APP下载

浅议“数形结合”在小学数学教学中的应用

2015-08-06苗桂华

魅力中国 2015年30期
关键词:数形结合小学数学应用

苗桂华

摘要:数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,在解决代数问题时,想到它的图形,从而启发思维,找到解题之路。数学知识来源于现实,又必须符合现实,数形结合,能很好地促进学生联系实际,灵活解决数学问题。

关键词:小学数学;数形结合;应用

数学是研究现实世界的空间形式和数量关系的科学,数学中的数和形关系非常密切。在小学数学教学中运用数形结合,符合儿童的认知规律。我在教学中深深地体会到在数学教学中用“数形结合”的思想引导学生思考,用“数形结合”的技巧去训练学生解题,能够促进学生学习数学的兴趣,提高学生的思维能力。

一、运用图形,建立表象,理解本质

在低年级教学中学生都是从直观、形象的图形开始入门学习数学。从人类发展史来看,具体的事物是出现在抽象的文字、符号之前的,人类一开始用小石子,贝壳记事,慢慢的发展成为用形象的符号记事,最后才有了数字。这个过程和小学生学习数学的阶段和过程有着很大的相似之处。一年级的小学生学习数学,也是从具体的物体开始认数,很多知识都是从具体形象逐步向抽象逻辑思维过渡,但这时的逻辑思维是初步的,且在很大程度上仍具有具体形象性。如小学应用题中常常涉及到“求一个数的几倍是多少”,学生最难理解的是“倍”的概念,如何把“倍”的数学概念深入浅出地教授给学生,使他们能对“倍”有自己的理解,并内化称自己的东西?我认为用图形演示的方法是最简单又最有效的方法。就利用书上的主题图。在第一行排出3根一组的红色小棒,再在第二行排出3根一组的绿色的小棒,第二行一共排4组绿色小棒。结合演示,让学生观察比较第一行和第二行小棒的数量特征,通过教师启发,学生小组合作讨论和交流,使学生清晰地认识到:绿色小棒与红色小木棒比较,红色小棒是1个3根,绿色小棒是4个3根;把一个3根当作一份,则红色小棒是1份,而绿色小棒就有4份。用数学语言:绿色小棒与红色小棒比,把红色小棒当作1倍,绿色小棒的根数就是红色小棒的4倍。这样,从演示图形中让学生看到从“个数”到“份数”,再引出倍数,很快就触及了概念的本质。在小学中高年级的教学中,我们要注重运用直观图形,巧妙地把数和形结合起来,把抽象的数学概念直观化,帮助学生形成概念。

二、化抽象为直观,发展表征概念的能力

在小学数学中,有相当一部分数学知识都是伴随着几何意义而存在的。在数学课堂教学中加强数学概念几何意义的阐释,有利于学生形成概念表象,促进对数学知识的理解和记忆,积累表象建构的经验,同时也为问题解决过程中的表象迁移提供了潜在的可能。例如,有老师在执教“乘法的初步认识”时,对于算式3×4,首先引导学生用不同的式子表示,像4+4+4,3+3+3+3,4×4-4,3×5-3,3×3+3等,除此之外还引导学生用几何图形来表示算式3×4的意义,像长方形方格图、长方体立体图、线段图等,为学生主动建构乘法意义的表象提供了丰富的素材,加深了学生对乘法意义的理解,数与形实现了完美的统一。这样的数学教学,学生不但从不同的角度深刻体会了乘法的意义,而且初步获得了利用图形直观描述数学知识的经验。

三、渗透数形结合思想,在解决问题的过程中,提高学生的思维能力

运用数形结合有时能使数量之间的内在联系变得比较直观,成为解决问题的有效方法之一。在分析问题的过程中,注意把数和形结合起来考察,根据问题的具体情形,把图形的问题转化为数量关系的问题,或者把数量关系的问题转化为图形的问题,使复杂问题简单化,抽象问题具体化,化难为易。能调动学生主动积极参与学习,能提高学生的思维能力。如:下例是从二年级数学第一册的一次练习中截下的,此前,学生已经掌握“一个数的几倍是多少”和“一个数是另一个数的几倍”的知识。这道题的意思是:一个数减少几,另一个数减少到几才能使剩下的量是第一个量的几倍。如果没有图形只给出数量关系,对二年级学生来说比较难的,因为这是四年级知识。但是此题将图形与数量结合呈现,就大大降低了解题的难度,学生可以一边借助图形一边思考寻找解题方式。实际教学中有95%的学生做对了!而且这道题既包含了图形的表义,又揭示“倍”的含义,无形中把学生一般思维过渡到高级思维,并且训练了学生综合运用所学知识处理问题的能力。这道题引发了学生的创新思路,它将学生头脑中原有的思维方式进行了更新,它的解题过程,成功地成为发动认识与构思的内在机制。数形结合,其实质是将抽象的数学语言与直观的图形联系起来,使抽象思维和形象思维结合起来,通过对图形的处理,发挥直观对抽象的支柱作用,揭示数和形之间的内在联系,实现抽象概念和具体形象、表象之间的转化,发展学生的思维。

四、数形结合,变“主观”为“现实”

数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,在解决代数问题时,想到它的图形,从而启发思维,找到解题之路。数学知识来源于现实,又必须符合现实,数形结合,能很好地促进学生联系实际,灵活解决数学问题。如:某医院包扎用的三角巾是底和高各为9分米的等腰三角形。现在有一块长72分米,宽18分米的白布,最多可以做这样的三角巾多少块?这道题表述的应用题中数量关系错综复杂时,就文字的理解,得出的数量关系是“长方形白布的面积÷三角巾面积=三角巾的块数”,即72×18÷(9×9÷2)=1296÷40.5,对于没有学过小数除法的学生是不能解答这道题目的。这道题是不是只有这种解题方法呢?这时我运用数形结合,将题目的意思用图表示出来:72里有几个9?18里有几个97引导学生根据题意画出示意图可以先求共有几个正方形,再求有几个三角形。于是,有的学生想:72÷9×(18÷9)×2;有的学生想:82×18÷(9×9)×2。这样很好地帮助理清数量之间的关系,从而明确解题思路,甚至拓宽解题思路。当白布长度不是9分米的整数倍时,就不能主观地用面积包含关系来解答这类习题了。因为如果用面积包含关系来解答这类习题,其答案肯定会不符合实际。

因此教师要从数学发展的全局着眼,从具体的教学过程着手,有目的、有计划地进行渗透数形结合思想的教學,使学生逐步形成数形结合思想,并使之成为学习数学、解决数学问题的工具,这是我们数学教学着力追求的目标。

猜你喜欢

数形结合小学数学应用
数形结合在解题中的应用
浅析数形结合方法在高中数学教学中的应用
用联系发展的观点看解析几何
农村学校数学生活化教学探析
培养学生自主探究能力的策略研究
体验式学习在数学教学中的应用研究
妙用数形结合思想优化中职数学解题思维探讨
培养数学意识发展思维能力的研究
GM(1,1)白化微分优化方程预测模型建模过程应用分析
煤矿井下坑道钻机人机工程学应用分析