民用航空卫星通信系统中的信道编码技术研究
2015-10-09杨凡
杨凡
摘 要:民用航空卫星通信系统以卫星为中继站,使用机载设备将机上语音及数据信息转发到地面航空网络。民用航空一般使用铱星系统和海事卫星系统传输语音及数据信息。随着民用航空的发展,卫星通信不仅用于前舱安全通信,后舱的非安全通信也依赖卫星通信。在卫星通信中,受到自由空间损耗、噪声、多径、多普勒频移等影响,信号会出现较大的畸变,在功率受限的情况下,需要采用较强纠错能力的信道编码方法来信号降低误码率。该文主要介绍了适用于民航卫星通信系统的信道编码方案,并给出了卫星通信信道下的误码率性能。
关键词:卫星通信 信道编码
中图分类号:V271 文献标识码:A 文章编号:1672-3791(2015)06(b)-0023-02
随着国内民用航空系统的发展,卫星通信成为其不可缺少的一部分,中国民航局在《航空承运人运行中心(AOC)政策与标准》中规定,卫星通信是无线电语音通信的主要通信方式。卫星通信在世界上绝大多数地区内可用于空中交通服务(ATS)、航务管理、航空公司行政管理通信和航空旅客通信等。民用航空卫星通信系统以卫星为中继站,将机上语音及数据信息转发到地面航空网络。民用航空一般使用铱星系统和海事卫星系统传输语音及数据信息。由于卫星运行轨道距离地面几百、几千、甚至上万公里,因此覆盖范围远大于一般的微波通信系统。在卫星通信中,受到自由空间损耗、噪声、多径、多普勒频移等影响,信号会出现较大的畸变,在功率受限的情况下,需要采用较强纠错能力的信道编码方法来实现,将信号误码率降低。
1 现状
铱星系统为低轨卫星系统,卫星运行轨道高度为733米到785米,66颗卫星组成星座,覆盖了地区包括南北两极的全部区域,可支持的数据速率为4.8kbps(语音)和2.4kbps(数据),传输时延大于2.6ms。使用码率r=3/4,约束长度为7的卷积码作为前向纠错码。铱星系统轨道高度低,路径衰减小,传输时延短,便于减小卫星和终端的体积,成本低。
海事卫星系统是一种高轨卫星系统,也是一种地球同步轨道卫星,卫星轨道高度大约为35700km。海事卫星系统使用卷积码编码,维特比译码。
早期的民航卫星通信系统主要用于前舱语音通信,保证前舱及时地与地面建立通信。随着民用航空的发展,人们对于后舱使用卫星通信业务的要求也越来越迫切,而后舱通信的关键是大量数据同时传输,卷积码的纠错性能已经不能满足新一代的卫星通信系统。对于要求越来越高的卫星通信系统,高的传信率和低的误码率成为了衡量系统好坏的一个标准。新兴的Turbo码和LDPC码是卫星通信系统中较为理想的信道编码方法。
2 数字卫星通信系统
数字卫星通信系统模型如图1所示,u是信道编码器的输入,对u加入冗余校验位,按照某些编码规则编码后,编码器输出。卫星信道充足的带宽允许系统以较低的码速率传输数据,数据之间的符号干扰可以忽略,信道引入的加性噪声和干扰可以用高斯白噪声来模拟,并且这种噪声在符号之间是相互独立的。所以卫星信道基本上是加性高斯白噪声信道(AWGN)。
3 Turbo码
最初的Turbo码是由Berrou提出,编码结构中将两个系统递归卷积码(RSC码)通过交织器并行连接,一个信息比特产生两个对应的校验位信息,这两个RSC吗的编码器结构相同。它的译码采用迭代译码方案,两个分量码轮流调用软输入软输出(SISO)译码器,进行迭代译码。Berrou和Glavieux经过大量实验验证,采用随机交织器的Turbo码,信息序列长度为65535比特,通过18次迭代译码,在信噪比Eb/N0为0.7dB时,码率1/2的Turbo码能达到AWGN信道上误比特率(BER)小于等于10-5,从而证明Turbo码是一种逼近容量限的码。
Turbo码编码通过一个交织器将两个分量码编码器并行级联。交织器将信息比特重新置位,使得相同信息序列内的输入比特按照不同的方式排序。
假设信息位位数为k=1,定义输入信息序列长度为N,信息序列为,其中。输入信息一方面输入分量码1的编码器进行卷积编码,同时输入信息进入交织器交织后,产生相同长度但比特位信息不同的序列。然后将输入到分量码2的进行编码,从而得到了和这两个不同的校验序列。假设分量编码器1采用码率1/2系统递归卷积码(RSC码),同时分量编码器2也采用这种分量码,那么在不使用删余技术时整个Turbo编码器的码率就是1/3。整体码字由系统比特序列和校验比特序列和构成。这就是说时间i的编码输出为,其中。
为了提高Turbo码的效率,减少校验位,我们可以使用高码率的分量码,还可以对两个校验序列进行有规律的删余,接收端再将接受到的比特序列与信息序列复用起来,复用后的传输序列会输入到数据调制器。举例如下,为了将Turbo码的码率提升至1/2,可以按照如下的删余矩阵对两个校验序列进行删余
其中矩阵P第t行的0,表示将删掉校验位中的第t比特校验信息。那么如上所示的P矩阵表示删去校验序列中的偶数比特信息和中的奇数比特信息。要获得更高码率的Turbo码,可以参考文献[3],获得更多的删余Turbo码性能分析和删余矩阵。经过删余后,在i时刻Turbo码编码器的输出为,其中由和交替组成。
Turbo码采用分量码迭代译码,将两个分量译码器dec1和dec2串行连接进行译码,其中分量译码器的输入输出均为软信息,而且译码过程中对应的交织器与编码中所使用的交织器类型相同。第一个译码器dec1对分量码1进行MAP译码,然后输出关于信息序列中每一比特的后验概率值,并从这个后验概率信息中分离出外信息,通过交织器后,输入到dec2;第二个译码器dec2将dec1输出的外信息作为dec1的先验信息,对分量码2进行MAP译码,输出针对交织后信息序列中的每一比特后验概率值,最后从这个后验概率值中分离出外信息值,对其解交织后输入dec1,进行下一次译码。经过这样的多次迭代,从dec1或dec2输出的外信息数值会趋于稳定,后验概率比将逼近于最大似然译码,即以迭代译码的局部最优解来近似得到最大似然译码的全局最优译码结果。
4 LDPC码
R.G.Gallager提出的LDPC(低密度校验码)采用随机方法构造校验矩阵,在迭代译码算法下,LDPC码也能逼近信道容量。
根据双向递归快速编码算法设计实现LDPC码的编码器。准循环双对角LDPC码,它同时具有准循环和双对角两种结构特性。作为一种准循环LDPC码,它的校验矩阵由多个大小相等的子矩阵构成,每个子矩阵为全零方阵或单位阵向右循环移位的置换矩阵。
LDPC码可采用多种方式译码,即大数逻辑译码(MLG),比特翻转(BF)译码,加权的比特翻转译码,后验概率(APP)译码,以及和积算法译码。和积算法在这五种译码算法中显示出最好的误码率性能,它的译码算法是基于置信度传播的迭代译码。类似于Turbo码的迭代译码过程,下一次迭代的输入是上一次译码输出时计算出的码符号可靠度量度。译码过程会迭代进行,直到满足算法中要求的停止条件。最后,根据计算出的码符号的可靠度量度,做出硬判决。
LDPC码在各种信道条件下,都比相同的目前已知的编码方式有更好的性能。对于长码,LDPC码的性能要超过Turbo码。
5 性能仿真
我们在AWGN信道上的信息传输模型为:
其中,服从高斯分布N(0,1),是与编码序列对的调制信息。若采用BPSK调制,则信道上传输的离散发送符号为
通过信道的传输、接收端相干解调,那接收机的匹配滤波器在i时刻的输出采样值为。
给出信息序列长度120,1/3和1/2码率的Turbo码短帧长仿真结果,见图4。采用分量码为(1,15/13)系统递归卷积码,分量码的结尾处理方式为截断和归零。调制方式为BPSK,信道为AWGN信道,译码算法为Log-Map算法,迭代8次。本文的交织器采用QPP交织器。
同时,图2给出了(1280,2560)码长的LDPC码性能仿真,其中包含两个LDPC码(分块数分别为8×16和16×32)。采用归一化最小和译码,其中归一化修正因子α取值为0.75,信道模型为AWGN信道,调制方式为BPSK调制,无量化迭代50次,每个点均统计800个错误帧。
6 结语
Turbo码近似于随机码,有较强的纠突发错误的能力,因此,被认为是应用于卫星ATM网络较理想的信道编码方式。而对于长码,与LDPC码对此,Turbo码存在错误平层,所以长码倾向于LDPC码,以提高系统性能。
参考文献
[1] 王新梅,肖国镇.纠错码-原理与方法[M].西安:西安电子科技大学出版社,1991.
[2] ARINC CHARACTERISTIC 781-4,MARK 3 AVIATION SATELLITE COMMUNICATION SYSTEM. May 19, 2010.
[3] Acikel. O. and F. Ryan, W.E. “Punctured turbo-codes for BPSK/QPSK channels,” IEEE Transactions on Communications,1999,44(9):1315-23.