APP下载

Global Strong Solution to the 3D Incompressible Navierv-Stokes Equations with General Initial Data

2015-10-13TingtingZhengandPeixinZhang

Journal of Mathematical Study 2015年3期
关键词:状态变量工序动态

Tingting Zheng and Peixin Zhang

1Computer and Message Science College,Fujian Agriculture and Forest University,Fuzhou 350002,Fujian Province,P.R.China.

2School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,Fujian Province,P.R.China.

Global Strong Solution to the 3D Incompressible Navierv-Stokes Equations with General Initial Data

Tingting Zheng1and Peixin Zhang2,∗

1Computer and Message Science College,Fujian Agriculture and Forest University,Fuzhou 350002,Fujian Province,P.R.China.

2School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,Fujian Province,P.R.China.

.We study the existence ofglobalstrong solution to an initial–boundary value(or initial value)problem for the 3D nonhomogeneous incompressible Navier-Stokes equations.In this study,the initial density is suitably small(or the viscosity coefficient suitably large)and the initial vacuumis allowed.Results show thatthe unique solution of the Navier-Stokes equations can be found.

AMS subject classifications:35B65,35Q35,76N10

Incompressible Navier-Stokes equations,strong solutions,vacuum.

1 Introduction

The motion of a nonhomogeneous incompressible viscous fluid in a domain Ω ofR3is governed by the Navier-Stokes equations

the initial and boundary conditions(1.1)with the following conditions:

Here we denote the unknown density,velocity and pressure fields of the fluid byρ,uandP,respectively.fis a given external force driving the motion.Ω is either a bounded domain inR3with smooth boundary or the whole spaceR3.

It is interesting to studing the regularity criterion for strong solution of(1.1).Many people devote to researching these kind of results.In particular,Kim[1]proved that ifT∗was the blowup time of a local strong solution,then

whereLrwdenoted the weakLr−space.In[1],Kim also proved that the unique strong solution existed globally when ‖∇u0‖L2was small enough.

For the case the initial density is away from zero,the nonhomogeneous equations(1.1)have been studied by many people,see[2–4]and their references therein.In these papers,the authors proved the existence and uniqueness of the local strong solution for general initial data and they also got global well-posedness results for small solutions in 3D(or higher dimensional)space,while for 2D space they established the existence of large strong solutions.In[5–7],the authors obtained the global well-posedness results for initial data belonging to certain scale invariant space.

In this paper,base on Kim’s work,we are interested in the existence of global strong solution with general initial data.The main result of this paper can be stated as follows:

Theorem 1.1.Assume that(ρ0,u0,f)satisfies

and the compatibility condition

误差传递建模的研究将多工序系统作为动态时序过程,零件特征作为动态过程的状态变量,不同工序作为动态过程的不同时间点。零件特征随工序变化而变化的过程,视为状态变量随时间变化而变化的过程。状态空间方程描述了状态变量在状态空间中随时间变化的过程,可利用状态空间方法解决多工序制造误差传递问题。

Throughout this paper,we denote

1<r<∞,kis a positive constant,the standard Sobolev space is described as follows:

We will give the proof of Theorem 1.1 in Section 2.

2 Proof of Theorem 1.1

Before the proof,we recall the local existence result.In[10],Choe and Kim gave the following local strong solution existence theorem.

Theorem 2.1.Under the conditions of(1.3)and(1.4),there exists a time T>0and a unique strong solution(ρ,u,P)to the initial boundary problem(1.1)–(1.2)satisfying

To extend the local classical solution guaranteed by Theorem 2.1,we prove it by contradiction.

Now,we establish priori estimates for smooth solutions to the initial boundary problems(1.1)-(1.2).LetT>0 be the fixed time and(ρ,u,P)be the smooth solution to(1.1)-(1.2)on Ω×(0,T]in the class(2.1)with smooth initial data(ρ0,u0,P0)satisfying with(1.3),(1.4).

Lemma 2.1.Let(ρ,u,P)be a smooth solution of(1.1)-(1.2).Then

where,the letter C denotes a generic positive constant depending on the constants in some Sobolev inequalities.

Remark 2.1.If Ω is a bounded domain,the constantCmust depend on Ω comparing to the unbounded domain.

Proof.Multiplying(1.1)1bypρp−1(p≥2)then integratingxover Ω,one gets

Integrating(2.4)on[0,T]and takingp→∞,we obtain(2.2).Multiplying(1.1)2byu,integratingxover Ω and using Sobolev inequalities,we have

By applying the H¨older and Sobolev inequalities,we have

whereCis dependent of the constants in the Sobolev inequalities.From this and(2.5),using Young’s inequality,we have

then by integrating(2.6)on[0,T],we have(2.3).

We define

Lemma 2.2.Let(ρ,u,P)be a smooth solution of(1.1)-(1.2).If¯ρ is suitably small orµis suff iciently large,then

provided A(T)≤2M.

Proof.Multiplying(1.1)2byutand integrating over Ω,one gets

With the H¨older and Sobolev inequalities,one has

for someδ∈(0,1)and for any(r,s)satisfying2s+3r=1,3<r<∞.Takingv=|u|,w=|∇u|ands=4,r=6 in(2.9),with Sobolev inequality,one has

On the other hand,since(u,P)is a solution of the stationary Stokes equations

whereF=ρf−ρut−ρu·∇u,it follows from the classical regularity theory that

where we assumeµ≥1.Then from(2.10)and(2.11),one deduces

By integrating the last inequlity on[0,T],it yields that

Proof of Theorem 1.1.To prove the global existence,we argue by contradiction.Assume that(ρ,u)blows up at some finite timeT∗,0 <T∗< ∞.Since(ρ,u)satisfies the regularity(2.1)for anyT<T∗,in view of Sobolev embedding again,we conclude that

which contradicts Theorem 1.3 in[1].This completes the proof of Theorem 1.1.

[1]H.Kim.A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations.SIAM J.Math.Anal.,37:1417–1434,2006.

[2]S.A.Antontesv,A.V.Kazhikov and V.N.Monakhov.Boundary Value Problems in Mechanics of Nonhomogeneous Fluids.North-Holland,Amsterdam,1990.

[3]A.V.Kazhikov.Resolution ofboundary value problems for nonhomogeneous viscous fluids.Dokl.Akad.Nauk.,216:1008–1010,1974.

[4]O.Ladyzhenskaya and V.A.Solonnikov.Unique solvability of an initial and boundary value problem for viscous incompressible non-homogeneous fluids.J.Soviet Math.,9:697–749,1978.

[5]H.Abidi and M.Paicu.Existence globale pour un fluide inhomog´ene.Ann.Inst.Fourier(Grenoble),57:883–917,2007.

[6]R.Danchin.Density-dependent incompressible viscous fluids in critical spaces.Proc.Roy.Soc.Edinburgh Sect.A,133:1311–1334,2003.

[7]G.L.Gui,J.C.Huang and P.Zhang.Large global solutions to 3-D inhomogeneous Navier-Stokes equations slowly varying in one variable.J.Funct.Analysis,261:3181–3210,2011.

[8]R.J.DiPerna and P.L.Lions.Equations diff´erentielles ordinaires et´equations de transport avec des coefficients irr´eguliers.S´eminaire EDP Ecole Polytechnique,Palaiseau,1988–1989,1989.

[9]P.L.Lions.Mathematical Topics in Fluid Mechanics,Vol.I:Incompressible Models.Oxford Univ.Press,New York,1996.

[10]H.J.Choe and H.Kim.Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids.Comm.Partial Diff.Eqs.,28:1183–1201,2003.

[11]W.Craig,X.D.Huang and Y.Wang.Global wellposedness for the 3D inhomogeneous incompressible Navier-Stokes equations.J.Math.Fluid Mech.,2013,DOI:10.1007/s00021-013-0133-6.

[12]J.U.Kim.Weak solutions ofan initialboundary value problemfor an incompressible viscous fluid with nonnegative density.SIAM J.Math.Anal.,18:89–96,1987.

[13]Y.Cho and H.Kim.Unique solvability for the density-dependent Navier-Stokes equations.Nonlinear Anal.,59:465–489,2004.

15 June,2014;Accepted 23 March,2015

∗Corresponding author.Email addresses:nljj2011@126.com(T.Zheng),zhpx@hqu.edu.cn(P.Zhang).

猜你喜欢

状态变量工序动态
国内动态
120t转炉降低工序能耗生产实践
国内动态
国内动态
一类三阶混沌系统的反馈控制实验设计
运用FPGA设计分数阶混沌系统
基于嵌套思路的饱和孔隙-裂隙介质本构理论
大理石大板生产修补工序详解(二)
动态
土建工程中关键工序的技术质量控制