双激发平衡式稳态自由进动序列曲面重建在血管压迫性三叉神经痛及面肌痉挛的应用价值
2015-12-13陈利军陈士新孙泽栋马宁徐琳
陈利军,陈士新,孙泽栋,马宁,徐琳
陕西省汉中市3201医院影像科, 汉中723000
曲面重建(curvature plane reconstruction,CPR)是医学影像诊断较常用的三维重建技术之一,其特点是将组织的不同断面通过曲面重建使得组织结构得以在同一个面上完整显示。目前由于其在血管、胆管、输尿管等方面的应用价值已得到临床广泛认可。该技术在CT成像中运用极为普遍,然而在磁共振成像中却很少被运用,这可能是CT的重建技术在某种程度上影响或限制了磁共振重建的发展,或是放射科医生还没有对磁共振重建工作给临床带来的价值有足够的认识和意识。现今的MR血管神经重建技术从既往的多平面重组[1](multi-plane reformation,MPR)进展为采用血管神经图像融合技术[2-3]以及仿真内窥镜重建(megnatic resonance virtual ebdoscopy,MRVE)技术[4],目前的重建方法在显示双侧神经的完整形态以及信号方面缺乏较为直观的对比,以提供客观的判断依据。本文采用双激发平衡式稳态自由进动序列对81例患者进行扫描,利用CPR技术显示责任血管与神经的关系,并对照65例术后结果,探讨该技术在显示血管神经解剖关系的价值。
1 材料与方法
1.1 临床资料
收集自2012年4月至2014年6月在我院接受MR神经血管成像检查的临床诊断的48例三叉神经痛(trigeminal nevralgia,TN)及33例面肌痉挛(hemifacial spasm,HFS)患者材料。81例中男32例,女49例;年龄26~79岁,中位年龄53岁;患者病程4周至3年;81例中46例患高血压病,8例为糖尿病,8例为冠心病;65例接受微血管减压(microvacular decompression,MVD)治疗,其中TN 35例,HFS 30例。
1.2 MRI检查
81例均采用GE公司Hdxt 3.0 T双梯度超导磁共振扫描仪,8通道相控阵线圈,3D-FIESTA-C扫描参数:TR 4.1 ms,TE 1.6 ms,反转角度60°,矩阵256×288,扫描视野18cm×18cm,层厚1 mm,无层间距,NEX为2,相位编码方向为前后(A/P)方向,扫描层数为50层,扫描范围包括中脑至桥脑延髓沟,扫描时间为4 min30 s。本研究经医院伦理委员会批准,所有受试者或是法定监护人均签署知情同意书。
1.3 图像后处理方法
将3D-FIESTA-C原始图像输入GE AW4.5工作站选择curved进行CPR,在三叉神经层面将曲面端点定于视神经管附近,听面神经层面将曲面端点定于视神经管下方约5 mm处,沿神经走行做单侧神经曲面重建,然后沿对侧神经至端点,通过角度调节,观察不同角度双侧神经的形态以及与血管的关系。
1.4 血管与神经关系的评判标准
CPR需观察双侧神经形态及信号、脑池间距;脑干双侧形态。将患侧神经关系分为无接触、接触、压迫。无接触为神经周围无血管影像;接触为神经形态自然,轮廓光滑,血管神经无间隙,神经信号均匀;压迫为神经受压变形,神经轮廓毛糙模糊,神经信号强度减弱,或中断缺失。将血管神经相邻脑池间距分为双侧对称等宽,患侧脑池间距变窄。将患侧脑干外缘较对侧受压变形定为压迫,双侧脑干外缘对称自然定为接触。
1.5 统计学分析
结果采用统计软件SPSS 18.0进行分析,计算出81例3D-FIESTA-C、CPR各自以及两者联合运用检测责任血管的灵敏度、特异度、阳性预测值、阴性预测值,与MVD结果比较,得出K值。K<0.40为一致性弱,0.40~0.60为一致性一般,0.61~0.80为一致性强,0.81~1.00为一致性极强,并对其结果进行分析。
2 结果
图1~4 右侧小脑上动脉与三叉神经REZ段接触。图1为单侧曲面图,图2~4为不同角度曲面图,血管与神经无间隙,与对侧比较,右侧神经轮廓光整,形态自然,信号均匀,右脑池间距较对侧窄小 图5~8 右侧岩静脉属支压迫三叉神经REZ段。图5为单侧曲面图,图6~8为不同角度曲面图,右三叉神经REZ段局部信号缺失,右侧脑池间距较对侧窄小,神经长度较对侧缩短,REZ段脑干外缘较对侧可见浅弧形压迹 图9~12左侧椎动脉及小脑后下动脉共同压迫面神经REZ段。图9为单侧曲面图,图10~12为不同角度曲面图,左椎动脉明显迂曲扩张,与内侧小脑后下动脉共同压迫REZ段,与对侧相比,左面神经局部信号减弱,轮廓毛糙模糊,神经长度缩短,REZ段脑干外缘与对侧相比轻度变形 图13~16左侧小脑前下动脉血管袢压迫面神经REZ段,REZ段神经信号减弱,REZ段脑干外缘较对侧可见弧形压迹Fig.1—4 Right suporior creballar artery contacted with REZ segment of trigeminal never.Fig.1 Unilateral curve plane reformation.Fig.2—4 curve plane reformation of different angles.Without space between blood vessels and nerves.Nerve on the right side contour finishing,natural shape,signal uniformity.Compared with the contralateral,the right nerve’s contour was fi nishing and signal was uniformity.Right cistern space was narrow the contralateral.Fig.5—8 Right petrosal vein branch compressed REZ segment of trigeminal never.Fig.5 Unilateral curve plane reformation.Fig.6—8 curve plane reformation of different anglesand the local signal missing for REZ segment right trigeminal nerve.compared with the contralateral the right cistern spacing was narrower and nerve was shorter and there was a light arc pressure trace in the REZ segment out of brain stem.Fig.9—12 Left vertebral artery and posterior inferior cerebellar artery compressed REZ segment of facial never.Fig.9 Unilateral curve plane reformation.Fig.10—12 curve plane reformation of different angles.Left vertebral artery was significantly tortuous expansion,and compressed REZ segment accompanying with medial cerebellar artery.Compared with the contralateral,the left facial nerve local signal was weak and the outline was rougher and the nerve was shorter and REZ segment of brainstem outer was mild deformation.Fig.13—16 Left vascular loop of anterior inferior cerebellar artery compressed REZ segment of facial nerve,REZ segment nerve signal was weak,compared with the contralateral the left cistern spacing was a light arc pressure trace in the REZ segment out of brain stem.
81例均为单侧,其中48例TN右侧22例,左侧26例;33例HFS右侧13例,左侧20例。81例中血管神经无接触8例(均为TN),接触25例,压迫48例。接触及压迫部位位于神经出脑干段(root emerging zone,REZ)者58例,表现为神经出脑干3 mm以内;位于脑池段者15例,表现为神经出脑干3 mm以外。接触与压迫病例中脑池间距窄小者33例,脑干变形者12例。剔除8例血管神经无接触的TN,其余40例TN显示责任血管为小脑上动脉者31例,岩静脉属支5例,基底动脉2例,小脑前下动脉2例;其中小脑上动脉与岩静脉属支共同压迫2例,小脑上动脉与岩静脉共同接触1例,岩静脉主干单独压迫2例,小脑上动脉与小脑前下动脉共同压迫2例。33例HFS责任血管为小脑前下动脉12例,小脑后下动脉13例,椎动脉7例,岩静脉1例;其中小脑前下动脉与后下动脉共同压迫5例,前下动脉与椎动脉共同压迫2例,后下动脉与椎动脉共同压迫2例,椎动脉压迫与岩静脉接触1例。血管神经无接触表现见图1~4,压迫表现见图5~8,脑池间距窄小表现见图9~12,神经REZ段脑干受压表现见图13~16。2名放射医师对65例CPR图像诊断结果的Kappa一致性检验见表1,3D-FIESTA-C以及联合CPR与65例MVD术中所见责任血管来源、压迫部位以及神经受压程度方面一致性检验以及CPR检测责任血管的灵敏度、特异度、阳性预测值、阴性预测值见表2、3。65例术后30例HFS症状消失,30例TN疼痛症状消失,5例疼痛症状较前明显减轻。
3 讨论
表1 2名观察者对CPR结果的一致性评价Tab.1 Consistency evaluation of CPR by two observes
表2 3D-FIESTA-C与MVD结果的一致性评价Tab.2 Consistency evaluation of 3D-FIESTA-C and MVD
表3 3D-FIESTA-C联合CPR与MVD结果的一致性评价Tab.3 Consistency evaluation of 3D-FIESTA-C combining with CPR and MVD
TN和HFS尽管临床特征有所不同,但是由于血管的搏动性压迫而导致临床症状的产生,却是两者共有的特性。这种搏动性压迫易发生于相应脑神经在出脑干前中枢与周围髓鞘的交界区,神经髓鞘的再生受影响后,传递痛觉和触觉的突触相接触,导致神经传导通路产生“短路”[5],即产生相应的TN和HFS症状。虽然血管压迫学说目前已得到临床的普遍认可,但仍有部分学者对其发病机理提出质疑,尤其是TN的发病,因为在正常人群中,7%~32%亦存在血管神经接触压迫的情况[6],与TN相比,HFS的病因较为明确。微血管减压术是目前公认的对TN和HFS最有效的首选治疗方法[7-8],其在TN的总有效率平均约为83.5%[7],而HFS有效率约为94.1%[9]。责任血管与神经压迫部位主要发生于神经的出脑干段(root emerging zone,REZ)[10-12],本组三叉神经痛主要的责任血管为小脑上动脉(约占77.5%),而偏侧面肌痉挛的主要血管为小脑后下动脉(约占36.3%)、小脑前下动脉(约占39.3%),及椎动脉(约占21.2%),其结果与MVD术后结果相符[13-14]。与动脉相比,静脉压迫少见,本组责任静脉主要为岩静脉及其属支(约占12.5%),其主要与TN相关,在被证实的责任静脉中岩静脉的属支桥横静脉较为常见[15-16]。责任血管可为单支或多支,动脉或静脉接触与压迫也可同时存在。
梯度回波序列(grdient recalled echo,GRE)是高场强磁共振扫描仪上较常用的一组MRI射频脉冲序列。临床应用主要包括扰相GRE序列、普通稳态自由进动序列(steady state free precession,SSFP)和平衡式稳态自由进动序列(Balance SSFP)。双激发Balance SSFP是Balance SSFP的改进序列,不同公司设备上其名称亦有所不同,如西门子公司称3D CISS,而GE公司则称3D-FIESTA-C。目前双激发Balance SSFP主要应用于脑、脊神经根以及内耳的成像,需要指出的是,双激发Balance SSFP(3D-FIESTA-C或3D-CISS为代表)与Balance SSFP(3D-FEISTA为代表)有所不同,因为有学者认为Balance SSFP是MR三维高分辨率成像的代表[9]。然而与一般的Balance SSFP相比,双激发Balance SSFP序列可明显减轻图像的条纹伪影,在TR相对较长的情况下仍可保持图像具有较高的信噪比。由于3D-FIESTA-C组织的图像对比取决于T2/T1的比值,组织的对比特点主要表现在液体由于T2值长而呈现很高信号,而软组织呈现相对低信号,故该序列就是通过在脑脊液高亮信号的衬托下,与低信号的血管与神经形成显著对比为特征。由于该序列血管神经均表现为低信号,血管神经信号强度差异不及3D-TOF-MRA显著,故该序列仅能根据解剖形态区分血管神经。在既往的研究中,双激发Balance SSFP在空间分辨力及信噪比方面优于3D-TOF-MRA[11],其亦比3D-TOF-MRA明显提高了责任静脉的显示能力[17]。
在三维高分辨率成像的基础上应用曲面重建技术,其目的就是能够在同一平面上完整显示双侧神经的形态,以提供患侧与健侧有效的对比,通过对比提高判断血管神经接触及压迫的敏感度,以及神经移位变形的程度。笔者发现,可能是由于手术视角的局限性,使得MVD术中对血管神经接触及压迫的敏感度以及神经移位变形程度方面的显示好像并没有比曲面重建表现的显著,然而对手术医生而言,这似乎并不影响手术方法的改变以及术后疗效,故可能多数手术医生持有接触即压迫的观点。在显示双侧神经完整形态的同时,曲面重建还提供了双侧脑池间距以及脑干形态的对比,通过对比可辅助提高判断血管神经接触及压迫的特异性,对术前准确了解血管神经周围组织结构的形态提供了更为丰富的解剖信息。本组中,患侧脑池间距窄小约占接触与压迫病例的45.2%,该表现在TN中尤为显著,说明患侧脑池间距窄小是导致血管神经接触及压迫的一个重要因素。有报道称,患侧桥小脑池窄小可作为辅助诊断TN的一个重要指标[18]。由于脑池间距的窄小,给手术操作带来一定的困难,甚至可能导致手术失败,故术前对脑池间距的评估具有重要意义。曲面重建通过对神经轮廓及信号的观察,提高了对血管神经接触与压迫判断的诊断效能。神经的轮廓不光整以及神经局部信号减弱,甚至信号中断缺失,均是提示存在压迫的可靠依据。脑干变形提示压迫存在,主要表现为REZ段脑干外缘与对侧相比可见弧形压迹,在本组中导致这一表现的责任血管主要为基底动脉和椎动脉,小脑后下动脉及前下动脉相对较少,高血压动脉硬化引起的血管迂曲扩张,是导致脑干受压变形的一个主要原因。本组病例表明,3D-FIESTA-C联合CPR经两名观察者判断具有较高的一致性,其诊断结果与MVD术中所见亦具有较好的一致性,3D-FIESTA-C联合CPR在判断责任血管来源方面优于术中所见,可能是手术视野的局限性以及血管迂曲、变异均会对MVD术中准确判断血管来源产生影响,而3D-FIESTA-C可以较为准确的追溯血管来源。
在近来的研究中,运用不同场强的MR扫描仪所进行的血管神经成像,3.0 T MR在显示解剖细节方面优于1.5 T MR[19]。其原始图像的空间分辨率的提高势必对重建图像质量带来一定的影响,这样,重建图像才可能为临床提供更加清晰准确的解剖信息。MR曲面重建技术突破了既往MPR单侧判断的局限性,拓宽了解剖信息的观察视野,故该技术必将在今后的临床应用中发挥重要作用,尤其是应用于血管神经成像,其操作简单,分析诊断以及相应的测量方便快捷,具有较高的临床应用价值。
[References]
[1]Jin J,Tang XL,Xiang H,et al.Evaluation of 3D-TOF and 3D-FIESTA combined with MPR in microvascular decompression for trigeminal neuralgia by 3.0 T MRI system.Chin J Magn Reson Imaging,2015,6(4):277-280.金军,汤小莉,香辉,等.3.0 T MRI 3D-TOF序列联合3D-FIESTA序列结合多平面重建在三叉神经微血管减压术术前评估中的应用价值.磁共振成像,2015,6(4):277-280.
[2]Lijima K,Horiguchi K,Yoshimoto Y.Microvascular decompression of the root emerging zone for hemifacial spasm:evaluation by fusion magnetic resonance imaging and technical considerations.Acta Neurochir(Wien),2013,155(5):855-862.
[3]Granata F,Vinic SL,Longo M,et al.Advanced virtual magnetic imaging(MRI)techniques in neurovascular conflict:bidimensional image fusion and virtual cisternography.Radiol Med,2013,118(6):1045-1054.
[4]Chen LJ,Chen SX,Ma N,et al.Research of 3.0 T MRI virtual endoscopy reconstruction in hemifacial spasm.Chin J Magn Reson Imaging,2014,5(2):185-188.陈利军,陈士新,马宁,等.3.0 T MRI仿真内窥镜重建技术在面肌痉挛中的应用研究.磁共振成像,2014,5(2):185-188.
[5]Zakrzewska JM,McMillan R.Trigeminal neuralgia neuralgia the diagnosis and management of this excruciating and poorly understood facial pain.Postgrad Med J,2011,87(1028):410-416.
[6]Miller JP,Acar F,Hanmiltion BE,et al.Radiographic evalution of trigeminal neurovascular compression in patients with and without trigeminal neuralgia.J Neurosurg,2009,110(4):627-632.
[7]Xia L,Zhong J,Zhu J,et al.Effectiveness and safety of microvascular decompression surgery for treatment of trigeminal neuralgia:a systematic review.J Craniofac Surg,2014,25(4):1413-1417.
[8]Miller LE,Miller VM.Safety and effectiveness of microvascular decompression for treatment of hemifacial spasm:a systematic review.Br J Neurosurg,2012,26(4):438-444.
[9]Hyuan SJ,Kong DS,Park K.Microvascular decompression for treating hemifacial spasm:lessons learned from a prospective study of 1,174 operations.Neurosurg Rev,2010,33(3):325-334.
[10]EL Refaee E,Langner S,Baldauf J,et al.Value of 3-dimensional highresolution magnetic resonance imaging in detecting the offending vessel in hemifacial spasm:comparison with intraoperative high defi nition endoscopic visualization.Neurosurgery,2013,73(1):58-67.
[11]Yoshino N,Akimoto H,Yamada I,et al.Trigeminal Neuralgia:Evaluation of Neuralgic Manifestation and site of Neurovascular compression with 3D CISS MR imaging and MR Angiography.Radiology,2003,228(2):539-545.
[12]Wu GQ,Wang L,Yin WN,et al.Guiding values of facial nerve 3D-TOF-MRA and 3D-FIESTA scan for primary hemifacial spasm operation.National Medical Journal of China,2013,93(45):3614-3616.
[13]Xia L,Zhong J,Zhu J,et al.Effectiveness and safety of microvascular decompression surgery for treatment of trigeminal neuralgia:a systematic review.J Craniofac Surg,2014,25(4):1413-1417.
[14]Hyuan SJ,Kong DS,Park K.Microvascular decompression for treating hemifacial spasm:lessons learned from a prospective study of 1174 operations.Neurosurg Rev,2010,33(3):325-334.
[15]Hong W,Zheng X,Wu Z,et al.Clinical features and surgical treatment of trigeminal neuralgia caused solely by venous compression.Acta Neurochir(Wien),2011,153(5):1037-1042.
[16]Li GW,Zhang WC,Yang M,et al.Clinical characteristics and surgical of trigeminal neuralgia caused simply by venous compression.J Craniofac Surg,2014,25(2):481-484.
[17]Chen LJ,Chen SX,Ma N,et al.Application of 3.0T MRI for vascular compressive trigeminal neuragia.Chin J Med Imaging Technol,2014,30(2):89-93.陈利军,陈士新,马宁,等.3.0 T磁共振成像在血管压迫性三叉神经痛中的应用.中国医学影像技术,2014,30(2):89-93.
[18]Park SH,Hwang SK,Park J,et al.Nerve atrophy and a small cerebellopontine angle cistern in patients with trigeminal neuralgia.J Neurosurg,2009,110(4):633-637.
[19]Garcia M,Naraghi R,Zumbrunn T,et al.High-resolution 3D-constructive interference in steady-state MR imaging and 3D time-of-flight MR angiography in neurovascular compression:a comparision between 3 T and 1.5 T.AJNR Am J Neuroradiol,2012,33(7):1256.