车载逆变电源的研究与设计
2015-05-30张波梁凡
张波 梁凡
[摘 要]车载逆变电源使有车生活更加方便。随着我国汽车普及程度的不断提高,车载逆变电源的市场会越来越大。文章设计的逆变电源由两部分组成:前一部分把汽车电瓶上12V的直流电逆变成220V、频率10KHz左右的交流电,后一部分再通过交直交变频得到50Hz的220V交流电,供普通交流电源供电设备使用。该款逆变电源性能稳定,结构简单,效率高,成本优势明显。
[关键词]高频逆变;交直交变频;集成控制器;车载电源
[DOI]10.13939/j.cnki.zgsc.2015.45.071
1 引 言
车载逆变电源作用是把汽车蓄电池12V或24V的直流电转变为50Hz的交流电,得到的交流电可以给笔记本电脑、数码摄像机、普通照明灯、平板电脑、电动工具、车载冰箱等使用220V交流电源的用电设备供电。车载逆变电源在国外普遍受到欢迎。中国已成为世界上汽车产销量第一大国,随着我国汽车普及程度的逐渐提高,车载逆变电源的市场会越来越巨大。
2 总体设计
车载逆变电源设计主要有两点,一个是把蓄电池电压提升至220V,另一个就是频率要为50Hz。把12V的电压提到220V,采用升压斩波电路进行。采用升压斩波电路即Boost电路来实现,由于出电压比输入电压高出很多,升压倍数约为18。由Boost电路工作原理易知,占空比约为0.95,理论上可行,但Boost电路实际中难以实现[1],所以要升压就要借助变压器来实现。变压器如果采用工频变压器,输出同样功率的情况下,体积和重量会比高频变压器大出很多,是人们不能接受的。因此要采用高频变压器,采用高频变换电路。借助高频变压器实现12V的电压变为220V的电压,输出频率必然也是高频。高频的220V交流电,很多我们使用的220V市电供电的用电设备不能直接使用。要再进一步变换,把高频直流电源变换成50Hz的交流电。从总体结构上来说,设计的电路共有两部分:前一部分借助高频变压器和相就的变换电路把12V直流电变为220V的高频交流电,后一部分把高频的220V交流电变换为50Hz的220V交流电。
输入为12V低压输入,输出功率大时输入电流会很大,属低压较大电流输入。全桥式变换电路回路中有两个功率管,而半桥式回路是一半电压对应一个功率管,对推挽式逆变电路回路中功率开关管只有一个,相比较而言,可以减少功耗[2]。后一部分输入的电压本身比较高,而全桥逆变电路可以实现比较大的功率输出。因此电路设计前一部分采用推挽逆变电路,后一部分采用全桥逆变电路。推挽变换电路输出的高频220V经高频二极管整流滤波后得到直流电,再经全桥逆变电路得到50Hz的220V的交流电。
3 推挽逆变部分
该部分功能为把蓄电池12V直流输出变为高压220V输出,频率为10KHz,属高频输出。推挽式变换电路主要由两个开关管Q1、Q2,变压器T1构成。开关管Q1、Q2正负半周交替通断工作。中心抽头把变器原边对称地分为两半。正半周期开关管Q1导通,Q2关断,12V蓄电池,变压器原边的一半和Q1构成回路;负半周期开关管Q2导通,Q1关断,12V蓄电池,变压器原边的另一半和Q2构成回路。正负半周流过变压器原边的电流方向相反,变压器副边得到交流电[3]。这里采用的变压器副边匝数等于原边匝数的好多倍,所以输出电压高。逆变输出的交流电频率主要取决于开关管工作频率。如前所叙述,为了减少变压器的重量和体积,采用高频变压器,开关管工作频相对比较高。推挽逆变电路部分如图1所示。
推挽逆变的控制驱动以SG3525为核心。 SG3525是专用的集成电压型的PWM控制器。图1推挽逆变电路中芯片1脚,2脚对应一误放大器同向输入端和反向输入端,两脚电压差比较大,输出PWM占空比最大[4],同样条件下,逆变电路输出电压也最大。5脚,6脚外接电阻电容大小决定了芯片输出PWM信号频率也就决定了推挽逆变器工作频率。11 脚和14脚输出两波形一样而相位相差180°的PWM信号,分别通过R6、R7驱动Q1和Q2。
4 整流与全桥逆变部分
整流与全桥逆变部分也即交直交变频部分。该部分功能为把前一部分220V高频输出转变成频率50Hz的220V的交流电。电路如图2所示。220V的高频交流电经二极管VD1-VD4构成的桥式整流电路整流滤变为直流电后再经过四个功率管VT1-VT4逆变后得到220V,50Hz交流电。控制以TL494为核心。芯片5脚6脚接的电阻电容决定了其输出PWM信号的频率也就决定了逆变电路输出频率,5脚6脚接的电阻电容选择恰当的值就可以让逆变电路输出频率为50Hz。1脚、2脚对应于一误差放大器同向输入端和反向输入端,15脚、16脚对应于另一误差放大器。两误差放大器反向输出端接14脚获得比较高的电压,而同输入端接地,这样输出的PWM信号占空比最大。8脚和11脚为PWM信号输出端,互补输出,即相位相差180°。8脚的输出控制VT1和VT3,11脚的输出控制VT2和VT4。8脚和9脚分别是芯片内部集成的开关三极管的集电极和射极8脚输出是低电位时,VT3不导通,Q11也不导通,蓄电池12V电压通过VD5,R4和R1让VT1导通;8脚输出高电位时,通过R7使VT3导通,同时易知Q11也导通,把VT1栅极电位拉低,VT1截止。11脚的输出驱动控制VT2和VT4工作过程和8脚输出驱动控制VT1和VT3相同,只是8脚和11脚输出的PWM相位上相差180°。
TL494也是常用的电压型脉宽调制集成控制器。其内部主要集成了线性锯齿波振荡器,两个误差放大器,死区时间比较器,PWM比较器,基准电压源,触发器等,共有16个引脚。线性锯齿波振荡器的振荡频率由5脚、6脚上外接的电阻电容来决定。两个误差放大器在这里地位是一样的,它们的输出分别经过一个二极管送到PWM比较器的同向输入端,与加在PWM比较器反向输入端的线性锯齿波做比较,产生PWM信号。3脚是两误差放大器的输出端,也是PWM比较器同向输入端;脉冲宽度的调节可以通过3脚上的电压来控制,也可分别通过误差放大器进行调节[5]。13端为输出控制端,当其接低电平时,两管子工作情况相同,当其接高电平时两管子推挽输出。TL494内部还有一个基准电压源,通过14脚为其在应用时提供5.0V的基准电压。芯片的4脚为死区控制引脚,可用来限定芯片输出PWM的最大占空比。利用此功能,引入反馈信号至引脚上可以限定全桥逆变电路的最大输出电压,图2中未画出该部分。
5 结 论
经实践可知,该款逆变电源性能稳定,结构简单,效率高,成本优势明显,可使有车生活更加方便。不足之处在于它的输出不是正弦波,输出电压会受输入电压影响,在220V左右一定范围内波动。
参考文献:
[1]侯振义,夏峥,柏雪倩,等.直流开关电源技术及应用[M].北京:电子工业出版社,2007.
[2]闫福军,梁永春.一种光伏发电系统中辅助电源设计[J].电力电子技术,2010,44(8),14-16.
[3]陈德康.脉宽调制器UC3842在开关电源中的应用[J].西南科技大学学报,2005,20(2):27-30.
[4]付瑶,谭智力,于珊.基于SG3525 控制的车载逆变电源设计[J].中国测试,2015,41(1):77-80.
[5]张波.基于TL494的直流变换器[J].电子与封装,2010,10(12):23-26.