高 翔.普通小麦供体种穗发芽相关基因AIP2的克隆和进化研究[J].西北农业学报,2013,22(8):1-8.
[62] APPLEFORD N E,EVANS D J, LENTON J R,et al. Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat[J]. Planta,2006, 223: 568-582.
[63] XI W Y, LIU C, HOU X L,et al. MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis[J]. Plant Cell, 2010, 22:1733-1748.
[64] NAKAMURA S,ABE F,KAWAHIGASHI H,et al. A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination[J]. Plant Cell,2011,23:3215-3229.endprint
[65] LIU S, SEHGAL S K, LI J, et al. Cloning and characterization of a critical regulator for preharvest sprouting in wheat[J]. Genetics, 2013, 195:263-273.
[66] SUGIMOTO K,TAKEUCHI Y,EBANA K,et al. Molecular cloning of Sdr4,a regulator involved in seed dormancy and domestication of rice[J]. Proc Natl Acad Sci USA,2010,107:5792-5797.
[67] ZHANG Y,MIAO X, XIA X,et al. Cloning of seed dormancy genes (TaSdr) associated with tolerance to pre-harvest sprouting in common wheat and development of a functional marker[J]. Theor Appl Genet,2014,127:855-866.
[68] ALONSO-BLANCO C, BENTSINK L, HANHART C J, et al. Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana[J]. Genetics,2003, 164:711-729.
[69] BENTSINK L,JOWETT J,HANHART C J,et al.Cloning of DOG1,a quantitative trait locus controlling seed dormancy in Arabidopsis[J]. Proceedings of the National Academy of Sciences,2006,103(45):17042-17047.
[70] ASHIKAWA I,FUMITAKA A, NAKAMURA S. Ectopic expression of wheat and barley DOG1-like genes promotes seed dormancy in Arabidopsis[J]. Plant Science ,2010,179: 536-542.
[71] 何震天,陈秀兰,韩月澎.白皮小麦抗穗发芽研究进展[J].麦类作物学报,2000,20(2):84-87.
[72] DEPAUW R M, KNOX R E, SINGH A K, et al. Developing standardized methods for breeding preharvest sprouting resistant wheat, challenges and successes in Canadian wheat[J]. Euphytica,2012, 188:7-14.
[73] KOTTEARACHCHI N S,UCHINO N, KATO K, et al. Increased grain dormancy in white-grained wheat by introgression of preharvest sprouting tolerance QTLs[J]. Euphytica,2006,152:421-428.
[74] XIAO S H, ZHANG H P,YOU G X,et al. Integration of marker-assisted selection for resistance to pre-harvest sprouting with selection for grain-filling rate in breeding of white-kernelled wheat for the Chinese environment[J]. Euphytica,2012,188:85-88.
[75] TYAGI R R,MIR H,KAUR P.Marker-assisted pyramiding of eight QTLs/genes for seven different traits in common wheat (Triticum aestivum L.)[J].Mol Breeding,2014,34:167-175.
[76] 苗西磊.普通小麦穗发芽抗性QTL定位及分子标记辅助选择[D].北京:中国农业科学院,2013.
(责任编辑 韩 雪)endprint