脂质体在食品中的应用及体外消化研究进展
2015-10-29刘玮琳魏富强韩剑众
刘玮琳,魏富强,韩剑众*
(浙江工商大学食品与生物工程学院,浙江省食品安全重点实验室,浙江 杭州 310035)
脂质体在食品中的应用及体外消化研究进展
刘玮琳,魏富强,韩剑众*
(浙江工商大学食品与生物工程学院,浙江省食品安全重点实验室,浙江 杭州310035)
脂质体是由双亲性物质如磷脂组成的内部为水相、具有类细胞膜结构的双分子层闭合囊泡,因其具有保护、运载、靶向和缓释等特点,目前已在食品营养、医药、化妆品、农业等领域表现出极大的应用潜能。本文简要介绍了脂质体的性质及特点,重点综述了脂质体在脂类、抗氧化剂、酶与蛋白质以及维生素和矿物质等食品领域的研究及应用,最后概述了脂质体作为食品营养因子运载体系在模拟体外胃和肠道消化的研究进展。
脂质体;食品;体外消化
脂质体是由双亲性物质如磷脂组成的内部为水相、具有类细胞膜结构的双分子层闭合囊泡,基于脂类的运载体系可将其分为两类,一类由简单的油脂构成,另一类由油相、水相、表面活性剂以及助表面活性剂等通过自分散方式形成。后者研究应用较广,如微乳液、脂质体、固相脂质纳米粒、纳米结构化脂质运载体等。自1965年英国的Bangham等[1]发现磷脂在水中可以自发形成脂质体以来,经过近50a的发展,作为一种代表性的脂类运载体,脂质体的研究已形成了较为成熟的科学理论,在食品营养、药品、化妆品、农业等诸多领域已有广泛运用。利用脂质体对油溶性成分如中链脂肪酸和二十二碳六烯酸(docosahexaenoic acid,DHA)、水溶性成分如水溶性维生素和水溶性的抗氧化剂等功能成分的包封与运载,可提高其稳定性和生物利用率,达到定时、定位释放的目的。作为口服运载体系,脂质体在胃肠道中的消化行为是功能成分能否被有效利用的关键,揭示在此过程中壁材结构变化和芯材释放动力学,是脂质体当前最具挑战和最有价值的研究。因此,本文对脂质体在食品领域的研究现状进行了综述,并总结了脂质体在体外模拟胃肠道消化的研究进展,为拓展脂质体在食品领域中的应用和脂质体的消化研究提供一定的信息和依据。
1 脂质体简介
脂质体(liposome)是脂类分子(类脂)的自组装体,具有一个或多个具有类似生物膜结构的脂类双分子层中间包覆微水相的结构,可以天然存在也可以人工合成,是一种被广泛研究的递送系统[2]。根据脂质体的大小和磷脂双层膜的数量,目前主要将脂质体分为三类:多层(multilamellar vesicle,MLV)、多囊(multivescular vesicle,MV)和单层的脂质体,其中单层又可细分为大单层(large unilamellar vesicles,LUV)和小单层(single unilamellar vesicles,SUV)等。脂质体壁材主要由磷脂和胆固醇组成,其中磷脂主要有天然磷脂(如大豆磷脂和蛋黄卵磷脂)、改性磷脂(天然磷脂改性物如改性大豆磷脂,以及合成类脂分子如二棕榈酰磷脂酰胆碱(dipalmitoyl phosphatidylcholine,DPPC)、二棕榈酰磷脂酰乙醇胺(1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine,DPPE)、二硬脂酰磷脂酰胆碱(disaturated phosphatidylcholine,DSPC)等)。脂质体的形成机理尚无完全定论,最具代表性的观点是基于两亲性化合物(主要是磷脂)和水分子之间发生相互作用,磷脂的亲水性头部处于膜的内外表面层,疏水性的尾端则位于膜的中间,形成了头对头、尾接尾的膜壁厚度约为5~7 nm的囊泡结构。该结构使其能够同时运载疏水、亲水和两亲性的物质,或被包封在内部水相,或是嵌插入类脂双分子层之间[3-4]。脂质体的制备技术较为成熟,传统方法主要有薄膜分散法[5]、逆向蒸发法[6]、乙醇注入法[7]、高压均质法[8]、超声法[9]等;新开发的有薄膜分散-动态高压微射流法[10]、动态高压微射流-冻融法[11]、动态高压微射流-乙醇注入法[12]、加热法[13]等。脂质体的制备方法不同,得到的脂质体性质亦有差异。基于脂质体独特的性质,目前脂质体的研究和应用主要集中在医药、食品、化妆品、农业、矿业等领域。其中,在食品领域主要用于保护和控制不稳定或易挥发的亲水、亲油性功能因子的释放,例如抗氧化剂、酶、抗菌剂等[14-16];另外,脂质体作为口服运载体系,其最大的价值是在胃肠道消化过程中对包埋物的保护、控释、靶向和提高生物利用率等作用[17-20],近几年对于脂质体在胃肠道消化的研究已成前沿阵地。
2 脂质体在食品中的研究进展
食品级脂质体用于营养因子及功能成分的包埋和运载具有无毒、双亲性和生物可降解等特点,主要体现在以下三个方面:1)提高功能性营养物在贮藏和消化过程的稳定性和生物利用度;2)控制被包埋物质的定点、定时释放;3)改善食品质构。
2.1脂质体包埋脂类
脂类如DHA、二十碳五烯酸 (eicosapntemacnioc acid,EPA)和精油等分子含有不饱和键,易被氧化及光照破坏结构,遇到金属离子或是受热则会加速其分解。将脂类包裹于脂质体是近年开拓的新方向[21],目前已有部分相关报道:Bai Chunqing等[22]采用乙醇注入法结合喷雾干燥制备脂质体包封薏米油,克服薏米油的生物性不稳定和水溶性差等缺点,提高其在肠道的吸收。Eckert等[23]采用薄膜分散法制备脂质体包埋DHA,其能维持或恢复生理膜的性能,并增强细胞膜的流动性,促进N端淀粉样前蛋白片段的分泌,进而提高神经元存活率。Liu Weilin等[24]采用动态高压微射流-冻融法制备中链脂肪酸(medium chain fatty acids,MCFAs)脂质体,既能克服MCFAs口感差的缺点,亦可作为肥胖症者潜在的能量物质替代品,减少和抑制其体内能量和脂肪的蓄积。Nieto等[25]采用薄膜分散结合超声法制备脂质体包埋迷迭香叶蒸馏提取精油和百里香叶蒸馏提取精油,结果发现该脂质体在食品和肉类的保护上能起到良好的作用。Liu Wei等[21]采用高压微射流技术结合传统薄膜分散法制备的MCFAs脂质体,能为小鼠快速提供能量,达到抗疲劳的功能。另外,Yang Shuibing[26]和Liu Chengmei[27]等还分别报道了采用冻干法制备MCFAs-VC脂质体和MCFAs脂质体。Liolios等[28]采用薄膜分散法制备脂质体包埋百里香油,提高百里香油的稳定性。Martin-Creuzburg等[29]采用薄膜分散法制备脂质体包埋胆固醇或EPA,研究胆固醇对蓝藻类食品品质的影响。Jenski等[30]采用薄膜分散结合超声法制备脂质体包埋ω-3脂肪酸(DHA),显著提高脂肪酸稳定性。
2.2脂质体包埋抗氧化剂
利用脂质体等运载技术包埋抗氧化剂是脂质体在食品行业研究最深入、应用最广泛的一个方向。由于抗氧化剂对光、热、氧气、pH值和酶等极为敏感,采用脂质体包埋技术一方面可以改善其稳定性、延长货架期,另一方面可提高抗氧化剂的生物利用率。目前,该方向的研究主要分为以下三类:1)提高抗氧化剂的稳定性。Zou Liqiang等[12]利用动态高压微射流-乙醇注入法制备茶多酚纳米脂质体(tea polyphenol nanoliposome,TPN),结果表明TPN与茶多酚具有相同的抗氧化性,但TPN在碱性环境中的稳定性明显高于茶多酚。Gibis等[31]采用大豆卵磷脂制备的脂质体包埋多酚,所得脂质体粒径小于100 nm,物理稳定性较好,并且该脂质体贮藏150 d后产生的己醛含量(<15 μmol/L)相比未用脂质体包埋的多酚含量(>717 μmol/L)显著减少。2)氧化应激效应。Vanaja等[32]采用薄膜水化法制备白藜芦醇脂质体,研究表明白藜芦醇脂质体的抗氧化性比白藜芦醇单独存在时更强,并且VC和白藜芦醇脂质体清除细胞内活性氧没有表现出协同作用。Locatelli等[33]通过高压均质法制备丁香酰胺脂质体,结果表明从可可豆提取的丁香酰胺和多酚类物质能显著地抑制脂质过氧化,清除脂质产生的自由基。3)抗氧化剂与脂质体的相互作用机制。Gibis等[34]通过高压均质法制备葡萄籽提取物脂质体,并用壳聚糖作为第一层表面修饰剂,果胶作为第二修饰剂,结果发现壳聚糖修饰的脂质体能在带有不同电荷的蛋白质间产生静电相互作用,进而降低乳清蛋白和酪蛋白的沉淀,因而作者认为壳聚糖脂质体能用来开发葡萄籽提取物的功能性食品。Kim等[35]则采用薄膜分散法制备类黄酮槲皮素-花旗松素脂质体,通过差示扫描量热技术观察到类黄酮槲皮素-花旗松素能使脂质体膜的亲脂性增强,并且改变了脂质体双分子层的相变温度,使其从双层结构变成六角形结构。除以上研究外,还有部分关于脂质体运载抗氧化剂的报道,见表1。
表1 脂质体在食品抗氧化剂中的研究Table 1 Application of liposomes in food antioxidants
2.3脂质体包埋蛋白质和酶
脂质体包裹蛋白质和多肽等是食品级脂质体的另一个重要研究方向。Liu Weilin等[45]采用薄膜分散法制备乳铁蛋白脂质体,研究表明在脂质体的包封作用下而达到保护乳铁蛋白,避免其在胃液消化时受胃蛋白酶的影响,而使其在小肠部位进行消化吸收,进而达到控制释放的特性及提高乳铁蛋白的利用率。Maherani等[46]发现通过纳米脂质体包封天然二肽抗氧化剂(L-肌肽)可以解决食品保鲜的相关问题,例如减少活性物质在食品体系复杂反应中的氧化、降低发生在食品表面微生物引起的变质以及氧化酸败等。Sant'Anna等[47]研究脂质体包封保护性细菌素P34对美拉德反应产物的抑制作用,结果表明脂质体能针对食品中的化合物提供保护作用,并且在食品热处理过程中可提高此抗生物肽的稳定性。
脂质体包埋酶的技术主要是应用在干酪成熟中,如早期的Kheadr等[48]通过脂质体包埋酶(脂肪酶、细菌蛋白酶、霉菌蛋白酶、风味蛋白酶),可加速蛋白质水解和奶酪的成熟时间,从而改善奶酪的感官特性;随后,Nongonierma等[49]采用微射流法制备乳酸菌无细胞提取物脂质体,研究表明脂质体不影响干酪的水分活度和微生物,反而能降低无细胞提取物生物的乳清损失,最大限度地加速干酪的成熟。此外,人们还采用脂质体技术包裹其他食品级的酶制剂,如徐冉等[50]采用逆向蒸发法制备溶菌酶脂质体并研究其对生物膜的剥离作用,结果表明溶菌酶脂质体能够有效控制细菌污染。Jahadi等[51]采用加热法制备风味蛋白酶脂质体,结果表明45 ℃、pH 6制备的风味蛋白酶脂质体最稳定,蛋白酶包埋率及其活力分别为26.5%、9.96 LAPU/mL。
2.4脂质体包埋维生素和矿物质
维生素因易受光照、热或氧气等外界环境影响导致氧化变性,应用受限。当前用以提高维生素功效的手段诸多,包埋技术的贡献尤为突出,如乳液[47]、纳米脂质体[9]、纳米粒[52]等均被开发用以包裹维生素。其中,脂质体在生物可降解、能同时包裹亲水、亲油类维生素等方面表现出了独特优势。Laouini等[53]采用膜技术结合乙醇注入法制备包裹了VE的类脂E80脂质体,通过透射电镜观察呈现多层结构囊泡状,并且该制备方法的重复性较高,包埋率可达到99.87%。Yang Shuibing等[54]采用动态高压微射流结合膜蒸发技术制备VC纳米脂质体,结果表明VC纳米脂质体和VC的生物活性相当,在37 ℃条件下能贮藏1 d或者在4 ℃条件下能贮藏60 d,前者稳定性更好,并且相比于其他方法制备的VC脂质体,该法制备的脂质体表现出更高的皮肤渗透率。Marsanasco等[55]采用大豆-磷脂酰胆碱制备同时包埋了VE和VC的脂质体用于橙汁品质改良,结果表明脂质体的加入可改善橙汁的感官特性,而且经巴氏杀菌和在4 ℃条件下贮藏37 d后橙汁的微生物指示仍旧合格。Liu Nan等[9]采用超声法制备壳聚糖修饰的VE纳米脂质体,包埋率为99%,该脂质体可有效降低芯材的降解,并且在4 ℃条件下贮藏8 周后包埋率仍可维持在近90%。
脂质体包埋矿物质可用于食品基质的强化。Ding Baomiao等[56]采用逆向蒸发法制备甘氨酸亚铁纳米脂质体,在电透镜下观察其结构为球形,模拟体外胃肠环境中具有较高的稳定性,该脂质体可克服亚铁口服制剂不稳定性的缺点,是种潜在的食品营养强化剂。Xia Shuqin等[57]采用逆向蒸发法制备硫酸亚铁脂质体,包埋率为67%,在牛奶中添加该脂质体后铁质量浓度可强化到15 mg/L,100 ℃加热30 min灭菌后在4 ℃条件下贮藏一周后仍保持稳定。
3 脂质体的体外消化研究现状
从最初的医药行业发展到近十几年的食品营养领域,脂质体作为运载体系的研究重心一直是如何采用更好的技术手段,能更有效地包裹各种类型的功能物质,进而通过物理化学性质的表征评价脂质体的生物学效能。近几年,人们发现除了芯材的选取和制备工艺的优化等对食品级脂质体的性能有较大影响之外,脂质体摄入人体后在胃肠道消化的结构稳定性及与其他膳食成分或胃肠道黏膜细胞的相互作用机制,亦是脂质体能否到达靶向器官、将活性成分有效传递利用的关键。
目前,该方向的研究正处于起步阶段,一方面是研究具有不同的壁材或包裹各种芯材的脂质体在消化过程中的结构与性质变化,如Liu Weilin等[58]采用薄膜分散法和动态高压微射流技术分别制备粗脂质体和纳米脂质体,结果表明脂质体在模拟胃液消化时物理和化学性质受胃蛋白酶的影响较小,而在模拟小肠的消化中脂质体磷脂壁受到较大破坏,并且研究还表明从牛奶中提取磷脂制备脂质体比从大豆中提取磷脂制备脂质体稳定。Rashidinejad等[37]采用高压均质法制备茶多酚脂质体和儿茶素脂质体,结果表明大豆卵磷脂脂质体能成功包裹不同类型的抗氧化剂,并可添加到食品中,用以控制抗氧化剂在体内和体外胃肠道消化过程中的有效释放。另一方面是关注修饰脂质体的消化特性,如Peng Hailong等[59]基于壳聚糖聚电解质修饰脂质体制备聚合物脂质体,比传统的未修饰脂质体具有更高的包埋率(82.46%)和更强的缓释功能,而且在体外模拟胃肠道中的释放依赖于释放介质的pH值,他们认为聚合物脂质体是一种很有潜力的载体,能用于生产含有红景天苷或其他生物活性成分的功能性食品。Liu Weilin等[60]基于层层自组装技术制备海藻酸-壳聚糖双层聚电解质修饰的纳米脂质体,研究其物化稳定性和体外消化稳定性后发现,脂质体表面的聚电解质通过空间位阻作用可提高脂质体的离子和热稳定性,并且该脂质体在胃肠道消化中可更有效地防止芯材的泄漏。
然而,目前食品级脂质体的消化研究非常匮乏,正如Hermida等[61]指出极少的研究关注脂质体在胃肠消化后结构是否保持完整,也没有详实的理论解释脂质体在胃肠道环境中的行为;Hur[62]和Benshitrit[63]等也认为,当前基于可食性脂质壁材制备的运载体系(包括脂质体)在不同人群消化的研究较少,特别是对于脂质体在特殊人群消化的结构变化和包埋物的释放调控缺乏科学认识,这些问题在很大程度上都制约着脂质体作为食品营养物运载体系的研究和应用。
4 结 语
随着各种表征技术如电子显微镜、色谱光谱仪等的进一步发展以及人们对脂质体在在食品领域研究的逐渐深入,基于目前的研究进展,未来脂质体在食品领域可能在以下两个方向有所突破:1)通过与物理化学、微生物学、药代动力学等学科领域的交叉,建立食品级脂质体与其他成分、脂质体结构与功能特性之间的关系,为发展更多、更新的食品运载体系带来新契机;2)研究食品级脂质体在不同人群的胃肠道消化过程中的结构完整性和释放动力学,克服脂质体的技术瓶颈,为脂质体的靶向释放和控制释放提供技术指导。
[1]BANGHAM A D, STANDISH M M, WATKINS J C. Diffusion of univalent inos across the lamella of swollen phospholipids[J]. Journal of Molecular Biology, 1965, 13(1): 238-252.
[2]LASIC D D, PAPAHADJOPOULOS D. Liposomes revisited[J]. Science, 1995, 267: 1275-1276.
[3]GOYAL P, GOUAL K, VIJAYA KUMAR S G, et al. Liposomal drug delivery systems-clinical applications[J]. Acta Pharmaceutica, 2005,55(1): 1-25.
[4]JESORKA A, ORWAR O. Liposomes: technologies and analytical applications[J]. Annual Review of Analytical Chemistry, 2008, 1: 801-832.
[5]PUPO E, PADRON A, SANTANA E, et al. Preparation of plasmid DNA-containing liposomes using a high-pressure homogenizationextrusion technique[J]. Journal of Controlled Release, 2005, 104(2):379-396.
[6]ZHENG Xiaoli, LU Jianping, DENG Li, et al. Preparation and characterization of magnetic cationic liposome in gene delivery[J]. International Journal of Pharmaceutics, 2009, 366(1): 211-217.
[7]乐文慧, 黄早成, 肖苏尧, 等. 白藜芦醇固体脂质体制备工艺研究[J].食品科学, 2010, 31(18): 59-62.
[8]YANG Li, YANG Wenzhan, BI Dianzhou, et al. A novel method to prepare highly encapsulated interferon-α-2b containing liposomes for intramuscular sustained release[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 64(1): 9-15.
[9]LIU Nan, PARK Hyunjin. Chitosan-coated nanoliposome as vitamin E carrier[J]. Journal of Microencapsulation, 2009, 26(3): 235-242.
[10] 郑会娟, 刘成梅, 刘伟, 等. 中链脂肪酸脂质体的制备及其性质测定[J].食品科学, 2010, 31(22): 170-175.
[11] LIU Weilin, LIU Wei, LIU Chengmei, et al. Preparation and evaluation of easy energy supply property of medium-chain fatty acids liposomes[J]. Journal of Microencapsulation, 2011, 28(8): 783-790.
[12] ZOU Liqiang, LIU Wei, LIU Weilin, et al. Characterization and bioavailability of tea polyphenol nanoliposome prepared by combining an ethanol injection method with dynamic high-pressure microfluidization[J]. Journal of Agricultural and Food Chemistry,2014, 62(4): 934-941.
[13] MORTAZAVI S M, MOHAMMADABADI M R, KHOSRAVIDARANI K, et al. Preparation of liposomal gene therapy vectors by a scalable method without using volatile solvents or detergents[J]. Journal of Biotechnology, 2007, 129(4): 604-613.
[14] MIN B, CORDRAY J C, AHN D U. Antioxidant effect of fractions from chicken breast and beef loin homogenates in phospholipid liposome systems[J]. Food Chemistry, 2011, 128(2): 299-307.
[15] AILI D, MAGER M, ROCHE D, et al. Hybrid nanoparticle-liposome detection of phospholipase activity[J]. Nano Letters, 2010, 11(4):1401-1405.
[16] da SILVA MALHEIROS P, DAROIT D J, BRANDELLI A. Food applications of liposome-encapsulated antimicrobial peptides[J]. Trends in Food Science & Technology, 2010, 21(6): 284-292.
[17] CHIOU C J, TSENG L P, DENG Mingchung, et al. Mucoadhesive liposomes for intranasal immunization with an avian influenza virus vaccine in chickens[J]. Biomaterials, 2009, 30(29): 5862-5868.
[18] LASIC D D. Liposomes within liposomes[J]. Nature, 1997, 387:26-27.
[19] ANDERSON L J, HANSEN E, LUKIANOVA-HLEB E Y, et al. Optically guided controlled release from liposomes with tunable plasmonic nanobubbles[J]. Journal of Controlled Release, 2010,144(2): 151-158.
[20] MANCONI M, NACHER A, MERINO V, et al. Improving oral bioavailability and pharmacokinetics of liposomal metformin by glycerolphosphate-chitosan microcomplexation[J]. AAPS PharmSciTech, 2013, 14(2): 485-496.
[21] LIU Wei, LIU Weilin, LIU Chengmei, et al. Medium-chain fatty acid nanoliposomes for easy energy supply[J]. Nutrition, 2011, 27(6): 700-706.
[22] BAI Chunqing, PENG Hailong, XIONG Hua, et al. Carboxymethylchitosan-coated proliposomes containing coix seed oil: characterisation, stability and in vitro release evaluation[J]. Food Chemistry, 2011, 129(4): 1695-1702.
[23] ECKERT G P, CHANG S, ECKMANN J, et al. Liposomeincorporated DHA increases neuronal survival by enhancing nonamyloidogenic APP processing[J]. Biochimica et Biophysica Acta(BBA)-Biomembranes, 2011, 1808(1): 236-243.
[24] LIU Weilin, LIU Wei, LIU Chengmei, et al. Medium-chain fatty acid nanoliposomes suppress body fat accumulation in mice[J]. British Journal of Nutrition, 2011, 106(9): 1330-1336.
[25] NIETO G, HUVAERE K, SKIBSTED L H. Antioxidant activity of rosemary and thyme by-products and synergism with added antioxidant in a liposome system[J]. European Food Research and Technology, 2011, 233(1): 11-18.
[26] YANG Shuibing, LIU Chengmei, LIU Wei, et al. Preparation and characterization of nanoliposomes entrapping medium-chain fatty acids and vitamin C by lyophilization[J]. International Journal of Molecular Sciences, 2013, 14(10): 19763-19773.
[27] LIU Chengmei, YANG Shuibing, LIU Wei, et al. Preparation and characterization of medium-chain fatty acid liposomes by lyophilization[J]. Journal of Liposome Research, 2010, 20(3): 183-190.
[28] LIOLIOS C C, GORTZI O, LALAS S, et al. Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity[J]. Food Chemistry,2009, 112(1): 77-83.
[29] MARTIN-CREUZBURG D, von ELERT E, HOFFMANN K H. Nutritional constraints at the cyanobacteria-Daphnia magna interface:the role of sterols[J]. Limnology and Oceanography, 2008, 53(2):456-468.
[30] JENSKI L J, ZEROUGA M, STILLWELL W. Omega-3 fatty acidcontaining liposomes in cancer therapy[J]. Experimental Biology and Medicine, 1995, 210(3): 227-233.
[31] GIBIS M, VOGT E, WEISS J. Encapsulation of polyphenolic grape seed extract in polymer-coated liposomes[J]. Food & Function, 2012,3(3): 246-254.
[32] VANAJA K, WAHL M A, BUKARICA L, et al. Liposomes as carriers of the lipid soluble antioxidant resveratrol: evaluation of amelioration of oxidative stress by additional antioxidant vitamin[J]. Life Sciences,2013, 93(24): 917-923.
[33] LOCATELLI M, TRAVAGLIA F, GIOVANNELLIi L, et al. Clovamide and phenolics from cocoa beans (Theobroma cacao L.)inhibit lipid peroxidation in liposomal systems[J]. Food Research International, 2013, 50(1): 129-134.
[34] GIBIS M, THELLMANN K, THONGKAEW C, et al. Interaction of polyphenols and multilayered liposomal-encapsulated grape seed extract with native and heat-treated proteins[J]. Food Hydrocolloids,2014, 41: 119-131.
[35] KIM Y A, TARAHOVSKY Y S, YAGOLNIK EA, et al. Lipophilicity of flavonoid complexes with iron (II) and their interaction with liposomes[J]. Biochemical and Biophysical Research Communications,2013, 431(4): 680-685.
[36] ZHAO Lina, WANG Shaoyun, HUANG Yifan. Antioxidant function of tea dregs protein hydrolysates in liposome-meat system and its possible action mechanism[J]. International Journal of Food Science and Technology, 2014, 49(10). doi: 10.1111/ijfs.12546.
[37] RASHIDINEJAD A, BIRCH E J, SUN-WATERHOUSE D, et al. Delivery of green tea catechin and epigallocatechin gallate in liposomes incorporated into low-fat hard cheese[J]. Food Chemistry,2014, 156(1): 176-183.
[38] HUANG Yee, WU Caihong, LIU Zhenguang, et al. Optimization on preparation conditions of Rehmannia glutinosa polysaccharide liposome and its immunological activity[J]. Carbohydrate Polymers,2014, 104: 118-126.
[39] KRILOVD, KOSOVIC M, SEREC K. Spectroscopic studies of alpha tocopherol interaction with a model liposome and its influence on oxidation dynamics[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 129: 588-593.
[40] THOO Y Y, ABAS F, LAI O M, et al. Antioxidant synergism between ethanolic Centella asiatica extracts and α-tocopherol in model systems[J]. Food Chemistry, 2013, 138(2/3): 1215-1219.
[41] SOWMYAR R, SACHINDRA N M. Evaluation of antioxidant activity of carotenoid extract from shrimp processing byproducts by in vitro assays and in membrane model system[J]. Food Chemistry, 2012,134(1): 308-314.
[42] FAN Yunpeng, WANG Deyun, HU Yuanliang, et al. Liposome and epimedium polysaccharide-propolis flavone can synergistically enhance immune effect of vaccine[J]. International Journal of Biological Macromolecules, 2012, 50(1): 125-130.
[43] NACKE C, SCHRADER J. Liposome based solubilisation of carotenoid substrates for enzymatic conversion in aqueous media[J]. Journal of Molecular Catalysis B: Enzymatic, 2011, 71(3): 133-138.
[44] KONG Baohua, ZHANG Huiyun, XIONG Youling. Antioxidant activity of spice extracts in a liposome system and in cooked pork patties and the possible mode of action[J]. Meat Science, 2010, 85(4):772-778.
[45] LIU Weilin, YE Aiqian, LIU Wei, et al. Stability during in vitro digestion of lactoferrin-loaded liposomes prepared from milk fat globule membrane-derived phospholipids[J]. Journal of Dairy Science,2013, 96(4): 2061-2070.
[46] MAHERANI B, ARAB-TEHRANY E, KHEIROLOMOOM A, et al. Influence of lipid composition on physicochemical properties of nanoliposomes encapsulating natural dipeptide antioxidant L-carnosine[J]. Food Chemistry, 2012, 134(2): 632-640.
[47] SANT'ANNA V, MALHEIROS P S, BRANDELLI A. Liposome encapsulation protectsbacteriocin-like substance P34 against inhibition by Maillard reaction products[J]. Food Research International, 2011,44(1): 326-330.
[48] KHEADR E E, VUILLEMARD J C, EL-DEEB S A. Impact of liposome-encapsulated enzyme cocktails on cheddar cheese ripening[J]. Food Research International, 2003, 36(3): 241-252.
[49] NONGONIERMA A B, ABRLOVA M, KILCAWLEY K N. Encapsulation of a lactic acid bacteria cell-free extract in liposomes and use in cheddar cheese ripening[J]. Foods, 2013, 2(1): 100-119.
[50] 徐冉, 王海峰, 李风亭. 溶菌酶脂质体的制备及其对生物膜的剥离作用[J]. 同济大学学报: 自然科学版, 2011, 39(1): 90-93.
[51] JAHADI M, KHOSRAVI-DARANI K, EHSANI M R, et al. The encapsulation of flavourzyme in nanoliposome by heating method[J]. Journal of Food Science and Technology, 2015, 52(4): 2063-2072.
[52] ALISHAHI A, MIRVAGHEFI A, TEHRANI M R, et al. Chitosan nanoparticle to carry vitamin C through the gastrointestinal tract and induce the non-specific immunity system of rainbow trout (Oncorhynchus mykiss)[J]. Carbohydrate Polymers, 2011, 86(1): 142-146.
[53] LAOUINI A, CHARCOSSET C, FESSI H, et al. Preparation of liposomes: a novel application of microengineered membranesinvestigation of the process parameters and application to the encapsulation of vitamin E[J]. RSC Advances, 2013, 3(15): 4985-4994.
[54] YANG Shuibing, LIU Wei, LIU Chengmei, et al. Characterization and bioavailability of vitamin C nanoliposomes prepared by film evaporation-dynamic high pressure microfluidization[J]. Journal of Dispersion Science and Technology, 2012, 33(11): 1608-1614.
[55] MARSANASCO M, MARQUEZ A L, WAGNER J R, et al. Liposomes as vehicles for vitamins E and C: An alternative to fortify orange juice and offer vitamin C protection after heat treatment[J]. Food Research International, 2011, 44(9): 3039-3046.
[56] DING Baomiao, ZHANG Xiaoming, HAYAT K, et al. Preparation,characterization and the stability of ferrous glycinate nanoliposomes[J]. Journal of Food Engineering, 2011, 102(2): 202-208.
[57] XIA Shuqin, XU Shiying. Ferrous sulfate liposomes: preparation,stability and application in fluid milk[J]. Food Research International,2005, 38(3): 289-296.
[58] LIU Weilin, YE Aiqian, LIU Chengmei, et al. Structure and integrity of liposomes prepared from milk- or soybean-derived phospholipids during in vitro digestion[J]. Food Research International, 2012, 17(4):499-506.
[59] PENG Hailong, LI Wenjian, NING Fangjian, et al. Amphiphilic chitosan derivatives-based liposomes: synthesis, development, and properties as a carrier for sustained release of salidroside[J]. Journal of Agricultural and Food Chemistry, 2014, 62(3): 626-633.
[60] LIU Weilin, LIU Jianhua, LIU Wei, et al. Improved physical and in vitro digestion stability of a polyelectrolyte delivery system based on layer-by-layer self-assembly alginate-chitosan-coated nanoliposomes[J]. Journal of Agricultural and Food Chemistry, 2013,61(17): 4133-4144.
[61] HERMIDA L G, SABES-XAMANI M, BARNADAS-RODRIGUEZ R. Combined strategies for liposome characterization during in vitro digestion[J]. Journal of Liposome Research, 2009, 19(3): 207-219.
[62] HUR S J, LIM B O, DECKER E A, et al. in vitro human digestion models for food applications[J]. Food Chemistry, 2011, 125(1): 1-12.
[63] BENSHITRIT R C, LEVI C S, TAL S L, et al. Development of oral food-grade delivery systems: current knowledge and future challenges[J]. Food & Function, 2012, 3(1): 10-21.
Progress in Liposome Application in Foods and Its Digestion in Vitro
LIU Weilin, WEI Fuqiang, HAN Jianzhong*
(Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University,Hangzhou310035, China)
Liposomes, in which amphiphilic lipids such as phospholipid bilayer encapsulate the aqueous phase, are cell membrane-like closed delivery system. Because of their unique properties such as protection, delivery, targeting and controlled release, liposomes have shown great application potential in food, medicine, cosmetics and agriculture. This article gives a brief introduction to the characteristics of liposomes with special focus on the recent progress in the application of liposomes in the fields of lipids, food antioxidants, enzymes, proteins, vitamins and minerals. In addition, an overview of in vitro gastrointestinal digestion of liposomes in the fields of food science and nutrition is also proposed.
liposomes; food; in vitro digestion
TS20
A
1002-6630(2015)23-0295-06
10.7506/spkx1002-6630-201523054
2015-01-30
国家自然科学基金青年科学基金项目(31401482);2014年浙江省教育厅科研资助项目(Y201432148);2014年度食品科学与技术国家重点实验室开放基金课题(SKLF-KF-201406);浙江省食品科学与工程重中之重一级学科开放基金项目(JYTSP20142011);浙江工商大学引进人才科研启动项目(引13-33)
刘玮琳(1984—),女,讲师,博士,研究方向为食品营养与安全。E-mail:lwl512@zjgsu.edu.cn
韩剑众(1963—),男,教授,博士,研究方向为食品营养生物学。E-mail:hanjz99@zjgsu.edu.cn