餐厨垃圾堆肥作为黑麦草生长基质的研究
2015-05-30陈晓惠
陈晓惠
摘 要:顺着城市化的急速发展,餐厨垃圾已成为目前城市环境保护的重点。本文通过分析餐厨垃圾的特点,阐述当前餐厨垃圾处理的方式。为研究对堆肥产品的应用可行性,筛选了以餐厨垃圾堆肥产品为原料的不同基质的最佳配方。以黑麦草为例,将餐厨垃圾堆肥、珍珠岩和泥炭按比例混和制成基质,通过栽培试验观察并测试发芽率、株高、SPAD值等生物指标,筛选出适宜育苗和生长的基质,得出最佳的配方。实验结果表明:以腐熟的餐厨垃圾堆肥为原料配制基质,以黑麦草为供试作物,检验不同配比基质的生物效应。筛选出适宜黑麦草生长的最佳基质配方是:泥炭:堆肥:珍珠岩(v/v)=0.6∶0.4∶1.4)。
关键词:餐厨垃圾 堆肥 生长基质 农林利用 环境效应
1 前言
1.1 餐厨垃圾的概况
1.1.1 餐厨垃圾的特征
餐厨垃圾泛指产生于餐饮经营与居民生活的食物加工下脚料和食用残余物,分为餐前垃圾即烹煮前食材物料处理所剩之物,包括菜叶、毛皮等;餐后垃圾即用餐之后的剩余食物,包括剩菜剩饭、汤渣、点心等,以淀粉和蛋白质为主,还有一定数量的废餐具、牙签和纸巾等。前者的概念更广,通常我们将餐后垃圾统称为餐厨垃圾,其主要特征如下:
1)含水率高:约65%~85%,给收集、运输和处理带来麻烦。
2)易腐烂:餐厨垃圾中有机物含量高(约占干物质质量的95%以上),易腐败发臭,容易滋生病菌,造成疾病的传播。
3)盐分高(0.8~1.5%湿基):如不经脱盐处理而制成肥料直接使用会对土壤产生副作用,长期使用更会导致土壤盐渍化。
4)游离态脂肪比重大(约20~30%干基)。
5)餐厨垃圾中往往携有病毒、致病菌和病原微生物:如不经处理而直接利用,会造成病菌的传播、感染等不良后果。
6)含有较高的潜在生物能:如能有效处理,可实现资源的回收再利用,有利于降低能源的消耗。
7)餐厨垃圾与城市垃圾相比,其化学成分简单,有毒有害物质相对较少,善加利用可实现“变废为宝”[1]。
1.2 国内外餐厨垃圾处理现状与评述
1.2.1 国外餐厨垃圾处理现状
目前国外发达国家在餐厨垃圾在各方面都比较完善,无论在收运、处理和相关立法等方面均走在我国的前面。欧盟国家已实施的垃圾填埋法令规定:凡是垃圾中易腐有机物含量超过5%不允许填埋,因此欧洲的餐厨垃圾处理方式多元化。由于上世纪末的疯牛病、动物口蹄疫大规模爆发,1999年英国引入新法令对餐厨垃圾生产饲料作了严格规定,法令规定:经授权处理后的餐厨垃圾可以用来饲养禽畜,但不得饲养反刍动物,以避免疯牛病等传播性疾病扩散。
美国每年的城市生活垃圾的产生量为2.62亿吨,餐厨垃圾总量为2620万吨/年,占其生活垃圾总量的11.4%。2000年这个比例仅次于纸张37.4%和庭院垃圾12%,而回收率仅为2.6%。远低于城市垃圾回收利用率的平均值30.1%,而且近几年没有升高的趋势。美国处理厨余垃圾的平均费用为每吨9到38美元。处置方式大部分以家庭填埋为主。对厨余垃圾产生量较大的单位设置厨余垃圾粉碎机和油脂分离装置,分离出来的垃圾排入下水道,油脂则送往相关加工厂(如制皂厂)加以利用。对于厨余垃圾产生量较小的单位如居民厨房,则被混入有机垃圾中统一处理或通过安装厨余垃圾处理机,将垃圾粉碎后排入下水道。未来的处理趋势是采用堆肥工艺制成肥料或加工成动物饲料进行资源化回收利用。由于美国采用的是垃圾处理收费制度,其收费标准是以家庭垃圾产生量为基准。家庭产生的垃圾多,收费就相应较高。所以以堆肥方式处理餐厨垃圾及庭院垃圾在美国的家庭非常普及,尤其是在人口密度较小的中西部地区。美国各个州关于厨余垃圾的处理政策和方式各不相同,都是根据当地具体情况,建立了自主的厨余垃圾处理回收体系。目前应用方向以蚯蚓堆肥(Vermicomposting)及密封式容器堆肥(In-vessel composting)为主[2]。
在韩国,堆肥处理成本大致为每吨60美元,焚烧的费用大约为每吨90美元,填埋为每吨25美元。目前韩国把厨余垃圾列为可燃垃圾,焚烧的垃圾中厨余垃圾占30%-50%。1991年城市生活垃圾产生量为92000t/d,其中餐厨垃圾占27%。2000年,韩国城市生活垃圾产量约为1700万吨,其中餐厨垃圾占25%。由于该国厨余垃圾的燃烧技术导致二恶英量增加、能源浪费等一系列问题,因此政府将限制厨余垃圾焚烧处理。同时由于厨余垃圾填埋而引起的渗滤液和气味等问题,首尔已经于2000年7月起,禁止未经处理的厨余垃圾进入填埋场。韩国全国也于于2005年起所有填埋场不再接受厨余垃圾。目前韩国厨余垃圾的主要处理方式以堆肥为主,该技术也存在着很多问题。首先是厨余垃圾中的杂质太多,无法经堆肥进行分解,又影响堆肥的品质。其次,韩国的厨余垃圾含盐达到1%-3%,过高的盐分也影响堆肥效果。第三,由于包装厨余垃圾塑胶袋采用一般的塑胶袋,无法分解,最好采用生物可分解塑胶袋,才不至于影响堆肥的效果。韩国目前堆肥所采取的主要技术有生化沼气厌氧消化和两步厌氧消化。
在日本,据统计每年垃圾产生量5000万吨,餐厨垃圾为2000万吨,占总量的40%,18%来源于食品加工业,30%来源于食品销售渠道和酒店,52%来自于家庭。为了减少厨余垃圾环境的污染,充分利用其中资源,日本2000年颁布了《厨余废物再生法》。该法律规定厨余加工业、饮食业和流通企业有义务减少厨余废物的排出量和把其中的一部分转换成饲料或肥料,并且就再生利用对象的饲料和肥料制定质量标准,到2006年企业应减少20%的新鲜垃圾排放量,并有义务对自身产生的垃圾进行循环利用。因此,一些大中型企业竞相进行餐厨垃圾处理装置的研发。
1.2.2 国内餐厨垃圾处理现状
目前我国约有各类餐馆350万之多,厨余垃圾产量在2000年就达到了4500万吨,以每年10%的递增速度计算。而当前我国现仅有8200万吨每日的处理量,对应处理率仅为10%,对应处理压力较大。中国陆续有城市开始重视厨余垃圾的回收处理,即是把厨余垃圾与其它生活垃圾分别处理。北京城市垃圾中有机废物占65%,其中厨余垃圾占39%[3]。
上海是最早实施全方位餐厨垃圾管理的城市,其厨余垃圾处理处置体系也是目前国内最为完善的。做法为由政府牵头立法、出台政策法规,交由环卫局管理,包括统筹、协调、监管、培训,企业来实施运作,即设备和设施投入、安装、运行,加上社区参与垃圾收运、处置和服务。上海市市容环境卫生管理部门先后制定颁布了《上海市餐厨垃圾处理和管理工作的试行办法》等政策法规,明确了餐厨垃圾产生、收运、处理和管理等各单位的职责,制定了各项工作具体程序、收费标准,建立起整个厨余垃圾管理与处理处置体系,使厨余垃圾处理真正可实施化。目前其产生的厨余垃圾,主要采取填埋、堆肥、加工宠物饲料、生化处理等方式处置。
目前我国还没有建立健全的厨余垃圾处理管理体系,缺乏相应的管理政策和适宜的处理技术,最普遍的处理方式是混在普通垃圾中,直接混合填埋处置或者直接运到农场喂猪。由于没有专门的统一法律法规可供遵循,一些城市制定了自己的处置政策。近年来,国内也开始探索其他技术消纳这些餐厨垃圾,并开始进行试点工程。
1.3 垃圾堆肥产品应用研究进展
随着经济的发展,生态意识的加强,建立花园城,实现大地绿化,已成为人们普遍的期望与要求,草坪绿化面积的大小已成为衡量现代化城市环境质量的重要客观标准。目前,在国内外建植草坪的众多方法之中,规模化生产地毯式草皮无疑是现代化、专业化的一个发展方向,发达国家普遍采用,但往往地毯式草皮生产一般选在农田地块,并以优质耕层土壤为基质,因而在收获时,优质耕层土壤随草皮一并带走(5~10cm厚耕层土壤),造成土地资源的浪费和破坏,最终使城郊高效农业生态系统环境恶化,而利用生活垃圾进行地毯式草皮生产既能使生活垃圾得到充分有效地利用,减少环境污染,拓宽环保新产业,又能进行有效地垃圾处理,且有了足够的优质绿地面积。多立安[3]等人用生活垃圾组建基质进行地毯式草皮生产,对不同选配基质对草坪的生长效应差异性进行了研究,结果表明,锯木屑可通过增强基质的保水性能而提高草坪草的抗干旱胁迫能力,并能促进草坪草的生长,草木灰显较强的碱性,当其占基质25%时,则pH值可达9以上,细河沙可改善基质的通透性,但配施量过多就会降低基质营养水平,说明配材不同,选配的基质性能也有较大的差别。综合各项研究指标,则配材锯木屑在生活垃圾生产地毯式草皮的基质配制中,正向效应明显应用价值较大。
2 餐厨垃圾堆肥作为黑麦草育苗和生长基质的研究
本试验旨在用餐厨垃圾堆肥作为草坪的栽培基质,这样既能避免每完成一次草皮生产过程,要铲去熟土,破坏肥沃的农田的现象,又能部分代替泥炭,从而能减少环境压力,还能变废为宝,解决餐厨垃圾的出路问题。试验将堆肥与珍珠岩及泥炭按一定比例混和制成栽培基质,通过盆栽试验观察并测试其各项指标,筛选出适宜黑麦草育苗和生长的基质。
2.1 材料与方法
2.1.1 试验材料
供试作物为黑麦草(Lolium perenne L.),盆栽供试堆肥为自制的餐厨垃圾堆肥,泥炭和珍珠岩购自陈村花卉世界。
2.1.2 研究方法
3种原材料都经风干,不同处理按体积混配,装盆,每盆所装基质的总体积为600ml,共做二十个处理,其中有五个对照。每个处理做4次重复。T1-T5为(堆肥+泥炭):珍珠岩(V/V)=1∶1的各处理,我们在本文中称为第一处理组;T6-T10为(堆肥+泥炭):珍珠岩(V/V)=2∶1的各处理,我们称为第二处理组;T11-15(堆肥+泥炭):珍珠岩(V/V)=3∶1的各处理,我们称为第三处理组,在各处理组内随处理号增大堆肥含量逐渐增加。具体配比见表2.2。
试验于2013年9月30日撒种,每盆撒种15粒,第一次收割时间为2013年11月10日,历时40天。第二次收割时间为2013年11月30日,历时20天,第三次收割时间为2013年12月15日,历时15天。由于各对照长势太差,故在两次收割后,对每个处理浇了等量的液体肥料。
盆栽试验前采用PT法测定了基质的孔隙度、pH、EC,盆栽试验中测定了黑麦草发芽率、株高(每盆中测三株取其平均值),每造黑麦草的生物量(包括鲜重、干重),采用日本产SPAD-502型叶绿素测定仪测定了黑麦草的叶绿素含量,黑麦草植株中的全量养分含量,以及收获后不同基质中的全量养分含量及有机质的百分含量均参照《土壤农化分析方法》。
2.2 结果与分析
2.2.1 不同配比基质的理化性质
孔隙度是基质最重要的指标之一。孔隙度大的基质疏松,通透性良好,有利于作物根系生长。总孔隙度越大,保水性越好;优质栽培基质应具有15~20%的通气孔隙度。一般作物适宜的EC值大都在0.6~2.0ms·cm-1之间,大于3.5ms·cm-1则太高。一般作物适宜的pH值在接近中性时较好。基于各处理基质的孔隙度及pH、EC值的数据统计。对各指标用SAS软件进行处理,综合以上指标,得出T1、T6、T7、T11、T12等处理各项指标均能满足作物生长的需要,而T2、T3、T4、T8、T9、T10、T13除了EC含量稍高外其他指标也均能满足作物生长的需要。
2.2.2 不同基质配比对黑麦草株高及发芽率的影响
图2.1为不同处理发芽率及株高的比较。由图2.1可看出各对照中CK2泥炭与珍珠岩按2:1混配制得的基质发芽率最好,而CK5纯堆肥处理的基质发芽率是最低的,这主要是因为堆肥的盐分含量太高,抑制了黑麦草的发芽。在各处理组内发芽率都出现一个峰,第一处理组的发芽率的峰出现在T3处理;第二处理组的发芽率最好的为T7处理;第三处理组内的发芽率由T11~T15呈逐渐减少的趋势,这主要是因为随堆肥含量的增大,盐分含量也在增大,抑制了黑麦草的发芽。
对于各处理的株高比较来看,虽然含泥炭的基质发芽率高,但是从图5.1中我们可以看出其长势较差,株高较纯堆肥处理的差异显著,这是因为堆肥中含有丰富的养分,能够促进黑麦草的生长。在各处理组内株高也都出现一个峰,第一处理组的株高的峰也出现在T3处理;第二处理组的株高的峰值出现在T6处理;第三处理组内株高大致呈相同变化趋势,也是由T11~T15逐渐减少的。堆肥含量的增加,同时也提高了基质中的盐分含量,抑制了黑麦草的生长。
由此可见,适量堆肥的加入可促进黑麦草的生长。综合这两个因素,在本试验条件下较好的处理为T1、T2、T3、T6、T7、T11,发芽率分别达到91.67%、91.67%、96.67%、86.67%、93.33%和83.33%;株高分别达到19.83cm、22.32cm、23.30cm、23.51cm、22.89cm和20.96cm。
2.2.3 不同基质配比对黑麦草叶绿素的影响
图2.2为各处理叶绿素含量的比较图。叶绿素含量是反映草坪草光合作用强度的重要指标之一,其含量高低表明草坪草生长能力的强弱。从图2.2可以看出,除CK4(纯泥炭)叶绿素含量最高外(具体原因有待于进一步研究),其它对照处理的黑麦草叶绿素含量差异不是很大,而加入堆肥的处理中以第一、第二处理组的叶绿素含量较高,而第三处理组的叶绿素含量都较低,这与黑麦草生物量的测定结果基本一致,这表明适量施用堆肥有利于黑麦草进行光合作用,增强黑麦草的生长能力。其中在长势较好的几个处理中,T6对提高黑麦草叶绿素含量的效果最为显著,其余依次为T2>T7>T4>T3>T8>T9>T1。
2.2.4 不同基质配比对黑麦草植株中NPK养分含量的影响
表2.5为最后收获后黑麦草中全量养分的数据统计。氮素是草坪草生长的重要营养元素,氮素的吸收有利于草坪草各项质量指标的提高。黑麦草对氮素的吸收可以反映不同处理之间的差异。从表中我们可以明显的看出第三处理组的各处理氮百分含量较多,而且堆肥含量最多的T15氮的含量最高,这是因为堆肥中含有较多的氮素养分,可以供给黑麦草所需。长势好的第一、二处理组的各处理叶片中氮的含量反而低,这是因为这些处理的生物量与其它处理存在显著差异,如果按净吸收量来计,这些处理就相应的高。全PK也表现出大致相同的趋势。
2.3 结论
以腐熟的餐厨垃圾堆肥为原料配制基质,以黑麦草为供试作物,检验不同配比基质的生物效应。筛选出适宜黑麦草生长的最佳基质配方是:泥炭:堆肥:珍珠岩(v/v)=0.6:0.4:1。
3 综述
垃圾堆肥施于农田,既提供了肥源,又提供了垃圾消纳渠道,因而作为垃圾处理的有效方法受到广泛重视和采用,特别是在发展中国家,该方法得到了较为普遍的应用。大量的分析结果表明,垃圾堆肥施入农田后可为农作物提供一定的养分和有机物质,但垃圾堆肥中含有一定数量的不易被微生物分解和耕作过程机械外力破碎的石砾、塑料、玻璃碎片等杂物,同时生活垃圾中还含有一些有毒物质,如电池、金属等在堆腐过程中被部分分解和溶解,致使垃圾堆肥中的重金属含量偏高。从垃圾堆肥实际使用情况看,虽然在施用初期起到了部分增加土壤养分,提高作物产量的作用,受到了农民欢迎。但是随着垃圾堆肥长期施用,对农业生产产生了一些不利影响,直接表现为土壤肥力退化,土壤质地变粗,土壤保水和保肥能力下降,进而影响作物的产量和品质,使经济效益下降。因此,针对目前垃圾堆肥质量偏低、营养成分不高、有机质含量较少等问题,在后处理深加工过程中,以提高垃圾堆肥有机质,增加养分含量和减少无机杂质为重点,同时在施肥过程中通过营养配方技术和生物效应试验,采用垃圾堆肥和无机化肥配合施用(或复混方法),在提高养分利用率的基础之上,提出提高垃圾堆肥消纳量的技术措施,为垃圾堆肥的资源化利用提供科学依据。
餐厨垃圾堆肥不但营养成分齐全,有机质含量高,而且杂质少,重金属含量低,有毒物质少,具有很大的推广利用价值。泥炭已被广泛应用于园艺方面,现已成为蔬菜、花卉和其他园艺作物的主要生长基质,但由于泥炭的分布不均及品质等各方面的问题促使人们都在寻找泥炭的替代材料。餐厨垃圾堆肥,无论在pH值上,还是在各养分含量等条件上,都可以代替泥炭作为作物的生长基质,而且养分更丰富。不过餐厨垃圾堆肥的唯一不足就是其盐分含量高,当施用量过多时,会对作物造成盐害,这点已经引起广泛的注意,希望在今后的研究中可以尽快找到相应的解决方法。
【参考文献】
[1] 范海荣等.城市垃圾堆肥的肥力效应、生物效应和环境效应分析.首都师范大学学报,2004,58
[2] 丁爱芳. 城市生活垃圾堆肥产品的应用和发展. 南京晓庄学院学报,2002,18
[3] 多立安,赵树兰. 生活垃圾生产地毯式草皮环境生态工程基质选配研究. 应用生态学报,2000,11
[4] 张丙珍,马俊元. 浅谈城市生活垃圾堆肥处理的利用价值. 科技信息,2008,(22)
[5] 吴修文,魏奎,沙莎,王军,袁修坤.国内外餐厨垃圾处理现状及发展趋势.农业装备与车辆工程,2011,12
[6] 杨子江. 食品垃圾的综合利用研究.再生资源研究,2005,3
[7] 张振华等. 厨余垃圾的现状及其处理技术综述.再生资源研究,2007,5
[8] 范海荣等. 城市垃圾堆肥的生态效应与对策研究.土壤,2004,5
[9] 范海荣等. 生活垃圾生产地毯式草皮环境生态工程基质选配研究. 应用生态学报,2000,(5)
[10] 刘文.城市垃圾粗堆肥与退化生态系统恢复和重建应用基础研究.内蒙古农业大学,2006,18
[11] 王星等.国内外餐厨垃圾的生物处理及资源化技术进展.环境卫生工程,2005,(2)
[12] 谢炜平,梁彦杰,何德文,邹原.餐厨垃圾资源化技术现状及研究进展. 环境卫生工程,2008(2)