APP下载

新形势下高等代数思想方法在数学分析中的应用分析

2015-05-30张广飞

关键词:高等代数数学分析应用

张广飞

【摘要】:高等数学,即意为数学这门学科中的高等知识部分,而代数则是这个高等数学体系中需要掌握的基本内容。为了满足国家对高精尖数学科研人才的需求,如今高等代数需要从原来较高水平的学术性要求转变为教育型研究,为国家培养更多富有创新意识的人才。在新理念和新形勢下,高等数学的教育方式也在发生转变。

【关键词】:高等代数;数学分析;应用

【分类号】O17

【引言】:随着社会的飞速发展,我国的科技水平伴随着经济一起向前不断进步着,高等教育的水平也随之进步,数学是一门实用性很强的学科,如今它更是渗透到社会生活发展的各个方面和领域,对科学发展和社会进步起到了重要的作用。高等代数式大学高等数学教育中的一个重要内容,要学好高等数学就要掌握好高等代数,才能构建出一个完整的结构体系。近些年来,我国未来培养新式人才而对高等数学教育进行了改革深造,新课标中给高中生制订了数学课程的学习标准,加入了新的更加有深度的数学内容,这就对现有的大学数学研究也提出了更高的要求。

一、新型高等代数思想方法的分析

目前很多高等数学的课程中,很多解题方法和思路都显得相对落后,不符合日新月异的科学发展,而且结构体系趋向于传统数学,一板一眼过于精简和严谨,强调定理公式的运用,数学是讲究实际运用的科学,但是教材上举出的实例普遍脱离实际,难以让学生产生认同感,不能跳出旧框架的束缚。这种情况下教育出来的学生往往只擅长做死题而不会用于实际生活,也就不能体会到真正的数学。

新形势下的高等数学主要包括导数、微积分、各种函数、线性规划、多项式、向量等内容,高等代数则主要包括多项式代数和线性代数等,现在中学所学的微积分中,普遍理论知识强而推理能力薄弱,因此在学习过程中要注意联想到实际情况,还需要新旧知识来衔接。高等代数就是高阶代数,是数学发展到一定高度的总称,也是学习高等数学必须的课程,它包括许多分支,是高等学府中数学专业的必修科目。高等代数要求学生有一定的数学基础和发散性的思维头脑,教师则需要有博士高学位,在课程教学方面一直追求的是边学边研究,寓教于乐,将教学内容和最新的科研成果结合起来,以达到互帮互助的效果,教师还要借助各种现代化设备给学生展示立体化的代数,丰富讲授方式,同时还会鼓励学生积极思考,利用网络开展数学研究,与国际数学最新科研成果接轨,与时俱进。

因此,在现在数学的研究与分析中,不仅要有效利用高科技多媒体与时俱进,与国际新成果接轨,还要积极进取思考,多与实际情况联系起来,不能局限于书本上的理论公式,最后还要再将研究出来的成果投入社会科学发展中。

二、如何加强应用

1.打好学习基础,加大数学基础性创新性研究力度

兴趣是最好的老师。中学数学是高等数学学习的基础,但是中学数学教育中陈旧的数学教育模式注重理论公式的运用,而且通常和学生的思考方式有出入,因此学生在学习过程中就往往不能灵活理解和运用,造成遇到问题就套用教师讲解的方法,碰到变化一点的题目就不会举一反三。近些年来高考的数学范围在扩大,加入了不少以前是大学才学习的内容,但是与此相对的是中学数学课本上所教的知识点比如导数和微积分等虽然有涉及,但是相互之间衔接不当,转化生硬,逻辑推理比较薄弱,这对我们基础数学知识的学习是不利的。在思考方法上,此我们就要用理论联系实际,新的科学理论联系旧的知识,对重点知识要注意强化他们之间的联系,我们就能够容易将这些知识点串联起来,能更加容易的用开阔思维去思考问题。在课程内容的学习上,还是要延续以前的传统数学体系,不改变整体和大纲,但是要在细节方面调整整理,一些章节可以加入新的实例来思考,要用不同的思路来解题,让我们自身对数学学习产生兴趣。

2.传统与现代相结合,联系实际,加强与实际生活的应用联系

数学有其独特的体系与模板,而在数学教学中,也有一套传统且固定的教学模式,教师将课本中定义和理论等需要死记硬背的知识教给学生,然后再以自己的方式推理演绎一遍,就算完成一个知识点的教授任务了,而我们往往处于被动状态,学习动机激发不出来,学习效率自然低下。学会数学最重要的就是讲其运用到现实生活中,只有让我们自己认识到数学与自己的生活息息相关的时候,才能最大限度的激发学习数学的兴趣,才能让我们在生活中面对问题时能积极思考,多方论证,运用已学到的数学知识解决问题。

三、结语

要想学好数学,光是接收外界理论知识是不够的,还要自己去积极思考,开拓思维,联系实际,我们才能找到最合适高效的方法来分析学习数学。

参考文献:

[1] 王莲花,李珍萍,李念伟,田立平. 数学分析问题的代数解法[J]. 河南教育学院学报(自然科学版). 2008(01)

[2] 王莲花,鞠红梅,李战国. 数学分析在高等代数中的某些应用[J]. 河南教育学院学报(自然科学版). 2008(03)

[3] 幸克坚. 从数学教育的要求和高等代数和特点谈对一本《高等代数》教材的改进意见——兼与该书作者商榷[J]. 遵义师范学院学报. 2003(03)

猜你喜欢

高等代数数学分析应用
高等代数教学的几点思考
学习《数学分析》的读书报告