APP下载

EMPIRE计算30 MeV以下238U中子核反应数据

2015-05-16陈国长曹文田唐国有于保生

原子能科学技术 2015年3期
关键词:库中中子计算结果

陈国长,曹文田,唐国有,于保生

(1.中国原子能科学研究院核数据重点实验室,北京 102413;

2.北京大学物理学院核物理与核技术国家重点实验室,北京 100871)

EMPIRE计算30 MeV以下238U中子核反应数据

陈国长1,曹文田2,*,唐国有2,于保生1

(1.中国原子能科学研究院核数据重点实验室,北京 102413;

2.北京大学物理学院核物理与核技术国家重点实验室,北京 100871)

为进一步完善核数据评价手段,本文将EMPIRE应用到中子引起锕系核素的核反应模型分析中,根据中子核反应机制的特点,选取恰当的核反应模型及模型参数,以实验数据为基础对模型参数进行调整,由EMPIRE计算获得30MeV以下能区n+238U的核反应数据。从计算结果与实验数据以及各评价库数据对比来看,EMPIRE可得到较合理的结果。

EMPIRE;中子;截面;238U;核数据

核能发展和核燃料废物处理等对核反应数据,特别是某些重要锕系核素(如238U)大于20MeV中子引起的核反应数据提出了明确需求。在主要的中子核反应评价数据库中,仅美国ENDF/B-Ⅶ库[1]和欧洲JEFF-3.1库[2]存在少量入射中子能量大于20MeV的全套中子评价数据。

EMPIRE[3]基于广义的统计模型,用直接反应、预平衡反应和平衡反应以及光学模型描述核反应过程,是近年来逐渐完善的核反应模型程序,ENDF/B-Ⅶ库中的许多中重核全套中子评价数据已采用EMPIRE进行理论分析。核反应截面计算是反映理论程序适用性的基础,238U的各种核反应截面实验信息较多,有利于对理论计算结果的评价和检验。本工作以n+238U核反应为例,对EMPIRE-3.0程序应用到锕系核素中子引起的核反应模型分析的可行性进行探讨。

1 EMPIRE简介

EMPIRE是一普适性较强的核反应理论程序系统,适用于中子、带电粒子(如p、d、T等)或其他重离子引起的核反应,且入射粒子能量高达200MeV。程序中包括一些成熟的核反应机制,如直接、预平衡和复合核反应机制。非弹直接过程由耦合道或简化的耦合道近似描述。预平衡反应机制可通过考虑核形变多步直接和多步复合核模型、考虑团簇发射的预平衡激子模型或全角动量耦合的激子模型来描述。最后,复合核衰变使用考虑了γ级联、角动量守恒和宽度涨落修正的Hauser-Feshbach模型。对裂变反应道的处理采用多峰裂变位垒及在阱中考虑吸收作用。EMPIRE集成了核反应输入参数库(RIPL-3库[4])、实验测量数据库(EXFOR库)、实验信息检索、理论计算结果后期处理以及与实验数据画图比对等大量辅助程序。EMPIRE的框架结构及工作流程如图1所示。整个程序的核心部分为物理核心部分,它集合了很多由FORTRAN编写的核反应物理模块,而整个程序计算过程中RIPL-3输入参数库为物理核心开展理论计算提供相关基础参数的支撑。理论计算结果再由程序系统中的辅助程序将其处理成标准的ENDF-B数据格式,并对ENDF-B格式输出的数据进行物理和格式检查,以及开展微分截面点截面化等处理,最后将理论计算结果与实验数据进行画图比对。在此过程中需对EXFOR库中实验信息进行检索和处理,并需从现有的评价数据库中提取共振参数等。该程序有一友好的用户界面,使用者可较方便地利用用户界面上的各按钮进行理论计算及其他相关处理。

图1 EMPIRE组成及工作流程示意图Fig.1 Sketch map of major components and working process of EMPIRE

2 以锕系核n+238U为例进行理论计算

2.1 评价库中各反应截面评价情况

ENDF/B-Ⅶ、JEFF-3.1、CENDL-3.1[5],JENDL-4.0[6]等核数据评价库中各反应截面所采用的评价方法及能区范围列于表1。ENDF/B-Ⅶ评价库中除非弹性散射反应截面采用洛斯·阿拉莫斯实验室发展的GNASH程序[7-9]理论计算结果外,其他反应截面均根据实验数据评价得到。JEFF-3.1库的评价数据主要采用Bruyeres-le-Chatel改进后的GNASH程序[9]的理论计算结果。这两家评价库整体上理论计算思路相似,均是由GNASH程序计算中子穿透因子,Hauser-Feshbach统计模型加上裂变预平衡过程,在裂变计算中采用三峰位垒反应机制,并利用耦合道方法的ECIS程序[10]计算非弹散射直接作用贡献。

CENDL-3.1评价库中仅非弹性散射截面采用FUNF程序[11]计算结果,其直接作用贡献由ECIS程序计算得到。日本JENDL-4.0评价库中除(n,tot)、(n,f)和(n,γ)等反应截面采用实验数据评价外,其他反应截面均采用耦合道CCONE程序[12]的理论计算结果。

2.2 光学模型势参数

光学模型势参数是理论计算中最基本和重要的输入参数,RIPL-3库中包含有19组适合n+238U理论计算的光学模型势参数,包括球形核及耦合道振动和转动光学模型势参数。锕系核均存在不同程度的形变,因此在选择光学模型势参数时重点关注靶核形变的耦合道光学模型势参数。选择不同的光学模型势参数进行试算,由全截面、弹性散射、去弹散射截面及弹性散射微分截面等与实验数据的对比,最后确定Lagrange[13]的耦合道中子光学模型势参数。另外,直接作用贡献采用同一套光学模型势参数计算。图2为全截面模型计算结果与实验数据对比,在整个能区内模型计算结果与实验数据符合较好,特别是在2MeV以下能区,理论计算结果与实验数据符合较好。

2.3 各反应截面理论计算

理论分析中,对核反应模型的选择及参数的调整情况如下。

1)考虑激子模型、多步复合核和多步直接过程,并采用双峰位垒模型描述裂变过程,而非弹散射直接作用由耦合道方法获得。

表1 评价数据库中各截面数据采用的评价方法Table 1 Evaluation methods for each reaction in nuclear data evaluation library

图2238U(n,tot)计算结果与实验数据对比Fig.2 Comparison of calculation results with measurement data for238U(n,tot)

2)考虑全能区宽度涨落修正,采用EMPIRE特有的能级密度公式,而壳修正采用Myers-Swiatecki方式。

3)通过调整裂变位垒、垒上能级密度和曲率半径等参数使得裂变反应截面理论计算结果与实验测量符合较好,另外需在RIPL-3参数库基础上对(n,2n)、(n,3n)及(n,γ)等反应道的能级密度和对修正等参数进行调整。

主要反应道理论计算结果与评价数据及实验数据的对比如下。

1)(n,2n)和(n,3n)反应计算结果

本理论计算结果与JENDL-4.0理论计算推荐以及其他评价数据和实验数据的对比示于图3。本计算结果与实验数据的符合程度虽不如JENDL-4.0库的好,但与大部分实验数据相符合。在En>15MeV能区,本计算结果较评价数据库及实验数据均低一些,这主要是为保证(n,f)反应截面与实验数据符合,使这部分反应截面较实验数据偏小;另一方面,在调整能级密度与对修正时,对这部分的影响较有限,后续工作需进一步研究不同反应截面间分配的参数调整方法。

图3238U(n,2n)计算结果与评价数据及实验数据对比Fig.3 Comparison of calculation results with evaluation and measurement data for238U(n,2n)

对于(n,3n)反应,整体上本计算结果与实验数据符合较好,特别是在峰位18MeV以上能区,相对于JEFF-3.1库和JENDL-4.0库的推荐数据,本计算结果与实验数据更符合,且反应截面的曲线趋势和大小更合理(图4)。在20MeV以上能区,本理论计算结果明显较其他评价数据低,这主要是考虑Veeser等[21]的实验测量值;另一方面,(n,4n)反应道的反应阈值为17.9MeV,因此在18MeV以上能区其与(n,3n)反应道产生竞争;但在25MeV以上能区,本理论计算结果偏低。

图4238U(n,3n)计算结果与评价数据及实验数据对比Fig.4 Comparison of calculation results with evaluation and measurement data for238U(n,3n)

2)238U(n,γ)反应计算结果

在模型计算中采用参数库RIPL-3中的γ强度。计算得到的(n,γ)激发函数曲线形状符合物理规律,且与实验数据符合较好。在JEFF-3.1库中,评价数据是直接采用理论计算结果,当En>10MeV时其评价数据与实验测量的偏差较大,如图5所示。

图5238U(n,γ)计算结果与评价数据及实验数据对比Fig.5 Comparison of calculation results with evaluation and measurement data for238U(n,γ)

图6238U(n,f)计算结果与评价数据及实验数据对比Fig.6 Comparison of calculation results with evaluation and measurement data for238U(n,f)

3)238U(n,f)反应计算结果

图6为裂变反应截面本计算结果与评价数据及实验数据间的对比,其中JEFF-3.1库的评价数据直接采用理论计算结果。整体上本计算结果与实验数据相符合,而En>20MeV时,JEFF-3.1库的推荐结果明显较实验数据高。在24MeV以上能区,本理论计算结果明显较238U裂变截面的国际标准值低,曲线形状也存在一定的差异。

4)非弹反应计算结果

该反应道实验数据很少,各评价数据库均直接采用理论计算结果。在非弹散射截面计算中选取27条分立能级,且考虑包括第1和第2转动带中12条分立能级集体态的贡献。总非弹性散射截面的计算结果与评价数据及实验数据的对比示于图7,本计算结果与实验数据符合较好,且与各评价库中数据在曲线形状和大小上基本一致。

在238U中第1~3和第6分立能级非弹散射有实验数据。第1、2分立能级的计算结果与评价数据及实验数据的对比示于图8。本计算结果与各评价库的推荐值均在测量不确定度范围内与实验数据相符合,且反应激发函数曲线形状和大小均较合理。从图8也可看出,1~ 4MeV之间本理论计算结果与实验数据符合较好,ENDF/B-Ⅶ评价数据在2.5MeV附近有一突起,截面评价值与其他评价数据及本理论计算结果存在一定分歧。

图7238U总非弹性散射截面计算结果与评价数据及实验数据对比Fig.7 Comparison of calculation results with evaluation and measurement data for238U(n,inl)

图8238U分立能级非弹性散射截面计算结果与评价数据及实验数据对比Fig.8 Comparison of calculation results with evaluation and measurement data for238U discrete level inelastic scattering reaction

5)弹性散射角分布的理论计算

弹性散射角分布除ENDF/B-Ⅶ库在En<10MeV能区直接采用Maslov[67]的评价数据外,其他评价库数据均直接采用理论计算结果。1.5~30MeV之间不同中子入射能量下本工作计算结果与实验测量数据的对比示于图9(各曲线为本工作计算结果,数据点为实验测量结果)。从不同中子能量对应的弹性散射角分布截面形状上看,其较符合物理趋势,另外,各能点弹性散射角分布截面与实验测量数据符合较好。

3 小结

本工作利用EMPIRE对中子引起的238U核反应进行理论计算,并将理论计算结果与实验数据及评价数据进行对比,可看出:

1)选用合适的反应机制,通过对理论参数的调整可获得与实验数据符合较好的理论计算结果;

2)对实验数据缺乏的反应道,如非弹性散射反应,理论计算结果不仅与有限的实验数据在测量不确定度范围内符合,而且与评价库中推荐数据基本一致,而对分立能级非弹性散射截面本工作计算结果明显较评价库中的数据合理;

图9238U弹性散射角分布计算结果与实验数据对比Fig.9 Comparison of calculation results with measurement data for elastic scattering angular distribution

3)En≤10MeV能区,弹性散射角分布的形状和大小基本合理,但随入射中子能量增加,尤其在En>20MeV能区,在后角区域可能会出现不太合理的下降趋势,评价库如ENDF/B-Ⅶ这一问题较突出;

4)本工作使用的EMPIRE可给出(n,2n)、(n,3n)等反应次级中子双微分谱,但不能给出裂变中子数和裂变中子能谱,在后续的研究工作中需利用其不断更新的理论程序对反应截面、微分截面特别是裂变中子能谱进行分析;

5)在利用EMPIRE开展理论计算中需先对比和选择适当的RIPL库参数和能级密度公式等,再对各核反应模型所涉及的具体参数进行调节,并充分利用程序中各种辅助工具。

总体上,EMPIRE基本能满足中子引起锕系核反应的理论计算,若有较多的30MeV以下能区实验测量信息,可得到较为可信的理论计算结果。

[1] CHADWICK M B,HERMAN M,OBLOŽINSKY P,et al.ENDF/B-Ⅶ.1nuclear data for science and technology:Cross sections,covariances,fission product yields and decay data[J].Nucl Data Sheets,2011,112:2 887-2 996.

[2] OECD/NEA Data Bank.The JEFF-3.1.1nuclear data library,JEFF report 22[R].[S.l.]:[s.n.],2009.

[3] HERMAN M,CAPOTE R,CARLSON B V,et al.EMPIRE:Nuclear reaction model code system for data evaluation[J].Nucl Data Sheets,2007,108:2 655-2 715.

[4] CAPOTE R,HERMAN M,OBLOŽINSKY P,et al.RIPL:Reference input parameter library for calculation of nuclear reactions and nuclear data evaluations[J].Nucl Data Sheets,2009,110:3 107-3 214.

[5] GE Z G,ZHUANG Y X,LIU T J,et al.CENDL-3.1:The Chinese Evaluated Nuclear Data Library for neutron reaction data[J].Korean Physical Society,2011,59(2):1 052-1 056.

[6] SHIBATA K,IWAMOTO O,NAKAGAWA T,et al.JENDL-4.0:A new library for nuclear science and engineering[J].Nucl Sci Tech,2011,48(1):1-30.

[7] YOUNG P G,ARTHUR E D.GNASH:A preequilibrium statistical nuclear model code for calculations of cross sections and emission spectra,technical report LA-6947[R].US:Los Alamos National Laboratory,1977.

[8] YOUNG P G,ARTHUR E D,CHADWICK M B.Comprehensive nuclear model calculations:Introduction to the theory and use of the GNASH code,technical report LA-12343-MS[R].US:Los Alamos National Laboratory,1992.

[9] YOUNG P G,ARTHUR E D,CHADWICK M B.Comprehensive nuclear model calculations:Theory and use of the GNASH code[C]∥Proceedings of the IAEA Workshop on Nuclear Reaction Data and Nuclear Reactors-Physics,Design,and Safety.Singapore:World Scientific Publishing,Ltd.,1998:227-404.

[10]RAYNAL J.Notes on ECIS94,CEA-N-2772[R].Saclay:Centre d′Etudes Nucleaires,1994.

[11]ZHANG Jingshang.User manual of FUNF code[M].Beijing:Atomic Energy Press,2005.

[12]IWAMOTO O.Development of a comprehensive code for nuclear data evaluation,CCONE,and validation using neutron-induced cross sections for uranium isotopes[J].J Nucl Sci Technol,2007,44:687-697.

[13]LAGRANGE C H.NEANDC(E)-228[R].[S.l.]:[s.n.],1982.

[14]UTTLEY C A,NEWSTEAD C M,DIMENT K M.Neutron strength function measurements in the medium and heavy nuclei[C]∥Nuclear Data for Reactors Conference.Paris:[s.n.],1966:165-170.

[15]WHALEN J F,SMITH A B.Uranium total cross section,Argonne National Laboratory report series,No.7710[R].US:Argonne National Laboratory,1971.

[16]FOSTER D G,GLASGOW D W.Neutron total cross sections 2.5-15MeV[J].Physical Review C,1971,3:576-603.

[17]HAYES S H,STOLER P,CLEMENT J M,et al.The total neutron cross section of uranium-238from 0.8to 30MeV[J].Nuclear Science and Engineering,1973,50:243-247.

[18]SCHWARTZ R B,SCHRACK R A,HEATON H T.Total neutron cross sections of uranium-235,uranium-238,and plutonium-239from 0.5 to 15MeV[J].Nuclear Science and Engineering,1974,54:322-326.

[19]HIEN P Z,TANG V H,XUAN N P.Total neutron cross section of U-238as measured with filtered neutrons of 55keV and 144keV,INDC(NDS)-265[R].Vienna:INDC,1992.

[20]ABFALTERER W P,BATEMAN F B,DIETRICH F S,et al.Measurement of neutron total cross sections up to 560MeV[J].Physical Review C,2001,63:044608.

[21]VEESER L R,ARTHUR E D.Measurement of(n,3n)cross sections for235U and238U[C]∥International Conference on Neutral Physics and Nuclear Data.Harwell:[s.n.],1978:1 054-1 056.

[22]KNIGHT J D,SMITH R K,WARREN B.238U(n,2n)237U cross section from 6to 10MeV[J].Physical Review,1958,112:259-261.

[23]CHOU Y P.Measurement of U-238(n,2n)cross-sections,HSJ-77091[R].[S.l.]:[s.n.],1978.

[24]KARIUS H,ACKERMANN A,SCOBEL W.The pre-equilibrium contribution to the(n,2n)reactions of Th-232and U-238[J].Journal of Physics G,1979,5(5):715-720.

[25]KORNILOV N V,ZHURAVLEV B V,SAL′-NIKOV O A.Measurement of cross sections for the U-238(n,2n)reaction from 6.5to 14.8MeV[J].Atomnaya Energiya,1980,49:283-286.

[26]RAICS P,NAGY S,DAROCZY S,et al.Measurement of the cross sections for the238U(n,2n)and232Th(n,2n)reactions in the 13.5-14.8MeV energy range,INDC(HUN)-029[R].Vienna:INDC,1990.

[27]FILATENKOV A A,CHUVAEV S V,AKSENOV V N,et al.Systematic measurement of activation cross sections at neutron energies from 13.4to 14.9MeV,reports 252[R].Leningrad:Khlopin Radiev Inst,1999.

[28]WANG Xianggao,JIANG Shan,DONG Kejun,et al.Accurate determination of cross sections for238U(n,2n)237U induced by neutrons around 14MeV[J].Nucl Instrum Methods Phy Res A,2010,621:326-330.

[29]ZHU Chuanxin,CHEN Yuan,MOU Yunfeng,et al.Measurements of(n,2n)reaction cross sections at 14MeV for several nuclei[J].Nuclear Science and Engineering,2011,169:188-197.

[30]NAIK H,SURYANARAYANA S V,MULIK V K,et al.Measurement of the neutron capture cross-section of238U using the neutron activation technique[J].Journal of Radioanalytical and Nuclear Chemistry,2012,293:469-478.

[31]ALLEN K W,BOMYER P,PERKIN J L.The interaction of 14MeV neutrons with uranium[J].Journal of Nuclear Energy A+B,1961,14:100-106.

[32]WHITE P H.The value of ETA for U-238with neutrons of energy between 12MeV and 19MeV[J].Journal of Nuclear Energy A+B,1962,16:261-273.

[33]MATHER D S,BAMPTON P F,COLES R E,et al.Measurement of(n,2n)cross sections for incident energies between 6and 14MeV,reports 72/72[R].UK:[s.n.],1972.

[34]FREHAUT J,BERTIN A,BOIS R,et al.Status of(n,2n)cross section measurements at Bruyeres-le-Chatel,INDC(USA)-84(1),399[R].[S.l.]:[s.n.],1980.

[35]WANG Xianggao,JIANG Shan,HE Ming,et al.Determination of cross sections for the238U(n,3n)236U reaction induced by 14MeV neutrons with accelerator mass spectrometry[J].Physical Review C,2013,87:014612.

[36]FRICKE M P,LOPEZ W M,FRIESENHAHNS J,et al.Measurements of cross sections for radioactive capture of 1keV to 1MeV neutrons by Mo,Rh,Gd,Ta,W,Re,Au and U-238[J].Nuclear Physics A,1970,146:337-342.

[37]MOXON M C.Capture cross section measurements of Th-232and U-238,reports 17644[R].US:AEC,1968.

[38]DRAKE D,BERGQVIST I,MCDANIELS D K.Dependence of 14MeV radioactive neutron capture on mass number[J].Physics Letters B,1971,36:557-562.

[39]RYVES T B,HUNT J B,ROBERTSON J C.Neutron capture cross section measurements for U-238and In-115between 150and 630keV[J].Journal of Nuclear Energy,1973,27:519-525.

[40]POENITZ W P.Measurements of the neutron capture cross sections of gold-197and uranium-238between 20and 3 500keV[J].Nuclear Science and Engineering,1975,57:300-304.

[41]LINDNER M,NAGLE R J,LANDRUM J H.Neutron capture cross-sections from 0.1to 3MeV by activation measurements[J].Nuclear Science and Engineering,1976,59:381-385.

[42]HUANG Zhengde,CAO Zhong,WANG Huizhu,et al.Radioactive capture of 14.2MeV neutrons by Fe-56and U-238[C]∥4th Symp Neutr Capt Gamma-ray Spectrosc.Grenoble:[s.n.],1981.

[43]POENITZ W P,FAWCETT L R,SMITH D L.Measurements of the 238-U(n,gamma)cross section at thermal and fast neutron energies[J].Nuclear Science and Engineering,1981,78:239-245.

[44]DANIELS D K,VARGHESE P,DRAKE D M,et al.Radiative capture of fast neutrons by 165-Ho and 238-U[J].Nuclear Physics A,1982,384:88-92.

[45]BULEEVA N N,DAVLETSHIN A N,TIPUNKOV O A,et al.Activation-measured radiative neutron-capture cross sections for U-236,U-238,Np-237[J].Atomnaya Energiya,1988,65(5):348-352.

[46]VOIGNIER J,JOLY S,GRENIER G.Capture cross sections and gamma-ray spectra from the interaction of 0.5to 3.0MeV neutron with nuclei in the mass range A=63to 209[J].Nuclear Science and Engineering,1992,112:87-92.

[47]VOROTNIKOV P E,DUBROVINA S M,KOLTYPIN E A,et al.U-238fission by the neutron with energy lower than fission threshold and fissionable isomer production by neutron inelastic scattering on U-238,reports 20[R].[S.l.]:[s.n.],1975.

[48]LEUGERS B,CIERJACKS S,BROTZ P,et al.The U-235and U-238neutron induced fission cross sections relative to the H(n,p)cross section[C]∥Meeting on Fast Neutron Cross Section of U and Pu.Argonne:[s.n.],1976:246.

[49]CIERJACKS S,LEUGERS B,KARI K,et al.Measurements of neutron induced fission cross section ratios at the Karlsruhe Isochronous Cyclotron[C]∥Meeting on Fast Neutron Cross Section of U and Pu.Argonne:[s.n.],1976:94.

[50]BEHRENS J W,CARLSON G W.Measurements of the neutron-induced fission cross sections of234U,236U,and238U relative to235U from 0.1to 30MeV[J].Nuclear Science and Engineering,1977,63:250-255.

[51]ANDROSENKO K H D,KOROLEV G G,SHPAK D L.U-238to U-235fission cross-section ratio measurement in the energy range 0.85-3.70MeV[C]∥6th All Union Conf on Neutron Physics.Kiev:[s.n.],1983:153.

[52]MANABE F,KANDA K,IWASAKI T,et al.Measurements of neutron induced fission cross section ratios of232Th,233U,234U,236U,238U,237Np,242Pu and243Am relative to235U around 14MeV[J].Fac of Engineering,1988,52(2):97-101.

[53]LISOWSKI P W,GAVRON A,PARKER W E,et al.Fission cross sections in the intermediate energy region,reports 305[R].[S.l.]:[s.n.],1991.

[54]SHCHERBAKOV O A,DONETS A Y,EVDOKIMOV A V,et al.Neutron-induced fission of 233-U,238-U,232-Th,239-Pu,237-Np,nat-Pb and 209-Bi relative to 235-U in the energy range 1-200MeV[J].Journal of Nuclear Science and Technology,2002,2(1):230-240.

[55]CRANBERG L,LEVIN J S.Inelastic neutron scattering by U-238[J].Physical Review,1958,109:2 063-2 070.

[56]GLAZKOV N P.Spectra and cross-sections of the neutron inelastic scattering in the energyrange of 0.4-1.2MeV on the nuclei U,Th,Hg,W,Sb,Cd,Mo,Nb,Fe[J].Atomnaya Energiya,1963,14(4):400-410.

[57]TSANG F Y,BRUGGER R M.The differential neutron scattering cross section of uranium-238 at 144keV[J].Nuclear Science and Engineering,1978,65:70-74.

[58]GUENTHER P,HAVEL D,SMITH A.Fast neutron excitation of the ground-state rotational band of238U,reports 16[R].US:Argonne National Laboratory,1975.

[59]VOROTNIKOV P E,VUKOLOV V A,KOLTYPIN E A,et al.Fast neutron scattering on uranium-238[C]∥4th All Union Conf on Neutron Phys.[S.l.]:[s.n.],1977.

[60]BEGHIAN L E,KEGEL G H R,MARCELLA T V,et al.Neutron scattering cross sections of uranium-238[J].Nuclear Science and Engineering,1979,69:191-195.

[61]WINTERS R R,HILL N W,MACKLIN R L,et al.Uranium-238inelastic neutron scattering at 82keV[J].Nuclear Science and Engineering,1981,78:147-152.

[62]LITVINSKII L L,VERTEBNYI V P,LIBMAN V A,et al.Neutron cross sections and average resonance parameters of238U for 55-and 144-keV neutrons[J].Atomnaya Energiya,1987,62(3):192-196.

[63]MOXON M C,WARTENA J A,WEIGMANN H,et al.Inelastic neutron scattering from U-238[C]∥Conf on Nucl Data for Sci and Techn. Gatlinburg:[s.n.],1994.

[64]KORNILOV N V,KAGALENKO A B.Inelastic neutron scattering on the first level of U-238[J].Nuclear Science and Engineering,1995,120:55-60.

[65]MIURA T,BABA M,IBARAKI M,et al.Measurement of neutron elastic and inelastic scattering cross section for the first level of238U in hundreds of keV range[J].Annals of Nuclear Energy,2000,27:625-630.

[66]SMITH A B.Scattering of fast neutrons from natural uranium[J].Nuclear Physics,1963,47:633-640.

[67]MASLOV V,PORODZINSKIJ Y V,TETEREVA N A,et al.Neutron data evaluation of238U,INDC(BLR)-014[R].Vienna:International Atomic Energy Agency,2003.

[68]HAOUAT G,LACHKAR J,LAGRANGE C,et al.Reaction cross section described by a black sphere approximation of nuclei[J].Nuclear Science and Engineering,1982,81(4):491-500.

[69]BUCHER W,HOLLANDSWORTH C E,YOUNGBLOOD J E.Small-angle scattering of fast neutrons[J].Physical Review Letters,1975,35:1 419-1 425.

[70]QI Huiquan,CHEN Hongbin,CHEN Yingtang,et al.Optical model parameters and fast neutron small angles scattering cross sections,Chinese report to the INDC No.030[R].Vienna:INDC,1993.

Application of EMPIRE for Nuclear Data Calculation of n+238U Reaction up to 30 MeV

CHEN Guo-chang1,CAO Wen-tian2,*,TANG Guo-you2,YU Bao-sheng1
(1.China Institute of Atomic Energy,P.O.Box275-46,Beijing102413,China;
2.State Key Laboratory of Nuclear Physics and Technology,School of Physics,Peking University,Beijing100871,China)

To improve the evaluation method,the EMPIRE was employed to analyze n+238U reaction up to 30MeV.According to the special characteristics of neutron induced reaction of actinide nuclei,and chosing proper reaction mechanisms,the model parameters were adjusted and reasonable neutron reaction data were obtained based on the experimental data.Comparing the EMPIRE calculation results with the data of evaluations and measurements,it is found that EMPIRE can obtain reasonable results for n+238U reaction up to 30MeV.

EMPIRE;neutron;cross section;238U;nuclear data

O571.54

A

1000-6931(2015)03-0385-09

10.7538/yzk.2015.49.03.0385

2013-12-20;

2014-06-03

陈国长(1978—),男,浙江台州人,副研究员,博士,粒子物理与原子核物理专业

*通信作者:曹文田,E-mail:cao@pku.edu.cn

猜你喜欢

库中中子计算结果
英语专业学士学位论文摘要的元话语特征研究
VVER机组反应堆压力容器中子输运计算程序系统的验证
街头的人
功能强大的滤镜库
(70~100)MeV准单能中子参考辐射场设计
3D打印抗中子辐照钢研究取得新进展
从今天开始
趣味选路
扇面等式
物质构成中的“一定”与“不一定”