APP下载

伊犁地块达根别里新元古代花岗岩的锆石年代学、地球化学及其地质意义

2015-05-05李婷李智佩白建科李晓英

西北地质 2015年3期
关键词:锆石天山岩浆

李婷,李智佩,白建科,李晓英

(中国地质调查局西安地质调查中心,陕西 西安 710054)

伊犁地块达根别里新元古代花岗岩的锆石年代学、地球化学及其地质意义

李婷,李智佩,白建科,李晓英

(中国地质调查局西安地质调查中心,陕西 西安 710054)

西天山伊犁地块南缘特克斯县东的达根别里花岗岩具有高硅SiO2=76.22%~76.86%)、富碱(ALK=7.07~7.93)、贫钙镁(CaO=0.95%~1.21%,MgO=0.10%~0.20%)、弱过铝质(ACNK=1.03~1.08)的特征;稀土元素含量中等,具有强烈的Eu负异常;原始地幔标准化蛛网图上显示其具有较高的Rb、Th、Sm、Ga、Nb和较低的Ba、Ti、Sr含量;锆石饱和温度平均为759℃,固结指数为1.07~2.14,分异指数为89.98~92.11,总体显示弱过铝质高钾钙碱性系列的高分异S型花岗岩的特征。LA-ICP-MS锆石U-Pb测年法获得其形成时代为(942.5±2.6)Ma。岩体中Nb/Ta值接近上地壳,Mg#值为4.52~7.33,锆石Hf同位素研究显示其εHf(t)值为较低的正值或负值(-0.41~+4.34),二阶段模式年龄TDM2=1.41~1.66 Ga,表明该花岗岩岩浆可能是中元古代地壳和新生地壳混合源区部分熔融的产物,同时也暗示了伊犁地块具有形成年龄不小于1.7 Ga的中元古代结晶基底。结合天山地区及塔里木周边地块新元古代岩浆热事件,认为伊犁地块发育与天山造山带各地一样的新元古代花岗岩,这为西天山前寒武纪基底曾经响应过全球Rodinia超大陆汇聚事件,提供了进一步证据。

新元古代花岗岩;锆石U-Pb年龄和Hf同位素;地球化学;西天山;伊犁地块

天山造山带是出露于中国境内的中亚巨型复合造山系重要组成部分,其构造演化研究一直受到重视。随着近年在天山地区发现许多大型-超大型矿床和认识到其对中亚增生型造山带构造演化研究的意义,国内外学者加紧了对天山造山带的研究步伐,获得了一批重要成果(Gao et al., 1998, 2003;Windley, et al, 1990;Xiao, et al, 2004)。天山造山带发育面积约65 000 km2的花岗岩体,这些花岗岩时代遍及新元古代、古生代及中生代,在空间上显示一定的分带性(徐学义等,2005)。目前,众多的研究主要集中于分布在中天山北缘断裂南侧的博罗科努—依连哈比尔尕山一带、中天山南缘断裂和那拉提山北坡断裂之间的狭长区域,以及巴伦台至冰达坂地区(图1a)的花岗岩(夏祖春等,2005;王博等,2007;徐学义等,2006,2010;龙灵利等,2007;陈必河等,2007;杨经绥等,2011;Long et al,2011)。研究表明这些花岗岩体主要形成于古生代,是南天山洋和北天山洋向伊犁-中天山地块俯冲的产物。新元古代岩体出露面积相对较少,前人研究其形成时代主要集中于960~910 Ma(胡蔼琴等,2010)。同时750~800 Ma也存在岩浆热事件记录(李继磊等,2009)。一般认为其为全球性Rodinia超大陆汇聚和裂解事件的响应(陈义兵等,1999;胡蔼琴等,2010;陈新跃等,2009)。伊犁地块为西天山重要组成部分,同样发育不同时代的花岗岩,但研究成果少有报道,已有的研究结果均集中在古生代花岗岩(徐学义等,2006;韩宝福等,2004)。对前寒武纪花岗岩体仍缺乏可靠的年代学数据和岩石地球化学资料,这不利于西天山构造演化的整体认识。笔者在前期的地质调研工作中从西天山伊犁地块南部的达根别里花岗岩体中获得了新元古代早期的形成时代,前人对此并没有详细的研究工作。为此,笔者对该岩体开展了系统的年代学、岩石地球化学和锆石Hf同位素研究工作,以期准确限定其成因、源区性质和形成时代,并为探讨伊犁地块新元古代早期侵入岩的岩石成因及其在全球Rodinia超大陆演化中的意义提供依据。

1 区域地质及岩石学特征

中国天山造山带夹持于北部西伯利亚板块、南部卡拉库姆-塔里木板块和华北板块之间(李锦轶等,2006),以托克逊—库米什为界又被分为东天山和西天山。西天山被北侧的依连哈比尔尕山北坡构造推覆断裂带和南侧霍拉山-黑鹰山推覆断裂带所围限,总体为三角形并呈向北和向南逆掩推覆的扇状分布的复合造山带(左国朝等,2008)(图1),以中天山北缘断裂、那拉提北缘断裂和南天山缝合带为界,分为北天山弧增生体、伊犁地块、中天山复合弧地体和塔里木北部被动大陆边缘(高俊等,2009)。

西天山地区出露的最古老的前寒武纪变质结晶基底为下元古界木扎尔特岩群、那拉提群和温泉岩群(新疆地矿局,1993)。其中,木扎尔特岩群分布在哈尔克山南坡木扎尔特达坂一带,为一套角闪岩相变质的层状岩系(于海峰等,2011),Nd同位素模式年龄表明其存有1 900~1 700 Ma的基底地壳残留(陈义兵等,2000);那拉提群沿那拉提山脊分布,主要岩性为斜长角闪岩、云母石英片岩、角闪斜长片麻岩、肠状混合片麻岩、眼球状片麻岩及花岗片麻岩等(徐学义等,2010),在最新的区域地质图件中重新厘定为木扎尔特岩群(王洪亮等,2008);温泉岩群分布于别珍套山北部阿克萨依一带,主体为一套高级片麻岩类与变质表壳岩类组成的中深变质岩系,其Sm-Nd模式年龄为2 081~1 884 Ma(刘伟等,2009),同位素U-Pb法测定其花岗岩年龄为1 800 Ma。

图1 (a)西天山构造分区和侵入岩分布简图(据Xu et al. 2013修改);(b)达根别里岩体地质简图(据王洪亮等,2008)Fig.1 (a)Simplified geological map of Chinese Western Tianshan showing the distribution of intrusions and the tectonic division(Modified after Xu et al 2013);(b)Simplified geological map of the Dagenbieli intrusion(Modified after Wang Hongliang et al, 2008)

研究区位于西天山南部特克斯县以东,构造位置上属于伊犁板块。区内出露的地层从老到新为长城系特克斯岩群、蓟县系科克苏群、青白口系库什台群等古老地层以及石炭系火山-沉积岩系。

特克斯群为一套整合于科克苏群之下的正常沉积浅变质碎屑岩,自上而下可分为3个组:珠玛汗萨依组、莫合西萨依组、泊仑干布拉克组,其中泊仑干布拉克组主要为一套浅变质浅海相碎屑岩夹少量火山碎屑岩和碳酸盐岩建造。1978年1∶20万莫合尔幅区调将该群划归为长城纪,随后新疆地质志(1993)及本研究沿用该方案;科克苏群为一套富含叠层石的碳酸盐岩,被库什台群不整合覆盖;库什台群主要岩性为白云岩、灰岩、假鲕状灰岩、大理岩、硅质岩夹硅质灰岩及粉砂岩,富含叠层石(新疆地矿局,1999)。石炭纪火山-沉积岩系分别角度不整合于早古生界地层或前寒武纪变质基底上(白建科,2015)。

笔者研究的达根别里花岗岩侵入体呈北西向不规则状岩株产出,整体形状类似“工”字型,面积约10 km2。侵入的围岩为长城系泊仑干布拉克组,北部被第四系覆盖。岩石整体呈灰白色,中细粒花岗结构,块状构造。主要矿物组合为石英(30%~35%)、微斜长石(50%~55%)、黑云母(5%~8%)和斜长石(5%),以及少量绿泥石化、云母化的角闪石。其中,石英呈他形分布,波状消光;微斜长石自形程度低,多为半自形-他形板状,发育明显的格子双晶;黑云母呈鳞片状分布,部分蚀变发生绿泥石化;斜长石含量很少,具聚片双晶结构;副矿物主要有锆石、绿帘石、磁铁矿等。

2 分析方法

样品采集于新疆特克斯县东南卡拉托海乡南约10 km处,地理坐标为北纬43°10.602′,东经82°15.579′,采样位置见图1b。

2.1 全岩地球化学测定

地球化学测试数据在中国地质调查局西安地质调查中心完成(表1)。主量元素除FeO、LOI采用标准湿化学法分析外,其他采用PW4400型X萤光光谱仪(XRF)测定,分析误差低于5%;微量元素和稀土元素采用X-SeriesII型电感耦合等离子质谱仪(ICP-MS)测定,检测限优于5×10-9,相对标准偏差优于5%。

表1 达根别里岩体化学成分主量元素(%)、稀土和微量元素表(10-6)

续表1

样品号11DG01-1h11DG01-2h11DG01-3h11DG01-4h样品号11DG01-1h11DG01-2h11DG01-3h11DG01-4hALK7.667.897.357.19Co0.880.841.281.52K/Na1.721.601.991.79Li8.096.8150.2050.10A/NK1.251.231.281.29Rb326.00281.00276.00285.00A/CNK1.031.051.081.05Cs4.562.698.158.27Mg#7.294.527.337.07Mo0.240.440.130.14SI1.701.072.142.09Sr17.0022.1033.1034.10DI91.5892.1190.6589.98Ba13.4023.70168.00171.00La4.625.0048.2046.50V3.692.515.417.09Ce13.4013.80103.00100.00Sc2.282.253.013.22Pr2.182.2112.1011.90Nb24.5021.0012.7012.60Nd10.8010.5046.2044.50Ta1.861.610.900.89Sm5.745.1110.309.53Zr68.4053.40162.00184.00Eu0.140.140.590.51Hf4.702.495.075.86Gd8.675.768.268.35Ga19.7020.3018.5018.80Tb1.751.131.391.35U8.116.264.595.02Dy13.808.598.928.57Th40.8039.9039.6039.80Ho3.171.911.751.80Th/U5.036.378.637.93Er8.925.775.165.07Nb/Ta13.1713.0414.1114.16Tm1.440.830.770.7210000Ga/Al3.013.042.912.97Ni1.301.451.200.80

注:数据来源:西安地质调查中心测试。

2.2 锆石LA-ICP-MS定年

本次CL阴极发光照片、LA-ICP-MS U-Pb同位素测定及锆石Lu-Hf同位素测试均在西北大学大陆动力学国家重点实验室完成。

野外采集新鲜样品约10 kg,由河北省廊坊地质所进行锆石分选。在双目镜下挑选无包裹体、无裂纹、透明度好、粒度较大的单颗粒锆石进行制靶并抛光使锆石内部充分暴露,然后进行锆石透射光、反射光、CL照相,LA-ICPMS U-Pb同位素测定及锆石Lu-Hf同位素测试。

锆石U-Pb年龄测试所得数据应用Glitter(ver4.0)程序进行计算和处理,并对其进行普通铅校正。详细分析步骤和数据处理方法参见Ballard J R et al.,2001;袁洪林等,2003。所有样品均采用206Pb/238U年龄,年龄计算及谐和图采用Isoplot(ver3.0)完成。单个数据点的误差均为1σ,其加权平均值为95%的置信度(表2)。

2.3 锆石Lu-Hf同位素测试

锆石原位微区Lu-Hf同位素详细测试流程及条件等参见Yuan et al.,2004。应用176Lu/175Lu= 0.026 55和176Yb/172Yb=0.588 6(Lizuka et al.,2005)进行同量异位的干涉校正,来计算测定样品的176Lu/177Hf以及176Hf/177Hf值。本次εHf的计算采用的176Lu衰变常数为1.865×10-11a-1(Scherer et al.,2001),球粒陨石现今的176Hf/177Hf=0.282 772,176Lu/177Hf=0.033 2 (Blichert-Toft et al.,1997);亏损地幔现今176Hf/177Hf=0.283 250,176Lu/177Hf=0.038 4(Griffin et al.,2002)。由于笔者涉及岩性主要为花岗质岩石,因此用硅铝质大陆地壳的Lu/Hf(fLu/Hf=-0.72;Vervoort et al.,1996)来二阶段模式年龄(表3)。

3 分析结果

3.1 岩石地球化学特征

岩石具有高硅(SiO2=76.22%~76.86%)、低铝(Al2O3=11.97%~12.62%)的地球化学特征,TiO2含量为0.06%~0.16%,K2O、Na2O含量分别为4.61%~4.89%和2.46%~3.04%,ALK=7.07~7.93,K2O/Na2O值为1.60~1.99,FeO含量为0.96%~1.57%,CaO含量为0.95%~1.21%,MgO为0.10%~0.20%。碱度率(AR)为2.22~2.62;在TAS图解中,样品点全部落在花岗岩范围内(图2a);在K2O-SiO2图解中样品点落在为高钾钙碱系列岩石范围内(图2b);岩石的铝饱和指数A/CNK为1.03~1.08;以上特征说明达根别里岩体为弱过铝质高钾钙碱性系列花岗岩。

岩石的稀土总量中等,为66.57×10-6~252.06×10-6,根据稀土配分曲线(图3a)可将样品分为两组,一组显示相对富集轻稀土〔(LREE/HREE)N=3.83~3.91〕,(La/Yb)N值为6.73~6.91,呈“右倾型”分布;另一组样品轻重稀土分馏现象并不明显,且呈现轻微的左倾型特征,轻稀土略亏损,〔(LREE/HREE)N=0.43~0.69〕,(La/Yb)N值为0.34~0.67。

所有样品均表现出强烈的Eu负异常(δEu=0.06~0.19)(图3a)。在原始地幔标准化的微量元素蛛网图中(图3b),表现出亏损大离子亲石元素(如Ba、La、Ce、Sr等)以及Pr、P和Ti等元素,富集Rb、Th、Pb、Nd、Sm等元素。

图2 (a)侵入岩的SiO2-K2O+Na2O图解(据middlemost ,1994);(b)SiO2-K2O图解 (据Peccerillo and Taylor,1976) Fig.2 (a)Diagrams of SiO2-K2O+Na2O(After middlemost ,1994);(b)SiO2-K2O (After Peccerillo and Taylor,1976)

图3 (a)达根别里岩体REE球粒陨石标准化配分型式和(b)微量元素原始地幔标准化分 配图(球粒陨石和原始地幔标准化值据Sun et al.,1989)Fig.3 (a)Chondrite-normalized REE diagram and (b)primitive mantle-normalized trace elements diagram of Dagenbieli intrusion (Chondrite-normalized and primitive mantle- normalized values after Sun and McDonough,1989)

3.2 锆石LA-ICP-MS定年结果

锆石CL图像见图4。达根别里岩体锆石结晶较好,大多为半透明-透明的长柱状晶体,呈浅褐色-淡黄色,长宽比为2∶1~3∶1,粒径为100~300μm。锆石的Th、U含量分别为596.37×10-6~5 129.8×10-6和197.64×10-6~1 289.79×10-6(表2),Th/U值为0.23~0.33,与岩浆锆石接近。锆石内部均显示典型的岩浆成因震荡环带结构或明暗相间的条带结构,部分锆石具有核-幔结构,核部为不均匀的亮色残核。以上特征表明其锆石为岩浆成因(吴元保等,2004)。

图4 达根别里岩体部分锆石CL图像Fig 4. CL images of zircons fromDagenbieli intrusion

达根别里岩体中LA-ICP-MS锆石U-Pb定年结果见表2和图5。岩体锆石进行了25次分析,其中有14个测点的206Pb/238U表面年龄在谐和线附近形成了一个聚集区或沿不一致线分布,其加权平均年龄为942.5±2.6(95%conf,MSWD=0.43),与其下交点年龄为(941.0±3.8)Ma在误差范围内一致,应代表达根别里花岗岩的形成年龄。

3.3 Lu-Hf同位素测定结果

锆石通常具有很高的Hf含量和很低的Lu/Hf(176Lu/177Hf≪0.01)值,因此由176Lu衰变形成的176Hf比例非常低,其Hf同位素组成基本上代表了锆石结晶时的初始Hf同位素组成(李献华等,2003)。由表3中可知,所测样品颗粒锆石的176Lu/177Hf值大部分小于0.002,表明其具有较低的放射性成因Hf的积累,所测得的176Hf/177Hf值能有效的反映岩石源区的性质。

达根别里岩体中锆石的176Lu/177Hf为0.008 48~0.001 681,平均值为0.001 313;fLu/Hf=-0.95~-0.97,均低于上地壳(176Lu/177Hf=0.009 3,fLu/Hf=-0.82,Vervoort et al,1996)。锆石的176Hf/177Hf值范围0.282 191~0.282 321,平均值为0.282 232。利用岩体的形成年龄(942.5±2.6)Ma计算获得锆石的εHf(t)为-0.41~+4.34(图6a),平均值为0.89。

二阶段模式年龄(tDM2)范围为1 417~1 666Ma(图6b),平均值为1 592Ma。

图5 (a)达根别里岩体的LA-ICP-MS锆石U-Pb年龄谐和图和(b)表面加权平均年龄图Fig.5 (a)LA-ICP-MS zircon U-Pb condordia diagram and (b)weighted average ages of Dagenbieli intrusion

图6 达根别里岩体锆石Hf同位素组成图Fig.6 Zircon Hf isotopic data of Dagenbieli intrusion

4 讨论

4.1 岩石成因类型分析

目前最常用的花岗岩成因分类方案为MISA型,即以岩浆源区性质区分的I型(火成岩或下地壳来源)、S型(沉积岩或上地壳来源)、M型(地幔来源)以及强调形成环境(非造山、造山后拉张环境)和成分特点(碱性、无水)的A型花岗岩(吴福元等,2007)。

事实上,各类花岗岩的范围并不是截然分明的,尤其是经过高度分异演化的花岗岩,其矿物组成和化学成分都趋近于低共结花岗岩,使用原有的判断标志可能会鉴定困难,应该结合岩石学、矿物学和地球化学等多种方法进行判定(Chappell et al,1992;吴福元等,2007)。

A.A型花岗岩;FG.分异M、S、I型花岗岩;OGT.未分异M、S、I型花岗岩图7 达根别里岩体FeOT/MgO-Zr+Nb+Ce+Y、(K2O+Na2O)/CaO-Zr+Nb+Ce+Y和10000×Ga/Al-Zr+ Nb+Ce+Y图解(A,B据Whalen et al., 1987;C据Eby,1990)Fig.7 TFeO/MgO/CaO-Zr+Nb+Ce+Y、(K2O+Na2O)/CaO-Zr+Nb+Ce+Y and 10000×Ga/Al/CaO-Zr +Nb+Ce+Y classification diagram(A,B after Whalen et al., 1987;C after Eby,1990)

达根别里花岗岩地化样品具有高硅(76.22%~76.86%)、富碱(7.07%~7.93%)的地球化学特征,具有较高的10 000Ga/Al值(2.91~3.04),明显高于I型和S型花岗岩的平均值(分别为2.1和2.28),且高于A型花岗岩的104Ga/Al值下限为2.6(Whalen et al.,1987),富含Rb、Th、Sm、Ga等元素,Al2O3、CaO、MgO、Ba、Ti、Sr等含量低,Eu负异常明显,具有类似A型花岗岩的地球化学特征。前人研究表明,高分异的I、S型花岗岩通常会表现出与A型花岗岩相似的地球化学特征(King et al., 1997)。岩体中Rb/Sr值(8.34~19.18)高,Sr、Ba、Eu、P、Ti等元素具有显著亏损特征,固结指数为1.07~2.14,分异指数为89.98~92.11,这些特征参数反映岩浆分异程度较高。样品中Ce、Nb、Zr、Y等高场强元素含量较典型A型花岗岩偏低,其总和变化于145.8×10-6~345.2×10-6,小于A型花岗岩的下限值350×10-6(Whalen et al., 1987)。尽管在以104Ga/Al为X轴参数的图解中,样品多数落入A型花岗岩区域,但是在(K2O+Na2O)/CaO-Zr+Nb+Ce+Y、TFeO/MgO-Zr+Nb+Ce+Y、104Ga/Al-Zr+Nb+Ce+Y图解(图7)中显示样品基本落入分异花岗岩范围内。实验岩石学证明,A型花岗岩形成于高温低压环境(King et al.,1997,2001)。

锆石饱和温度(Watson et al,1983)计算结果显示达根别里岩体形成温度分别为723℃、706℃、799℃、808℃,平均为759℃,低于典型A型花岗岩的锆石饱和温度(通常大于800℃,King et al.,1997)。而在花岗岩主元素判别图(图8)中,样品全部显示出高分异钙碱性的特点,岩石含有云母等富水矿物也暗示了岩体具有高分异花岗岩的特点。因此,达根别里花岗岩应属于高分异I型或者S型花岗岩,而不是A型花岗岩。岩体富K低Ca,Na2O/K2O<1,SiO2含量范围狭窄,Fe2O3/FeO<0.4,具明显Eu负异常等地化特征,与S型花岗岩主要特征相吻合;ACNK值均大于1,CIPW标准矿物计算结果显示出现刚玉分子,含量为0.45%~0.98%,与S型花岗岩强过铝质、刚玉分子含量>1%的特征(Chappell et al.,2001)相近,且在演化过程中Pb含量基本呈逐渐减少趋势(King et al., 1997)。同时区域上并未发现同时期或早期岩浆岩伴生现象,结合后文分析岩石具有壳源演化特征,认为达根别里花岗岩应属于高分异S型花岗岩。

图8 花岗岩主元素判别图(据Sylvester,1989)Fig.8 Discrimanation diagram of granite by major elements( after Sylvester,1989 )

图9 达根别里花岗岩体Nb/Ta-Nb图解Fig.9 Nb/Ta-Nb diagram for Dagenbieli intrusion

图10 达根别里花岗岩的锆石εHf(t)-年龄图解Fig.10 Plot of εHf(t) versus U-Pb ages for Dagenbieli intrusion

4.2 岩浆源区特征

不同的微量元素在不同矿物中的分配系数差异较大。因此,可以通过研究岩石的稀土及微量元素特征,探讨其源区熔融残留物,并在结合实验岩石学研究的基础上,判断岩石部分熔融的压力条件。微量元素Eu、Sr在斜长石中的分配系数远远高于其他矿物。因此,花岗质熔体中的Eu和Sr主要受残留相中斜长石的控制,样品具有明显的Eu、Sr负异常,说明岩浆源区残留有大量的斜长石(Xiong et al.,2005)。同时由于石榴子石强烈富集HREE,角闪石强烈富集MREE,因此当石榴子石为主要残留相时,熔体表现为HREE的强烈亏损;当角闪石为主要残留相时,熔体表现为HREE的相对平坦(张旗等,2006;Moyen et al.,2009)。笔者研究的样品具有高的Y(48.40×10-6~97.60×10-6)和Yb(4.66×10-6~9.04×10-6)值以及未分异的HREE形态,(Gd/Yb)N=0.77~1.45,表明源区残留相主要为角闪石,并无石榴子石残留,暗示其源区相对较浅,压力较小。达根别里岩体的Nb、Ta含量分别为12.6×10-6~24.5×10-6和0.89×10-6~1.86×10-6,Nb/Ta值为13.04~14.16,与上地壳平均含量相近(Nb:12×10-6,Ta:0.9×10-6,Nb/Ta:13.3,Rudnick et al.,2003),低于原始地幔的Nb/Ta值17.4(Sun et al,1989)。在Nb/Ta-Nb图解(图9)中,样品点均位于上地壳平均值附近,总体显示了壳源演化岩石的特征。样品Th/U值介于5.16~8.63,高于地壳平均值2.8(Taylor et al., 1985),而Th是亲石元素,在岩浆演化过程中在地壳中优先富集。实验研究表明,Mg#能有效的判断岩浆熔体单纯来源于地壳还是有地幔物质参与,无论熔融程度如何,地壳部分熔融形成的岩石Mg#较低(<40),而Mg#>40的岩石有可能与地幔物质的加入有关(Rapp et al.,1995),样品的Mg#为4.52~7.33,平均值为6.55,指示岩浆形成过程主要与地壳物质有关,并未受到地幔物质的影响。

从Hf同位素测试结果来看,用于测试的11颗锆石中,有4颗锆石的εHf(t)值为负值(-0.12~-0.58),表明其岩浆来自于古老地壳的部分熔融。另外7颗的εHf(t)值为较低的正值(0.31~4.34),变化幅度很小,这种情况有两种可能,一种指示了地幔岩浆的贡献,壳幔岩浆混合形成混源岩浆;另一种可能地壳本身为新生地壳,在后期岩浆热事件的影响下发生部分熔融形成岩石。而达根别里岩体的地球化学特征显示其原始岩浆中并没有幔源物质的加入,同时在野外也没有发现暗色基性-中性微粒包体等岩石学证据来证明原始岩浆与地幔物质曾发生过明显反应。与此同时所有锆石均具有均一的古—中元古代的二阶段Hf模式年龄(tDM2=1.41~1.66Ga)(图10),大于其结晶年龄,因此笔者更倾向于达根别里岩体的原始岩浆为古—中元古代古老地壳和新生地壳部分熔融后发生混合形成,并在随后经历了高度的分异演化。值得注意的是,前文中提到稀土元素显示两种不同的配分型式,11DG01-1h、11DG01-2h号样品表现出LREE略亏损的特征,稀土总量较低,有可能是继承了玄武质源岩的特征(李武显等,2003),有待于进一步探讨。

西天山地区最古老年龄信息是拉尔敦达坂石炭纪火山岩中获得的太古宙锆石,其SHRIMP U-Pb年龄为2 546Ma(朱永峰等,2006)。Nd同位素模式年龄表明木扎尔特岩群存有1 900~1 700Ma的基底地壳残留(陈义兵等,2000),温泉岩群的Sm-Nd模式年龄为2 081~1 884Ma(刘伟等,2009)。李继磊等(2009)对阿吾拉勒西段低压麻粒岩相片麻岩进行离子探针锆石U-Pb年代学结果显示其上交点年龄为(1 609±40)Ma,认为代表了其原岩的岩浆结晶年龄。徐学义等(2010)对那拉提地区古生代花岗岩进行锆石Hf同位素研究,认为那拉提地区前寒武基底组成复杂,存在1.2~1.6Ga的中元古代源区、0.7~1.6Ga中新元古代混合源区及大于1.9Ga的古老地壳源区。这与笔者计算得出的伊犁地块达根别里岩体Hf同位素一二阶段模式年龄(1.4~1.7Ga)是相一致的,暗示伊犁地块具有形成年龄不小于1.7Ga的中元古代结晶基底。

4.3 天山地区新元古代岩浆活动与Rodinia 超大陆的关系

McMenamin et al.(1990)和Hoffman(1991)根据对格林威尔造山运动及其造山带的识别、对比,提出在古元古代初期至中元古代末期全球的主要大陆汇聚成一个全球性超大陆——Rodinia超大陆。Li et al.(2008)对Rodinia超大陆的汇聚—裂解演化过程进行了综合研究,认为其在1 100~900Ma聚合,860~570Ma发生裂解。Rodinia超大陆汇聚-裂解事件在全球的构造格局演化历史中有重要作用,是新元古代时期全球范围内的重大地质演化阶段,在我国各地也有不同程度的响应。例如,李献华等(1998,2005,2008,2012)通过对扬子块体周缘火山岩的研究认为,华南地区新元古代岩浆活动是超大陆裂解的响应,其形成机制与地幔柱有关。塔里木盆地周边地块、阿尔金造山带、青藏高原等地区也发现了新元古代岩浆热事件的记录(胡蔼琴等,1997;高振家等,1993;于海峰等,1999,2000;Gehrels et al.,2003;王超等,2006;陈能松等,2006;Lu et al,2008;张传林等,2007;Zhang et al., 2007;覃小锋等,2008;张志诚等,2010)。天山各地段均出露新元古代花岗岩,其形成时代主要集中在960~910Ma(胡蔼琴等,2010),与格林威尔造山运动(晋宁运动)的时间(1 300~900Ma)相当,可能是这一期岩浆活动在天山地区的响应。这些陆块在新元古代早期(1 300~900Ma)经历了格林威尔造山运动后均参与聚合形成Rodinia超大陆的一部分(胡蔼琴等,2010;左国朝等,2008;陈新跃等,2009;夏林圻等,2009),800Ma左右超大陆发生裂解分离(陆松年等,1998)。

关于伊犁地块新元古代时期岩浆事件的记录罕有报道。锆石U-Pb定年结果表明达根别里花岗岩的形成年龄为(942.5±2.6)Ma,属新元古代早期岩浆活动的产物。研究区内青白口纪库什台群角度不整合覆盖于蓟县纪科克苏群之上,也暗示在10Ga左右伊犁地块曾发生陆缘抬升作用。以上说明伊犁地块在新元古代时期也参与汇聚,形成Rodinia大陆的一部分。这为研究西天山地区前寒武纪基底的构造演化历史及其在Rodinia超大陆中的位置提供了重要信息。

5 结论

(1)LA-ICPMS锆石U-Pb定年结果获得达根别里花岗岩的形成年龄为(942.5 ± 2.6)Ma,是新元古代早期岩浆活动的产物。

(2)岩石地球化学特征表明达根别里花岗岩属高钾钙碱性系列,具有高分异S型花岗岩的特征,是古—中元古代古老地壳和新生地壳部分熔融后发生混合形成原始岩浆,随后经高度分异演化形成。

(3)达根别里岩体为天山地区广泛存在的~0.9Ga构造热事件的响应,结合塔里木周边地块同时代年龄分析,认为伊犁-中天山地块在新元古代早期参与聚合形成Rodinia超大陆。

白建科,李智佩,徐学义,等.新疆西天山伊犁地区石炭纪火山-沉积序列及盆地性质[J].地质论评,2015,61(1):195-206.

BAI Jianke,LI Zhipei,XU Xueyi,et al. Carboniferous Volcanic-Sedimentary Succession and Basin Properties in Ili Area,Western Tianshan,Xinjiang[J].Geological Review,2015,61(1):195-206.

陈能松,李晓彦,王新宇,等.柴达木地块南缘昆北单元变质新元古代花岗岩锆石SHRIMP U-Pb年龄[J].地质通报,2006,25(11):1311-1314.

CHEN Nengsong,LI Xiaoyan,WANG Xinyu,et al. Zircon SHRIMP U-Pb age of Neoproterozoic metagranite in the North Kunlun unit on the southern margin of the Qaidam block in China[J]. Geological Bulletin of China,2006,25(11):1311-1314.

陈新跃,王岳军,孙林华,等.天山冰达坂和拉尔敦达坂花岗片麻岩SHRIMP锆石年代学特征及其地质意义[J]. 地球科学,2009,38(5):424-431.

CHEN Xinyue,WANG Yuejun,SUN Linhua,et al. Zircon SHRIMP U-Pb dating of the granitic gneisses from Bingdaban and Laerdundaban (Tianshan Orogen) and their geological significances[J].Geochimica,2009,38 (5) :424-431.

陈义兵,胡蔼琴,张国新,等.西天山独库公路花岗片麻岩的锆石U-Pb年龄及其地质意义[J].科学通报,1999,44(21):2328-2332.

CHEN Yibing,HU Aiqin,ZHANG Guoxin,et al.Zircon U-Pb age of granitic gneiss on Duku highway in western Tianshan of China and its geological implications[J]. Chinese Sci Bull,1999,44(21):2328-2332.

高俊,钱青,龙灵利,等.西天山的增生造山过程[J]. 地质通报,2009,28(12):1804-1816.

GAO Jun,QIAN Qing,LONG Lingli,et al . Accretionary orogen icprocess of Western Tianshan,China[J] . Geological Bulletin of China,2009,28( 12) :1 804-1816.

高振家,陈晋镰,陆松年,等.前寒武纪地质第6号: 新疆北部前寒武系[M]. 北京: 地质出版社: 1993:1-171.

GAO Zhenjia,CHEN Jinlian,LU Songnian,et al.Precambrian Geology No.6:The Precambrian Geology in Northern Xinjiang[M].Beijing:Geological Publishing House,1993:1-171.

韩宝福,何国琦,吴泰然,等.天山早古生代花岗岩锆石U-Pb定年、岩石地球化学特征及其大地构造意义[J].新疆地质,2004,22(1):4-15.

HAN Baofu,HE Guoqi,WU Tairan,et al. Zircon U-Pb dating and geochemical features of Early Paleozoic granites from Tianshan,Xinjiang: Implications for tectonic evolution[J].Xinjiang Geology,2004,22( 1) :4-11.

胡霭琴,王中刚,涂光炽.新疆北部地质演化及其成岩成矿规律[M].北京: 科学出版社: 1997:36-62.

HU Aiqin,WANG Zhonggang,TU Guangchi.Geological Evolution and Diagenic and Metallogenetic Regularity in Northern Xinjiang[M].Beijing: Science Press,1997: 36-62.

胡霭琴,张国新,张前锋,等.天山造山带基底时代和地壳增生的Nd 同位素制约[J].中国科学(D 辑), 1999,29(3):104-112.

HU Aiqin,ZHANG Guoxin,ZHANG Qianfeng,et al. Constraints on the age of basement and crustal growth in Tianshan Orogen by Nd isotopic conposition[J].Sci China(D):1999,29(3):104-112.

胡蔼琴,郝杰,张国新,等.新疆东昆仑地区新元古代蛇绿岩Sm-N d 全岩-矿物等时线定年及其地质意义[J].岩石学报,2004,20(3):457-462.

HU Aiqin,HAO Jie,ZHANG Guoxin,et al.Whole-rock and minerals Sm-Nd isochron age of early Neoproterozoic ophiolites and its geological significance in the eastern Kunlun area,Xinjiang,China[J]. Acta Petrologica Sinica,2004,20(3):457-462.

胡蔼琴,韦刚健,江博明,等. 天山0.9Ga新元古代花岗岩SHRIMP锆石U-Pb年龄及其地质意义[J].地球科学,2010,39(3):197-212.

HU Aiqin,WEI Gangjian,JIANG Boming,et al. Formation of the 0.9 Ga Neoproterozoic granitoids in the Tianshan Orogen,NW China:Constraints from the SHRIMP zircon age determination and its tectonic significance[J]. Geochimica,2010:39(3):197-212.

黄汲清,任纪舜,姜春发,等. 中国大地构造及其演化[M]. 北京: 科学出版社, 1980: 1-124.

HUANG Jiqing,REN Jishun,JIANG Chunfa,et al. Geotectonic Evolution of China[M]. Beijing:Science Press,1980: 1-124.

李锦轶,王克倬,李亚萍,等.天山山脉地貌特征、地壳组成与地质演化[J].地质通报,2006,25(8):895-915.

LI Jinyi,WANG Kezhuo,LI Yaping,et al. Geomorphological features,crustal composition and geological evolution of the Tianshan Mountains[J]. Geological bulletin of China,2006,25(8):895-915.

李武显,李献华.蛇绿岩中的花岗质岩石成因类型与构造意义[J].地球化学进展,2003,18(3):392-397.

LI Wuxian、LI Xianhua. Rock types and tectonic significance of the Granitoids rocks within ophiolites[J]. Advance in Earth Sciences,2003,18(3):392-397.

李献华.华南晋宁期造山运动-地质年代学和地球化学制约[J].地球物理学报, 1998,41(增刊):184-194.

LI Xianhua. The Jinning Orogeny in southeast China:Geochronological and Geochemical constraints[J]. Chinese Journal of Geophysics,1998,41:184-194.

李献华,梁细荣,韦刚健,等.锆石Hf同位素组成的LAM-MC-ICPMS精确测定[J].地球化学,2003, 32(1):86-90.

LI Xianhua,LIANG Xirong,WEI Gangjiang,et al. Precise analysis of zircon Hf isotopes by LAM-MC-ICPMS[J]. Geochimica,2003,32(1):86-90.

李献华,祁昌实,刘颖,等.扬子块体西缘新元古代双峰式火山岩成因:Hf同位素和Fe/Mn新制约[J].科学通报, 2005,50(19):369-374.

LI, Xianhua,QI Changshi,LIU Ying,et al.Petrogenesis of the Neoproterozoic bimodal volcanic rock salong the

western margin of the Yangtze block:new constraints from Hf isotopes and Fe/Mn ratios [J] .Chinese Sci Bull,2005,50 ( 19):369-374.

李献华,王选策,李武显,等.华南新元古代玄武质岩石成因与构造意义:从造山运动到陆内裂谷[J]. 地球化学,2008,37(4):382-398.

LI Xianhua,WANG Xuance,LI Wuxian,et al. Petrogenesis and tectonic significance of Neoproterozoic basaltic rocks in South China from orogenesis to intracontinental rifting[J]. Geochimica,2008,37(4):382-398.

李献华,李武显,何斌,等.华南陆块的形成与Rodinia超大陆聚合-裂解-观察、解释与检验[J]. 矿物岩石地球化学通报,2012,31(6):543-559.

LI Xianhua,LI Wuxian,HE Bin,et al. Building of the South China Block and its relevance to assembly and breakup of Rodinia supercontinent:Observations, interpretations and tests[J].Bull of Min,Petrology and Geochemistry,2012,31(6):543-559.

刘伟,徐永波,衡星,等.赛里木地块北缘古元古界变质杂岩地质特征及构造意义[J].新疆地质,2009,27(3):201-206.

LIU Wei,XU Yongbo,HENG Xing,et al. Geotectonic features of metamorphic complexes from the northern side of the sayram in Xinjiang. Xinjiang Geology[J].2009,27(3):201-206.

龙灵利,高俊,熊贤明,等.新疆中天山南缘比开(地区)花岗岩地球化学特征及年代学研究[J].岩石学报,2007,23(4):719-732.

LONG Lingli,GAO Jun,XIONG Xianming,et al. Geochemistry and geochronology of granitoids in Bikai region,southern Central-Tianshan mountains,Xinjiang[J]. Acta Petrologica Sinica,2007,23(4):719-732.

陆松年.新元古时期Rodinia超大陆研究进展述评[J]. 地质论评,1998,44(5):489-495.

LU Songnian.A Review of Advance in the Research on the Neoproterozoic Rodinia Supercontinent[J]. Geological Review,1998,44(5):489-495.

覃小锋,夏斌,黎春泉,等.阿尔金构造带西段前寒武纪花岗质片麻岩的地球化学特征及其构造背景[J]. 现代地质,2008,22(1):34-44.

QIN Xiaofeng,XIA Bin,LI Chunquan,et al.Geochemical characteristics and tectonic setting of Precambrian granitic gneiss in the western segment of Altyn Tagh tectonic belt[J].Geoscience,2008,22(1):34-44.

王博,舒良树,DominiqueC,等.伊犁北部博罗霍努岩体年代学和地球化学研究及其大地构造意义[J].岩石学报,2007,23(8):1885-1900.

WANG Bo,SHU Liangshu,DOMINIQUE C,et al. Geochronological and geochemical studies on the Borohoro plutons,north of Yili,NW Tianshan and their Tectonic implication[J]. Acta Petrologica Sinica, 2007,23(8):1885-1900.

王超,刘良,车自成,等.阿尔金南缘榴辉岩带中花岗片麻岩的时代及构造环境探讨[J].高校地质学报,2006,12(1):74-82.

WANG Chao,LIU Liang,CHE Zicheng,et al. U-Pb Geochronology and Tectonic Setting of the Granitic Gneiss in Jianggaleisayi Eclogite Belt,the Southern Edge of Altyn Tagh[J]. Geological Journal of China Universities,2006,12(1):74-82.

王洪亮,徐学义,何世平,等.中国天山及邻区地质图及说明书[M]. 北京:中国地质出版社,2008.

WANG Hongliang,XU Xueyi,HE Shiping,et al . 1:100M Geological Map of Tianshan and Adjacent Area[M] . Beijing:Geological Publishing House.2008.

吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题[J].岩石学报,2007,23(06):1217-1238.

WU Fuyuan,LI Xianhua,YANG Jinhui,et al.Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica,2007,23(06):1217-1238.

吴元保,郑永飞,龚冰,等.北淮阳庐镇关岩浆岩锆石U-Pb年龄和氧同位素组成[J].岩石学报,2004,20(05):1007-1024.

WU Yuanbao,ZHENG Yongfei,GONG Bing,et al. Zircon U-Pb ages and oxygen isotope compositions of the Luzhenguan magmatic complex in the Beihuaiyang zone[J]. Acta Petrologica Sinica,2004,20(05):1007-1024.

夏林圻,夏祖春,李向民,等.华南新元古代中期裂谷火山岩系:Rodinia 超大陆裂谷化-裂解的地质纪录[J].西北地质:2009, 42(1):1-33.

XIA Linqi,XIA Zuchun,LI Xiangming,et al. Mid-Neoproterozo ic Rift-related Volcan ic Rocks in South China:Geological Records of Rif ting and Break-up of the Supercon tinent Rodinia[J]. Northwestern Geology,2009,42(1):1-33.

夏祖春,徐学义,夏林圻,等.天山石炭-二叠纪后碰撞花岗质岩石地球化学研究[J].西北地质,2005,38(1):1-14.

XIA Zuchun,XU Xueyi,XIA Linqi,et al. Geochemistry of the Carboniferous-Permian postcollisional granitic rocks from Tianshan [J].Northwestern Geology,2005,38 (1):1-14.

新疆维吾尔自治区地质矿产局.新疆岩石地层[M]. 中国地质大学出版社,1999.

Xinjiang Bureau of Geology and Mineral Resource Exploration. lithostratigraphic of Xinjiang Provience[M]. China University of Geosciences Publishing.1999.

徐学义,马中平,夏祖春,等.天山石炭-二叠纪后碰撞花岗岩的Nd、Sr、Pb 同位素源区示踪[J]. 西北地质,2005,38(2):1-18.

XU Xueyi,MA Zhong ping,XIA Zuchun,et al. Discussion of the sources and charact eristics on Sr,Nd,Pb isotopes of the Carboniferous to Permian postcollisional granites from Tianshan [J] . Northwesern Geology,2005,38 (2) :1-18.

徐学义,马中平,夏祖春,等.天山中西段古生代花岗岩TIMS法锆石U-Pb同位素定年及岩石地球化学特征研究[J]. 西北地质,2006,39(1):51-75.

XU Xueyi,MA Zhongping,XIA Zuchun,et al. TIMS U-Pb Isotopic Dating and Geochemical Characteristics of Paleozoic Granitic Rocks from the Middle-Western Section of Tianshan[J]. Northwestern Geology,2006,39(1):51-75.

徐学义,王洪亮,马国林,等.西天山那拉提地区古生代花岗岩的年代学和锆石Hf同位素研究[J]. 岩石矿物学杂志,2010,29(6):691-706.

XU Xueyi,WANG Hongliang,MA Guolin,et al. Geochronology and Hf isotope characteristics of the Paleozoic granite in Nalati area,West Tianshan Mountains[J]. Acta Petrologica et Mineralogica,2010,29(6):691-706.

杨经绥,徐向珍,李天福,等.新疆中天山南缘库米什地区蛇绿岩的锆石U-Pb同位素定年早古生代洋盆的证据[J].岩石学报,2011,27(1):77-95.

YANG Jingsui,XU Xinagzhen,LI Tianfu,et al.U-Pb ages of zircons from ophiolite and related rocks in the Kumishi region at the southern margin of Middle Tianshan,Xinjiang:Evidence of Early Paleozoic oceanic basin[J]. Acta Geologica Sinica,2011,27(1):77-95.

于海峰,陆松年,梅华林,等.中国西部新元古代榴辉岩-花岗岩带和深层次韧性剪切带特征及其大陆再造意义[J].岩石学报,1999,15(4):532-538.

YU Haifeng,LU Songnian,MEI Hualin,et al. Characteristics of Neoproterozoic eclogite-granite zones and deep level ductile shear zone in western China and their significance for continental reconstruction[J]. Acta Geologica Sinica,1999,15(4):532-538.

于海峰,陆松年,修群业,等.甘肃北山西部新元古代陆块汇聚与裂解事件的岩石记录[J]. 前寒武纪研究进展,2000,23(2):98-102.

YU Haifeng,LU Songnian,XIU Qunye,et al. Assembly and Crack Events of Neoproterozoic Continental Blocks in Western Beishan Mountain,Gansu Province,China[J]. Progress in Precambrian Research,2000,23(2):98-102.

于海峰,王福君,潘明臣,等.西天山古元古代木扎尔特岩群地质特征及时代厘定[J].新疆地质,2011,29(1):20-25.

YU Haifeng,WANG Fujun,PAN Mingchen,et al. Geological characteristics and ages assurance of the muzhaerte group comples of palaeoproterozoic in western Tianshan mountains[J].Xinjiang Geology,2011,29(1):20-25.

袁洪林,吴福元,高山,等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48(14):1511-1520.

YUAN H L,WU F Y,GAO S,et al. Determination of U-Pb age and rare earth element concentration of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS[J]. Chinese Science Bulletin,2003,48(22):2411-2421.

张传林,陆松年,于海锋,等.青藏高原北缘西昆仑造山带构造演化:来自锆石SHRIMP 及LA-ICP-MS 测年的证据[J].中国科学(D 辑),2007,37 (2):145-154.

张旗,王焰,李承东,等.花岗岩的Sr-Yb分类及其地质意义[J].岩石学报,2006,22(09):2249-2269.

ZHANG Qi,WANG Yan,LI Chengdong,et al.Granite classification on the basis of Sr and Yb contents and its implications[J]. Acta Petrologica Sinica,2006,22(09):2249-2269.

张旗,金惟俊,李承东,等.再论花岗岩按照Sr-Yb的分类:标志[J].岩石学报,2010a,26(04):0985-1015.

ZHANG Qi,JIN Weijun,LI Chengdong,et al. Revisiting the new classification of granitic rocks based on whole-rock Sr-Yb contents:Insex[J].Acta Petrologica Sinica,2010a,26(4):985-1015.

张旗,金惟俊,李承东,等.三论花岗岩按照Sr-Yb的分类:应用[J].岩石学报,2010b,26(12):3431-3455.

ZHANG Qi,JIN Weijun,LI Chengdong,et al.On the classification of granitic rocks based on whole-rock Sr and Yb concentrations III:Practice[J].Acta Petrologica Sinica,2010b,26( 12):3431- 3455.

张志诚,郭召杰,冯志硕,等.阿尔金索尔库里地区元古代流纹岩锆石SHRIMP U-Pb定年及其地质意义[J]. 岩石学报,2010,26(02):597-606.

ZHANG Zhicheng,GUO Zhaojie,FENG Zhishuo,et al. SHRIMP U-Pb age of zircons from Suoerkuli rhyolite in the Altyn Taghmountains and its geological significations[J]. Acta Petrologica Sinica,2010,26(02):597-606.

张遵忠,顾连兴,杨浩,等.东天山平顶山巨眼球状片麻状花岗岩特征及成因[J]. 岩石学报,2005,21(3):889-908.

ZHANG Zunzhong,GU Lianxing,YANG Hao,et al. Characteristics and genesis of the Pingdingshan megaaugen gneissic granite in the eastern Tianshan Mountain areas[J].Acta Pstrologica Sinica,2005,21(3):889-908.

朱永峰,周晶,宋彪,等. 新疆“大哈拉军山组”火山岩的形成时代问题及其解体方案[J].中国地质,2006,33( 3):487 -497.

ZHU Yongfeng,ZHOU Jing,SONG Biao,et al.Age of the “Dahalajunshan” Formation in Xinjiang and its disintegration[J]. Geology in China,2006,33( 3):487 -497.

左国朝,张作衡,王志良,等.新疆西天山地区构造单元划分、地层系统及其构造演化[J]. 地质论评,2008,54(6):731-750.

ZUO Guochao,ZHANG Zuoheng,WANG Zhiliang,et al.Tectonic Division,Stratigraphical Stystem and the Evolution of Western Tianshan Mountains,Xinjiang[J]. Geological Review,2008,54(6):731-750.

BALLARD J R,PALINn JM,WILLIAMS I S,et al .Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copperdeposit of northern Chile by LA-ICP-MS and SHRIMP[J].Geology,2001,29:383-386.

BLICHERT-TOFT J et al.The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system:Earth Planet[J].Sci.Lett.,1997,148:243-258.

CHAPPELL BW and WHITE AJR.I- and S- type granites in the Lachlan Fold Belt.Transactions of the Royal Society of Ed inburgh[J]. Ea th Sci,1992,83:1-26.

GAO J,LI MS,XIAO XC,et al. Paleozoic tectonic evolution of the Tianshan Orogen,northwestern China[J]. Tectonophysics,1998,287:213-231.

GAO J and KLEMD R. Formation of HP-LT rocks and their tectonic implications in the western Tianshan Orogen,NW China:geochemical and age constraints[J]. Lithos 2003,66:1-22.

GEHRELS G E,YIN A,WANG X F. Magm at ic h ist ory of the Northeast ern Tibet an Plat eau [J] . J Geophys Res,2003,108(B9):2423,doi:101 1029/ 2002 JB001876.

GRIFFIN WL,PERSON NJ,BELOUSOVA E, et al. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in limberlites[J]. Geochim. Cosmochim. Acta,2002,64:133-147.

HOFFMAN,P.F.,Did the breakout of Laurentia turn Gondwanaland insideout[J]? Science 1991,252,1409-1412.

KING PL,CHAPPELL BW,ALLEN CM, et al. Are A- type granites the high- tem perature felsic granites ? Evidence from fractionated granites of the W angrah Suite[J]. Aust J Earth Sci, 2001,48:501- 514.

KING PL,White AJR and Chappell BW. Characterization and orig in o faluminous A type granites of the Lachlan Fold Belt,sou theastern Australia[J]. J Petrol,1997,36:371 -391.

LI Zhengxiang,BOGDANOVA SV,COLLINS AS,et al. A ssembly,configuration,and breakup history of Rodinia:a synthesis [J]. Precambrian Res,2008,168(1-2) : 179-210.

LIZUKA T and HIRATA T. Improvements of precision and accuracy in situ Hf isotope microanalysis using the laser ablation-MC-ICPMS technique[J]. Chen. Geol., 2005,220:121-137

LU Songnian,LI Huaikun,ZHANG Chuanlin,et al. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments [J]. Precamb Res,2008,160 (1/2) :94-107.

Mc Menamin,M.A.S.,Mc Menamin,D.L.S., The Emergence of Animals: The Cambrian Breakthrough,p. 1990,217.

PECCERILLO A and TAYLOR SR. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology,1976,58:68-81.

RAPP R P,WATSON E b. Dehydration melting of metabasalt at 8-32kbar:Implications for continental growth and crust-mantle recycling[J]. Journal of Petrology,1995,36:891-931.

RUDNICK R.L. and GAO S. Composition of the continental crust. p.1-64. In The Crust (ed. R.L. Rudnick) Vol. 3 Treatise on Geochemistry(eds. H.D. Holland and K.K. Turekian) [J]. Elsevier-Pergamon,Oxford. 2003.

SCHERER E,MUNKER C and MEZGER K. Calibration of the Luterium-hafniium clock[J]. 2001,293:683-687.

SUN SS and McDoungh. Chemical and isotopicsystematic of oceanic basalts: Implications for mantle composition and processes. Saunders AD and Norry M J. Magmatism in the Ocean Basins[J].Gelo.Soc. Spec. Pub.,London, 1989,42:313-345

VERVOORT J D and PATCHETT P J. Behavior of hafnium and neodymium isotopes in the crust:Consteaints from Precambriar crustally derived granite[J]. Geochim Cosmochim Acta,1996,60:3717-3733.

WATSON E B, HARRISON T M.Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types[J].Earth and Planetary Science Letters,1983,64:295-304.

WHALEN J B,CURRIE K L, CHAPPELL B W. A-type granites:geochemical characteristics,dirimination and petrogenesis[J]. Contrib. Mineral. Petrol., 1987,95:407-419.

WINDLEY B F,ALLEN M B,ZHANG C,et al. Paleozoic accretion and Cenozoic redeformation of the ChineseTien Shan Range,central Asia[J]. Geology,1990,18:128-131.

XIAO W J,ZHANG L C,QIN K Z,et al. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (CHINA):implications for the continental growth of Central Asia[J]. American Journal of Science,2004,304:370-395.

XIONG X L,ADAM J, GREEN T H. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basale:Implications for TTG genesis[J]. Chemical Geology,2005,218:339-359.

XU Xueyi,WANG Hongliang,LI Ping,et al. Geochemistry and geochronology of Paleozoic intrusions in the Nalati (Narati) area in western Tianshan,Xinjiang,China:Implications for Paleozoic tectonic evolution[J].Journal of Asian Earth Sciences,2013,72:33-62.

Geochronology, Geochemistry of Dagenbieli Neoproterozoic Granites in the Yili Block, and Its Geological Implications

LI Ting, LI Zhipei, BAI Jianke, LI Xiaoying

(Xi’an Center of Geological Survey, CGS, Xi’an 710054, Shaanxi, China)

Geochemical studies indicate that the Dagenbieli granitic intrusion in the northern margin of the Yili Block is a high calc-alkaline and weak peraluminous granite with high content of SiO2(76.22%-76.86%), ALK (7.07-7.93) and low content of CaO(0.95%-1.21%) and MgO(0.10%-0.20%). This intrusion has moderate REE concentrations and strong negative Eu anomalies(δEu=0.06-0.19). They are enriched in Rb, Th, Sm, Ga, Nb and depleted in Ba, Ti, Sr. Characterized by average zircon saturation temperature of 759 ℃, consolidation index of 1.07-2.14, differentiation index of 89.98-92.11, the Dagenbieli intrusion is the highly fractionated S-type granites. U-Pb zircon analysis suggests that the intrusions were formed at 942.5±2.6 Ma. The Nb/Ta ratios were close to ratios of the upper crust, Mg# value is 4.52-7.33, and the εHf (t) values of zircon range from -0.41 to +4.34, which indicates that the source rocks were ancient crustal materials with new crustal materials addition. The zircon of intrusion have two-stage Hf model ages of 1.41-1.66 Ga, which means that the Yili Block may be underlain by Middle Proterozoic(>1.7 Ga) crystalline basement. Combined with Neoproterozoic magmatic events in the Tianshan and Tarim area, we suggest that the formation of the Dagenbieli intrusion relate to the Rodinia. This study provides further and important geochemical and age data to support the presence of Precambrian basement in Western Tianshan area and records on the convergence of Rodinia supercontinent.

Neoproterozoic granites; zircon LA-ICP-MS U-Pb age and Hf isotope; geochemistry; western Tianshan; Yili Block

2015-03-31;

2015-05-05

中国地质调查局项目“西北基础地质综合调查与片区总结”(1212011121137)、“天山成矿带基础地质综合研究”(1212010010200)、国家自然科学青年基金“西天山伊犁地块早石炭典型沉积序列及对天山古代洋陆转换时限的制约”(41202077)

李婷(1984-),女,硕士,研究实习员,矿物学、岩石学、矿床学专业。E-mail:liting_xacgs@163.com

P597

A

1009-6248(2015)03-0096-16

猜你喜欢

锆石天山岩浆
天山雪莲
锆石的成因类型及其地质应用
天山儿女
俄成功试射“锆石”高超音速巡航导弹
天山雪鸡
岩浆里可以开采出矿物质吗?
火山冬天——岩浆带来的寒冷
锆石 谁说我是假宝石
狰狞的地球
天山有泪