“认识概率”中考题赏析
2015-08-04张亚峰
张亚峰
概率与日常生活的联系非常密切,是中考的必考内容。《课程标准》要求学生在具体情境中体会概率的意义,能计算简单事件发生的概率,体会概率对制定决策的重要作用,加强统计与概率之间的联系。
中考中考查形式:一是选择、填空;二是用概率知识解决实际问题,三是统计概率混合的形式。
1.(2014·山东聊城)下列说法中不正确的是( )
A.抛掷一枚硬币,硬币落地时正面朝上是随机事件
B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件
C.任意打开七年级下册数学教科书,正好是97页是确定事件
D.一个盒子中有白球m个,红球6个,黑球n个(每个除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是6
解析:解决本题需要正确理解必然事件、不可能事件、随机事件的概念以及概率的求法.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.A.抛掷一枚硬币,硬币落地时正面朝上是随机事件,此说法正确;B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,此说法正确;C.任意打开七年级下册数学教科书,正好是97页是不确定事件,故此说法错误;D. ,取得的是红球的概率与不是红球的概率相同,所以m+n=6,此说法正确.故选:C.
2.(2012·江苏连云港)向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小三角形是等可能的,扔沙包1次击中阴影区域的概率等于( )
3.(2014·山东济南)学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率为( )
解析:用H,C,N分别表示航模、彩绘、泥塑三个社团,用数组(X,Y)中的X表示征征选择的社团,Y表示舟舟选择的社团.
5.(2014·浙江杭州)一个布袋中装有a(a>12)只颜色不同的小球,分别是2个白球,4个黑球,6个红球和b个黄球,从中任意摸出一个球,把摸出白球,黑球,红球的概率绘制成统计图(未绘制完整).请补全该统计图并求出的值.
6.(2014·湖南张家界)某校八年级一班进行为期5天的图案设计比赛,作品上交时限为周一至周五,班委会将参赛逐天进行统计,并绘制成如图所示的频数直方图.已知从左到右各矩形的高度比为2:3:4:6:.且已知周三组的频数是8.
(1)本次比赛共收到________件作品.
(2)若将各组所占百分比绘制成扇形统计图,那么第五组对应的扇形的圆心角是____度.
(3)本次活动共评出1个一等奖和2个二等奖,若将这三件作品进行编号并制作成背面完全相同的卡片,并随机抽出两张,请你求出抽到的作品恰好一个一等奖,一个二等奖的概率.
解析:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
7.(2014·十堰)据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目.某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有______名,扇形统计图中“基本了解”部分所对应扇形的圆心角为_________;请补全条形统计图;
(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数;
(3)“剪刀石头布”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只比赛一局,请用树状图或列表法求两人打平的概率.
(2)根据题意得:900× =300(人),则估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数为300人;
(3)所有等可能的情况有9种(剪,剪)、(石,剪)、(布,剪)、(剪,石)、(石,石)、(布,石)、(剪,布)、(石,布)、(布,布),其中两人打平的情况有3种,则P= .