APP下载

梨轮纹病原菌及生防菌对梨果实抗氧化酶体系的影响

2015-07-13张丽丽常有宏陈志谊等

安徽农业科学 2015年7期
关键词:生防菌抗氧化酶

张丽丽 常有宏 陈志谊等

摘要[目的]了解梨果实接种梨轮纹病原菌后的防御机制和生防菌的酶活作用机理。[方法]采用不同处理在梨果实上接种梨轮纹病原菌和喷施生防菌,测定其对梨果实抗氧化酶体系的影响。[结果]丙二醛(MDA):生防菌处理对MDA含量变化影响不大,轮纹菌处理MDA含量48 h达到高峰值,为10.22 nmol/g,是对照的1.86倍,轮纹菌+生防菌处理MDA含量24 h达到高峰值,为8.92 nmol/g,是对照的1.62倍;超氧物歧化酶(SOD):生防菌处理的SOD酶活值48 h达到高峰,为126.69 U/[g(FW)·min],是对照的1.54倍,轮纹菌与轮纹菌+生防菌处理均在24 h出现活性高峰,酶活值分别为122.10和135.32 U/[g(FW)·min],是对照的1.48和1.65倍;过氧化物酶(POD):生防菌、轮纹菌、轮纹菌+生防菌处理的POD酶活均在24 h达到高峰值,分别为385.34、342.50、290.00 U/[g(FW)·min],为对照的1.83、1.62、1.38倍;过氧化氢酶(CAT):生防菌、轮纹菌、轮纹菌+生防菌处理的CAT酶活在6 h时均达到高峰值,分别为133.33、114.17和113.35 U/[g(FW)·min],为对照的1.33、1.14和1.13倍;多酚氧化酶(PPO):生防菌处理和对照差异不明显,轮纹菌处理酶活高峰出现在12 h,为81.86 U/[g(FW)·min],为对照的1.76倍,轮纹菌+生防菌处理酶活高峰出现在24 h,为70.00 U/[g(FW)·min],为对照的1.50倍。[结论]轮纹菌和轮纹菌+生防菌对MDA含量影响较大;轮纹菌及生防菌都能激发SOD酶活性的升高;接种轮纹菌及喷施生防菌都能激发POD酶活性的升高;轮纹菌及生防菌都能激发CAT酶活的升高;单独施用生防菌效果不明显,轮纹菌更能激发PPO酶活性的升高。

关键词梨轮纹病原菌;生防菌;抗氧化酶

中图分类号S436.612文献标识码

A文章编号0517-6611(2015)07-096-03

Effects of Botryosphaeria berengeriana f.sp. piricola and Biocontrol Bacteria on the System of Antioxidant Enzymes in Pears

ZHANG Li-li1,2, CHANG You-hong2, CHEN Zhi-yi3 et al (1. Agro-technical Station of Xiangcheng Agricultural Bureau of Suzhou City, Suzhou, Jiangsu 215000; 2. Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014; 3. Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014)

Abstract [Objective] The aim was to understand defense mechanism of pear after inoculated Botryosphaeria berengeriana f.sp. piricola and mechanism of antioxidant enzymes of biocontrol bacteria. [Method] Pears were treated by Botryosphaeria berengeriana f.sp. piricola and biocontrol bacteria, and the change of antioxidant enzymes were determined. [Result] The biocontrol bacteria had little effect on MDA; the content of MDA treated by B. berengeriana reached high peak in 48 h, was 10.22 nmol/g which was 1.86 times of CK; the content of MDA treated by B. berengeriana and biocontrol bacteria reached high peak in 24 h, was 8.92 nmol/g which was 1.62 times of CK. The content of SOD treated by biocontrol bacteria reached high peak in 48 h, was 126.69 U/[g(FW)·min] which was 1.54 times of CK; the contents of SOD treated by B. berengeriana as well as B. berengeriana and biocontrol bacteria reached high peak in 24 h, were 122.10 and 135.32 U/[g(FW)·min] which were 1.48 and 1.65 times of CK respectively; the contents of POD on biocontrol bacteria treatment, B. berengeriana treatment as well as B. berengeriana and biocontrol bacteria treatment reached high peak in 24 h, were 385.34, 342.50 and 290.00 U/[g(FW)·min] which were 1.83, 1.62 and 1.38 times of CK respectively. The contents of CAT on biocontrol bacteria treatment, B. berengeriana treatment as well as B. berengeriana and biocontrol bacteria treatment reached high peak in 6 h, were 133.33, 114.17 and 113.35 U/[g(FW)·min] which were 1.33, 1.14 and 1.13 times of CK respectively. The biocontrol bacteria had little difference in CK; the content of PPO of B. berengeriana treatment reached high peak in 12 h, was 81.86 U/[g(FW)·min] which was 1.86 times of CK; B. berengeriana and biocontrol bacteria treatment reached high peak in 24 h, was 70.00 U/[g(FW)·min] which was 1.50 times of CK. [Conclusion] B. berengeriana and biocontrol bacteria had more effect on MDA; both B. berengeriana and biocontrol bacteria could increase the excitation of SOD enzyme activity; both B. berengeriana and biocontrol bacteria could increase the excitation of POD enzyme activity; both B. berengeriana and biocontrol bacteria could increase the excitation of CAT enzyme activity; using biocontrol bacteria alone had more effect on PPO, B. berengeriana could increase the excitation of PPO enzyme activity.

由图4可知,4个处理的CAT酶活曲线基本上呈先上升后下降的趋势,在6 h时均达到酶活高峰值,其中S处理酶活值最高为133.33 U/[g(FW)·min],为对照处理的1.33倍,但随后CAT的酶活迅速下降,到24 h达到最低点,此后酶活值又再次上升。L与L+S处理则基本上无明显差异,6 h时的CAT酶活性峰值分别为114.17和113.35 U/[g(FW)·min],分别为对照处理的1.14和1.13倍。综合表明,S、L、L+S处理对CAT酶活值的影响高于对照处理,说明轮纹菌及生防菌都能激发CAT酶活的升高,但与对照处理相比较,3个处理对CAT的酶活影响幅度相对较小。

图2梨果实不同处理后SOD活性的变化

图3梨果实不同处理后POD活性的变化

图4梨果实不同处理后CAT活性的变化

2.3PPO活性变化

PPO是酚类物质物质氧化的主要酶,参与植物体内酚类物质氧化产生醌类和参与木质素的合成,以杀死和抑制病原菌的繁殖而起到抗病作用[9]。

由图5可知,4个处理的PPO酶活曲线基本呈先上升后下降趋势,CK、S、L+S处理的PPO酶活曲线高峰出现在24 h,而L处理的酶活曲线高峰出现在12 h。CK和S处理之间的差异水平不明显,到48 h时酶活值与对照处理基本趋于同一水平。L处理的酶活高峰值为81.86 U/[g(FW)·min],为对照处理的1.76倍,此后下降,到48 h时和L+S处理趋于同一水平,L+S处理的酶活高峰值为70.00 U/[g(FW)·min],为对照处理的1.50倍。综合看来,S处理对PPO酶活影响效果不很明显,L、L+S处理对PPO酶活值的影响高于对照处理,说明接种轮纹菌更能激发PPO酶活性的升高。

图5梨果实不同处理后PPO活性的变化

3讨论

植物受病原菌侵染或诱导处理后,与抗病反应密切相关的保护性酶活性升高是诱导抗性产生的重要机制之一,其中PPO、SOD、POD和CAT是存在于植物体内与抵抗病原微生物侵染有关的重要酶[10]。在MDA含量测定中,生防菌处理与对照差异不大,而接种轮纹菌和轮纹菌+生防菌处理对MDA含量变化明显,说明轮纹菌对MDA含量影响较大,从另一角度也说明生防菌对植物组织未起到破坏性作用,而接种轮纹菌对细胞结构的破坏较大,活性氧积累较多。此外,轮纹菌处理到48 h MDA含量上升到最高,可能是因为轮纹菌仍在扩展直至完全破坏。在SOD酶活测定中,轮纹菌+生防菌处理的SOD酶活性表现最高,说明轮纹菌和生防菌共同作用对SOD酶活影响最大,而生防菌处理SOD酶活值到48 h达最高点,分析原因可能为生防菌对SOD酶活诱导较慢,而之后是否继续呈上升趋势有待进一步研究验证。在POD酶活测定中,轮纹菌+生防菌处理24 h 时低于轮纹菌和生防菌处理,分析原因可能为生防菌对轮纹菌的扩展起到了抑制作用。在CAT酶活测定中,CAT酶活变化趋势与张林青等[10]得出的结论不一致,张林青等研究得出白腐病菌侵染2个大蒜品种后CAT酶活低于对照组,具体原因有待研究。

该研究得出单独喷施生防菌后对梨果实的抗氧化酶体系会有不同程度的影响,可能是因为生防菌可以诱导抗氧化酶活性的升高,使得梨果实提前启动防御系统来抵御进一步的侵害。而接种轮纹菌后喷施生防菌对抗氧化酶也产生了相应的影响,但从酶活变化角度与单独使用生防菌及轮纹菌的比较来看,并不能完全说明生防菌对轮纹病原菌的抑制作用。事实上,生防细菌对植物病原物的抑制通常并非某一机制的单独发挥,而更多的是2种或2种以上抑菌机制协同作用的结果[11]。

安徽农业科学2015年

参考文献

[1]

张彦杰,罗俊彩,武燕萍,等.生防枯草芽孢杆菌研究进展[J].生命科学仪器,2009(4):19-23.

[2] 赵白鸽,孔建,王文夕,等.枯草芽孢杆菌B-903对苹果轮纹菌的抑菌作用及其对病害的控制效果[J].植物病理学报,1997,27(3):213-214.

[3] 谢栋,彭憬,王津红,等.枯草芽孢杆菌抗菌蛋白X98Ⅲ的纯化与性质[J].微生物学报,1998,38(1):13-19.

[4] CAVAGLIERI L,ORLANDO J,RODRIGUEZ M I,et al.Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root leve1[J].Research in Microbiology,2005,156(5/6):748-754.

[5] 李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:164-169.

[6] 祝美云,赵晓芳,王贵禧,等.鸭梨果实接种轮纹病菌及生长期、贮藏期防御酶系活性变化的研究[J].农业工程学报,2008,24(3):251-254.

[7] 谭兴杰,李月标.荔枝(Litchi chinensis)果皮多酚氧化酶的部分纯化及性质[J].植物生理学报,1984,10(4):339-345.

展开全文▼

猜你喜欢

生防菌抗氧化酶
2株有效抑制剑麻斑马纹病菌的生防细菌鉴定
槟榔科学研究近况分析
遮阳网覆盖对枇杷幼果抗寒性影响机理初探
不同养殖环境中的中华绒螯蟹组织抗氧化剂水平和抗氧化酶活力