APP下载

西准噶尔哈拉阿拉特组火山岩LA-ICP-MS锆石U-Pb年龄

2015-05-05李甘雨李永军王冉杨高学向坤鹏刘佳李钊

西北地质 2015年3期
关键词:准噶尔辉石哈拉

李甘雨,李永军,2,王冉,2,杨高学,2,向坤鹏,刘佳,李钊

(1. 长安大学地球科学与资源学院,陕西 西安 710054;2. 国土资源部岩浆作用成矿与找矿重点实验室,陕西 西安 710054)

西准噶尔哈拉阿拉特组火山岩LA-ICP-MS锆石U-Pb年龄

李甘雨1,李永军1,2,王冉1,2,杨高学1,2,向坤鹏1,刘佳1,李钊1

(1. 长安大学地球科学与资源学院,陕西 西安 710054;2. 国土资源部岩浆作用成矿与找矿重点实验室,陕西 西安 710054)

哈拉阿拉特组是西准噶尔哈拉阿拉特山一带分布最广,研究程度最低,时代认识分歧最大,火山岩在该区全部组级地层中所占比例最高,且层位相对较新的海相火山-沉积建造。笔者在该区进行1∶5万区域地质调查中,对哈拉阿拉特组中下部层位辉石安山岩与流纹岩进行LA-ICP-MS测年,获得锆石U-Pb年龄分别为(306.9±5.5)Ma(MSWD=1.8)与(304.5±3.1)Ma(MSWD=0.63),二者误差范围内一致,综合所测锆石的CL图像特征,指示其代表了哈拉阿拉特组的形成时代。结合前人化石资料将哈拉阿拉特组时代确定为晚石炭世,认为其中下部层位时代不老于306.9Ma为宜。这一成果准确约束了区内海相火山地层的时代,并为研究西准噶尔构造带的火山岩浆作用及其构造演化提供了新的年代学证据。

LA-ICP-MS锆石U-Pb测年;海相火山-沉积地层;晚石炭世;哈拉阿拉特组;西准噶尔

笔者等在该区进行1∶5万区域地质调查中,在该组中下部辉石安山岩与流纹岩中分别获得306.9Ma和304.5Ma的LA-ICP-MS锆石U-Pb年龄,限定该组中下部层位时代为晚石炭世。结合该组中已发现的化石资料,认为该组形成时代应不老于306.9Ma为宜。高精度同位素定年资料为哈拉阿拉特组地质时代确认提供了重要证据,准确约束了区内海相火山地层的时代,同时为研究西准噶尔板块俯冲-增生、残留洋闭合等构造演化过程提供了重要的年代学依据。

1 地质背景

包古图—哈拉阿拉特山地区位于西准噶尔增生杂岩带东部,石炭纪极为发育。下石炭统以包古图组和希贝库拉斯组为代表,其中包古图组由一套半深海相细碎屑岩组成,劈理化强烈,主要分布于包古图地区及哈拉阿拉特山东北部,希贝库拉斯组由浅海相粗碎屑岩组成,在包古图地区大面积出露,而在百口泉地区以东则呈条带状展布(图1);上石炭统则以成吉思汗山组、哈拉阿拉特组及阿腊德依克赛组为主。研究区石炭系整体变形强烈,产状较为陡倾,层间褶皱及顺层劈理极为发育;二叠系在区内分布极有限,整体呈带状展布,表现为宽缓的向斜,角度不整合覆于石炭系之上,为一套陆相磨拉石建造,代表了造山作用晚期的构造-沉积组合。

晚石炭世哈拉阿拉特组主要分布于哈拉阿拉特山一带,山体呈北东东向延伸,平面上夹持于准噶尔盆地与和什托洛盖盆地之间,长约55km,宽约10km(图2)。笔者等在进行1∶5万区域地质调查时,对该组进行重新厘定,新厘定的哈拉阿拉特组整体为一套滨-浅海相火山-沉积建造,岩性以深灰色安山岩、灰黑色玄武岩、深灰色火山碎屑岩、灰褐色火山角砾岩、角砾凝灰岩、灰绿色安山质-英安质岩屑凝灰岩、灰色杏仁状安山岩为主,夹薄层状中粗砂岩、细砾岩,可见少量流纹岩,与上覆阿腊德依克赛组局部呈断层接触,厚度达6 110m。多期次的火山喷发旋回指示哈拉阿拉特组形成过程中构造活动较活跃,沉积不稳定,伴有多次间歇性火山喷发,总体为氧化环境下有间歇性火山喷发,伴有数次快速海侵和海退的浅海沉积环境。

图1 (a)西准噶尔地区大地构造示意图(据Chen et al.,2010;Xu et al.,2012;王金荣等,2013)及 (b)包古图—哈拉阿拉特山一带区域地质图(据孙羽等,2014修改)Fig.1 (a)Schematic tectionic map showing main tectionic units of the West Junggar and (b)geological map of Baogutu-Hala’alate Mountain area

2 样品采集及分析方法

209号样品采自哈拉阿拉特组辉石安山岩中,采样点坐标为东经85°44′16″,北纬46°14′36″(图2)。斑状结构,块状构造(图3a),岩石由10%的斑晶和90%的基质组成。

斑晶主要为斜长石和普通辉石,斜长石含量约8%,呈半自形板状,粒径0.5mm×0.15mm~1.7mm×0.8mm,聚片双晶发育,普遍中轻度绢云母化、泥化;普通辉石约占2%,呈柱状、粒状,粒径0.3~1.2mm,淡绿色,具辉石式解理,少数绿泥石化。基质具交织结构,斜长石之间分布玻璃质和暗色矿物,可见少量磁铁矿(图3b)。

216号样品采自哈拉阿拉特组流纹岩中,采样点坐标为东经85°42′51″,北纬46°12′24″(图2)。斑状基质霏细结构,流纹构造(图3c),由3%的斑晶和97%的基质组成。

斑晶由钾长石和石英组成,其中石英含量约3%,粒径为0.5~4mm,多呈粒状,条纹构造发育,平行分布;含微量钾长石,板状、粒状,粒径为0.4~0.5mm。基质具霏细结构,多由长英质组成,呈霏细状密集分布,泥化轻度,之间分布了少数脱玻铁质。流纹构造发育,多条由微粒石英、钾长石组成的细条带平行相间分布,条带内分布了少量铁质(图3d)。

图2 哈拉阿拉特山一带区域地质图(据新疆玛依塔巴克1∶50000区域地质调查报告,2014修改)Fig.2 Geological map of Hala’alate Mountain area(After Mayitabake 1∶50000 geology survey report,Xinjiang, 2014)

样品由廊坊市诚信地质服务有限公司使用常规重液浮选和电磁分离的方法挑选出晶形和透明度较好的锆石制成环氧树脂样品靶,磨蚀和抛光样品靶使锆石出露近中心部位。在光学显微镜下对其进行透射光、反射光照相,并在阴极发光(CL)扫描电镜下进行阴极发光显微照相。激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)锆石原位U-Pb定年在西北大学大陆动力学国家重点实验室完成。实验采用的ICP-MS为美国Agilent公司生产的Agilent7500a,激光剥蚀系统为德国MicroLas公司生产的GeoLas 200 M,激光剥蚀斑束直径为30μm,激光剥蚀样品的深度为20~40μm。实验中采用He作为剥蚀物质的载气。锆石年龄采用标准锆石91500作为外部标准物质。元素含量采用NIST SRNI610作为外标。选择29Si作为内标元素进行计算(Horn et al.,2000;Ballard et al.,2001;Kosler et al.,2002;袁洪林等,2003;黄波等,2009),采用Glitter(ver4.0,Macquarie University)对锆石的同位素比值及元素含量进行计算,最终年龄计算及谐和图由Isoplot(ver3.0)完成(Ludwig,1991)。

3 锆石特征及年龄结果

209号样品(辉石安山岩)锆石粒度细小,以正方双锥状为主,晶体长50~90μm,宽30~50μm,长宽比为3∶2~2∶1,阴极发光图像中可见典型的岩浆振荡环带结构,部分锆石呈半截锥状,锆石环带较窄,边部多有港湾状结构,部分锆石发育典型的扇形分带结构(图4)。

216号样品(流纹岩)锆石多为浅黄色-无色透明,多呈长柱状、正方双锥状自行晶体,少部分呈半截锥状,锆石粒度较大,长100~260μm,宽80~150μm,长宽比为5∶4~2∶1,阴极发光图像表现出典型的岩浆振荡环带和明暗相间的条带结构,锆石边部发育晶棱圆化、港湾状结构,部分锆石可见继承锆石的残留核(图4)。

上述锆石均表现出典型的岩浆韵律环带和明暗相间的条带结构等,属于岩浆结晶产物(Compston et al.,1992;Pidgeon et al.,1998;Andersen,2002;吴元保等,2004),内部成分相对均一,无明显溶蚀和包裹体特征,为喷发期岩浆活动一次结晶而形成,属岩浆结晶锆石,代表哈拉阿拉特组火山岩的成岩年龄。

209号样品(辉石安山岩)同位素比值和年龄数据见表1,17个样品分析点的Th含量变化为30.43×10-6~434.94×10-6,U含量变化为53.68×10-6~725.11×10-6,Th、U含量呈现出较好的正相关关系,具有较高的Th/U值(0.41~1.05),属于典型岩浆成因锆石(Williams et al.,1996;Claesson et al.,2000;Hoskin et al.,2000)。206Pb/238U年龄最小值为(290±8)Ma,最大值为(330±7)Ma,所有锆石数据点均落在谐和线上及附近,206Pb/238U加权平均年龄为(306.9±5.5)Ma(MSWD=1.8,95%置信度)(图5)。

Px.普通辉石;Qtz.石英;Pl.斜长石图3 哈拉阿拉特组火山岩宏观露头及镜下照片(正交偏光)Fig.3 Macroscopic and microscopic photos of the volcanic rocks of Hala’alate Formation

图4 哈拉阿拉特组辉石安山岩和流纹岩样品中锆石CL图像和年龄值Fig.4 Zircon CL images and ages of pyroxene andesite and rhyolite of Hala’alate Formation

图5 哈拉阿拉特组辉石安山岩和流纹岩样品LA-ICP-MS锆石U-Pb年龄谐和图Fig.5 LA-ICP-MS zircon U-Pb Concordia diagrams of pyroxene andesite and rhyolite of Hala’alate Formation

216号样品(流纹岩)测试分析数据见表2,21个测试点多位于岩浆环带上,Th的含量为38.68×10-6~180.21×10-6,U的含量为100.89×10-6~215.22×10-6,Th、U具有明显的正相关关系及较高的Th/U值(0.36~0.84),属于典型岩浆成因锆石范围(Williams et al.,1996;Claesson et al.,2000;Hoskin et al.,2000)。206Pb/238U年龄最小值为(294±4)Ma,最大值为(319±5)Ma,21个测点的206Pb/238U年龄谐和性较好,构成比较集中地锆石群,206Pb/238U加权平均年龄为(304.5±3.1)Ma(MSWD=0.63,95%置信度)(图5)。

4 讨论与结论

总之哈拉阿拉特组的时代问题至今仍无定论,且其形成时代的确定均是按照化石种属提供相对年龄,未曾给出准确的绝对年龄值加以佐证。笔者等通过对哈拉阿拉特组火山岩LA-ICP-MS锆石U-Pb年代学的研究,获得其绝对年龄值为304.5~306.9Ma,结合前人化石资料,将其形成时代确定为晚石炭世,时代不老于306.9Ma为宜。这一成果为哈拉阿拉特组时代的确定提供了精确的同位素定年依据。

初步地球化学研究表明,哈拉阿拉特组火山岩以富SiO2(52.88%~56.89%)、MgO(3.47%~6.88%,Mg#=48.48~63.69)及K/Na值(0.33~0.7)为特征,富集大离子亲石元素(Ba、Rb、Sr)和轻稀土元素,亏损高场强元素(HFSE),具有弱负Eu异常(δEu=0.81~0.94),正的εNd(t)(4.41~5.44)与较低(87Sr/86Sr)i值(0.703 66~0.704 09),与日本Setouchi火山岩带中赞岐岩地球化学特征基本一致,在地球化学图解中所有样品均落入岛弧造山带或火山弧区域(另文讨论)。证实西准噶尔在晚石炭世仍存在俯冲消减作用,表明西准噶尔残余洋盆闭合时限至少推迟至晚石炭世末期。哈拉阿拉特组时代的确定,为西准噶尔构造带的火山岩浆作用及其构造演化提供了新的年代学证据。

蔡土赐.新疆维吾尔自治区岩石地层[M].武汉:中国地质大学出版社,1999:1-77.

CAI Tuci. Rock and Stratigraphy of XinJiang Province[M]. Wuhan:China University of Geology Publishing House,1999:1-77.

黄波,梁华英,莫济海,等.金平铜厂铜钼矿床赋矿岩体锆石LA-ICP-MS U-Pb年龄及意义[J].大地构造与成矿学,2009,33(4):598-622.

HUANG Bo, LIANG Huaying, MO Jihai, et al. Zircon LA-ICP-MS U-Pb Age of the Jinping-Tongchang Porphyry Associated with Cu-Mo Mineralization and its Geological Implication[J]. Geotectonica et Metallogenia, 2009, 33(4): 598-622.

孙羽,赵春环,李永军,等.西准噶尔包古图地区石炭系希贝库拉斯组碎屑锆石LA-ICP-MS U-Pb年代学及其地质意义[J].地层学杂志,2014,38(1):42-50.

SUN Yu, ZHAO Chunhuan, LI Yongjun, et al. Detrital Zircon LA-ICP-MS U-Pb Dating of the Carboniferous Xibeikulasi Formation Sandstone in the Baogutu Area, Weastern Junggar, and Its Geological Significance[J]. Journal of Stratigraphy, 2014, 38(1): 42-50.

王金荣,贾志磊,李泰德,等.新疆西准噶尔发现早泥盆世埃达克岩:大地构造及成矿意义[J].岩石学报,2013,29(3):840-852

WANG Jinrong, JIA Zhilei, LI Taide, et al. Discovery of Early Devonian Adakite in West Junggar, Xinjiang: Implications for Geotectonics and Cu Mineralization[J]. Acta Petrologica Sinica, 2013, 29(3): 840-852.

王向东,金玉玕.石炭纪年代地层学研究概况[J].地层学杂志,2000,24(2):90-98.

WANG Xiangdong, JIN Yugan. An Outline of Carboniferous Chronostratigraphy[J]. Journal of Stratigraphy, 2000, 24(2): 90-98.

王玉净,金玉玕,江纳言.论哈拉阿拉特组的时代及古环境特征[J].地层学杂志,1987,11(1):53-57.

WANG Yujing, JIN Yugan, JIANG Nayan. Discuss the Age and Ancient Environment Characteristics of Hala’alate Formation[J]. Journal of Stratigraphy, 1987, 11(1): 53-57.

吴乃元.石炭系//新疆地质矿产局地质矿产研究所,新疆地质矿产局第一区调大队.新疆古生界(新疆地层总结之二)下[M].乌鲁木齐:新疆人民出版社,1999:191-202.

WU Naiyuan. Carboniferous//Institute of Geology and Mineral Resources Bureau of Geology and Mineral Resources in Xinjiang, the First Regional Geological Survey Team of Bureau of Geology and Mineral Resources of Xinjiang. Palaeozoic Group in Xinjiang, Second[M]. Urumqi: Volksverlag Xinjiang, 1999: 191-202.

吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589-1604.

WU Baoyuan, ZHENG Yongfei. Zircon Genetic Mineralogy Research and Interpretation of U-Pb Age Restriction[J]. Chinese Science Bulletin, 2004, 49(16): 1589-1604.

向坤鹏,李永军,徐磊,等.新疆西准噶尔白碱滩一带成吉思汗山组的建立及地质意义[J].西北地质,2013,46(2):63-68.

XIANG Kunpeng, LI Yongjun, XU lei, et al. The Definition of Chengjisihanshan Formation and Its Significances in Baijiantan Region, West Junggar, Xinjiang[J]. Northwestern Geology, 2013, 46(2): 63-68.

新疆维吾尔自治区地质局.1∶20万《乌尔禾幅》(L-45-XIV)区域地质调查报告[R].1979.

Geology Bureau of Xinjiang Uygur Autonomous Region. Report of 1∶200000 Geological Survey in Wuerhe Area[R]. 1979.

新疆维吾尔自治区地质矿产局.新疆维吾尔自治区区域地质志[M].北京:地质出版社,1993.

Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region. Regional Geology of Xinjiang Uygur Autonomous Region[M]. Beijing: Geological Publishing House, 1993.

赵治信.新疆北部石炭系划分[J].新疆石油地质,2009,30(4):478-482.

ZHAO Zhixin. Classification of Carboniferous in Northern Xinjiang[J]. Xinjiang Petroleum Geology, 2009, 30(4): 478-482.

袁洪林,吴福元,高山,等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J]. 科学通报,2003,48(14):1511-1520.

YUAN Honglin, WU Fuyuan, GAO Shan, et al. Zircon Laser Probe U-Pb Dating and REE Composition Analysis of Cenozoic Intrusive[J].Northeast China. Chinese Science Bulletin, 2003, 48(14): 1511-1520.

纵瑞文,范若颖,蒋涛,等.西准噶尔石炭系哈拉阿拉特组新知[J].地层学杂志,2014,38(3):290-298.

ZONG Ruiwen, FAN Ruoying, JIANG Tao, et al. New Information about the Carboniferous Hala’alate Formation in Western Junggar, Xinjiang[J]. Journal of Stratigraphy, 2014, 38(3): 290-298.

ANDERSEN T. Correction of Common Lead in U-Pb Analyses that Do Not Report204Pb[J]. Chemical Geology, 2002, 192: 59-79.

BALLARD J R, PALIN J M, WILLIAMS I S. Two Ages of Porphyry Intrusion Resolved for the Super-giant Chuquicamata Copper Deposit of Northern Chile by LA-ICP-MS and SHRIMP[J]. Geology, 2001, 9: 383-386.

COMPSTON W, WILLIAMS I S, KIRSCHVINK J L. Zircon U-Pb Ages for the Early Cambrian Time-scale[J]. Joumal of Geological Society. London, 1992, 149: 171-184.

CLAESSON S, VETRIN V, BAYANOVA T. U-Pb Zircon Age from a Devonian Carbonatite Dyke, Kolapeninsula, Russia; a Record of Geological Evolution from the Archaean to the Palaeozoic[J]. Lithos, 2000, 51(1-2): 95-108.

CHEN J F, HAN B F, JI J Q, et al. Zircon U-Pb Ages and Tectonic Implications of Paleozoic Plutons in Northern West Junggar, North Xinjiang, China[J]. Lithos, 2010, 115(1-4): 137-152.

HORN I, RUDINICK R L, MCDONOUGH W F. Precise Elemental and Isolope Ratio Determination Bysimultaneous Solution Nebulization and Laser Ablation-ICPMS: Application to U-Pb Geochronologyo[J]. Chemical Geology, 2000, 167: 405-425.

HOSKIN P W O, BLACK L P. Metamorphic Zircon Formation by Solidstate Recrystallization of Protolith Igneous Zircon[J]. Metamorphic Geol., 2000, 18: 423-439.

KOSLER J, FONNELAND H, SYLVESTER P. U-Pb Dating of Detrital Zircons for Sediment Provenancestudies—a Comparison of Laser Ablation ICPMS and SIMS Techniques[J]. Chemical Geology, 2002, 182: 605-618.

LUDWIG K R. Isoplot—a Plotting and Regression Program for Radiogenic-isolope Data[J]. US Geological Survey Open—File Report, 1991, 39: 91-445.

PIDGEON R T, NEMCHIN A A, HITCHEN G J. Internal Structures of Zircons from Archaean Granites from the Darling Range Batholiths: Implications for Zircon Stability and the Interpretation of Zircon U-Pb Ages[J]. Contributions to Mineralogy and Petrology, 1998, 132: 288-299.

TAO H F, WANG Q C, YANG X F, et al. Provenance and Tectonic Settinclastic Rocks In West Junggar, Xinjiang, China: A Case from the Hala-Alat Mountains [J]. Journal of Asian Earth Science, 2013, 64: 210-222.

WILLIAMS I S, BUICK A, CARTWRIGHT I. An Extended of Early Episode Mesoproterozoic Metamorphic Fluid Flow in the Reynold Region, Central Australia [J]. J Metamorphic Geol, 1996, 14: 29-47.

XU Z, HAN B F, REN R, et al. Ultramafic-mafic Mélange, Island Arc and Postcollisional Intrusions in the Mayile Mountain, West Junggar, China: Implications for Paleozoic Intra-oceanic Subduction-accretion Process [J]. Lithos, 2012, 132-133: 141-161.

Zircon LA-ICP-MS U-Pb Dating of Volcanics in Hala’alate Formation of Western Junggar

LI Ganyu1, LI Yongjun1,2, WANG Ran1,2, YANG Gaoxue1,2, XIANG Kunpeng1, LIU Jia1, LI Zhao1

(1. Earth Science and Resources College, Chang’an University, Xi’an 710054, Shaanxi, China;2. Key Laboratory for the Study of Focused Magmatism and Giant Ore Deposits,MLR,Xi’an 710054,Shaanxi,China)

Hala'alate formation is widely distributed in Hala'alate Mountain. Few researches have been conducted on this formation and there is great disparity in its age identification. The proportion of volcanic rocks in the area is the highest of all the group-level strata, and the position is relatively new marine volcano and sedimentary formation. LA-ICP-MS dating was used to determine the zircons from pyroxene andesite and rhyolite of the Hala'alate formation by 1∶50000 regional geological survey, which yielded zircon U-Pb age of (306.9±5.5) Ma(MSWD=0.39) and (304.5±3.1) Ma(MSWD=0.63) respectively, both were consistent within the error range. Combining with the CL image features of zircons, the formation age of Hala'alate formation was signified. In view of predecessors' fossil information, which confirmed that the forming age of Hala'alate formation was late Carboniferous, the authors considered that the age of lower strata was no earlier than 306.9 Ma. The findings accurately constrained the period of marine volcanic strata in this area, and provided new chronological evidence for volcanic magmatism and tectonic evolution of western Junggar tectonic belt.

zircon LA-ICP-MS U-Pb dating; marine volcanic and sedimentary strata; late Carboniferous; Hala'alate formation; western Junggar

2015-02-10;

2015-04-15

中国地质调查局地质矿产调查评价专项“新疆西准噶尔玛依塔巴克地区1∶5万四幅区调”(1212011220619)、国家自然科学基金“伊宁地块石炭纪火山岩地球化学特征及成因研究”(41273033)、国家自然科学基金“达尔布特及克拉玛依蛇绿混杂岩中洋岛型玄武岩地球化学特征及成因研究”(41303027)和中央高校基本科研业务费专项资金“西准噶尔克拉玛依蛇绿构造混杂岩年代学、地球化学特征及地质意义”(2014G1271058)联合资助

李甘雨(1990-),男,河南省平顶山人,长安大学地球化学方向博士研究生,主要从事地球化学与区域地质调查研究。E-mail:liganyuchd@163.com

P597

A

1009-6248(2015)03-0012-10

猜你喜欢

准噶尔辉石哈拉
粉色蔷薇辉石的宝石学及矿物学特征
不同温度、压强、氧逸度条件下斜方辉石含水性的实验研究
清代准噶尔投诚人口供及其安置—以安置三姓的多尔济事例为中心
是谁对书不敬
乾隆年间清军的第三次出征准噶尔考辨
蔷薇辉石:既为宝,亦为玉
哈拉和卓384号墓葬出土棉布袋的修复
草原光辉:哈拉和林与元上都
哈拉办公室
论乾隆初年准噶尔汗国延聘喇嘛之谈判及其影响