烷基-α-D-吡喃甘露糖苷中间体的合成*
2015-05-03伍桂龙陈朗秋
伍桂龙, 旷 娜, 陈朗秋, 陈 静
(湘潭大学 化学学院,环境友好化学与应用省部共建教育部重点实验室,湖南 湘潭 411105)
烷基-α-D-吡喃甘露糖苷中间体的合成*
伍桂龙, 旷 娜, 陈朗秋*, 陈 静
(湘潭大学 化学学院,环境友好化学与应用省部共建教育部重点实验室,湖南 湘潭 411105)
烷基-α-D-吡喃甘露糖苷是重要的表面活性剂和抗菌剂.以D-甘露糖为原料,经乙酰化、选择性脱C1位乙酰基、转化成三氯乙酰亚胺酯、与受体偶联和脱保护五步反应立体专一性地合成了八种烷基-α-D-吡喃甘露糖苷中间体,目标化合物的结构经氢谱和质谱分析得到了确证,方法有效并且产率高.
烷基-α-D-吡喃甘露糖苷,D-甘露糖,合成
烷基糖苷又称烷基多苷,作为工业化生产表面活性剂产品的一个典型例子而被人们广泛认知,它们的细胞毒性很低,并且几乎无溶血作用[1],在医药、食品、洗涤剂、农药和日化用品等领域展现出广阔的应用前景[1~4].烷基甘露糖苷是烷基糖苷中重要的一种,近年来有关报道表明,烷基甘露糖苷不仅是一类非离子型表面活性剂[5],同时亦是抗菌剂[5]和甘露糖转移酶的底物[6],关于烷基甘露糖苷的研究也日益深入[7~9].
烷基甘露糖苷的合成一直以来都没有得到很好的解决.如1995年Yoshi等人报道了使用生物酶催化法合成烷基甘露糖苷[10],然而酶系统的高成本和其复杂程度制约着这种方法的使用.2010年Polakova等人报道了用SnCl4合成烷基甘露糖苷的方法[6],但催化剂SnCl4存在强挥发性,对环境造成重金属污染等问题.因此拓展烷基甘露糖苷高效、环保的合成方法仍然十分必要.
本文通过调研文献,参考其他糖苷的合成方法[11~18],探索了一种有效合成烷基-α-D-吡喃甘露糖苷中间体的方法,即采用五乙酰化糖为供体,经过两步活化,然后再与烷基醇类受体偶联合成产物.
1 实验部分
1.1 仪器与试剂
BRUKER-AVANCE-400型核磁共振仪(瑞士Bruker公司);Bruker autoflex Ⅲ TOF/TOF离子阱型电喷雾多级质谱仪(美国Bruker Daltonics公司);X-4数字显示显微熔点测定仪(河南巩义市英峪仪器厂);TLC分析使用青岛海洋化工厂生产的涂层为0.20 ~ 0.25 mm的HF254型硅胶板,用UV或30 %(体积分数)的硫酸甲醇溶液显色观察,柱色谱分离使用青岛海洋化工厂的100~200目硅胶.所用试剂均为市售分析纯或化学纯.
1.2 合成路线
如图1所示,以D-甘露糖(1)为原料,经全乙酰化得到1,2,3,4,6-五-O-乙酰基-D-甘露糖(2)、经过一位脱保护得到2,3,4,6-四-O-乙酰基-D-甘露糖(3)、化合物3经过碱催化得到2,3,4,6-四-O-乙酰基-D-吡喃甘露糖基三氯乙酰亚胺酯(4)、化合物4作为供体与受体醇偶联,立体选择性地得到了8种烷基甘露糖苷(5~12).
1.3 实验方法
1.3.1 2,3,4,6-四-O-乙酰基-D-吡喃甘露糖基三氯乙酰亚胺酯(4)的合成 参考文献[11~18]方法,往250 mL三颈圆底烧瓶中加入60 mL吡啶和100 mL乙酸酐,置于0 ℃冰水浴中冷却搅拌30 min后,分批加入15.00 g (0.083 mol)D-甘露糖(1),保持瓶内温度低于20 ℃,继续搅拌12 h,TLC监测(P/E 3∶1)检查反应完全,用二氯甲烷稀释,依次采用冰冷的饱和碳酸氢钠水溶液、饱和盐水洗涤,无水硫酸钠干燥,过滤,滤液浓缩至干,得到1,2,3,4,6-五-O-乙酰基-D-甘露糖(2)黄色糖浆29.10 g,收率90 %.
往100 mL圆底烧瓶中加入15.00 g(38.5 mmol)合成的1,2,3,4,6-五-O-乙酰基-D-甘露糖2和40 mL四氢呋喃,置于0 ℃冰水浴中冷却搅拌30 min后,加入5.00 mL(46 mmol)苄胺,待反应1 h后,转移至室温下继续反应12 h,TLC监测(P/E 1∶1)反应完全.用二氯甲烷稀释,依次采用冰冷的饱和碳酸氢钠水溶液、饱和盐水洗涤,无水硫酸钠干燥,过滤,滤液浓缩后得到2,3,4,6-四-O-乙酰基-D-甘露糖(3)棕色浆状物10.68 g,收率79.8 %.
往100 mL圆底烧瓶中加入7.50 g(21.5 mmol)合成的黄色浆状物3和20 mL CH2Cl2,搅拌溶解之后,依次加入3.20 mL (25.1 mmol) 1,8-二氮杂二环[5.4.0]十一碳-7-烯(DBU)和13 mL(129 mmol)三氯乙腈,置于0 ℃冰浴中冷却搅拌3 h后,TLC监测(P/E 2∶1)反应完成,减压抽滤,滤液浓缩,柱层析分离(P/E 3∶1),得到白色固体9.04 g,收率85.4 %,直接用于偶联反应.
1.3.2 正丁基-2,3,4,6-四-O-乙酰基-α-D-吡喃甘露糖苷(5)的合成 往100 mL圆底烧瓶中加入8.00 g(16.29 mmol)黄色浆状物4、正丁醇4.50 mL(48.88 mmol)和50 mL CH2Cl2,搅拌溶解之后,在冰浴条件下,滴加2.10 mL(16.29 mmol)三氟化硼乙醚溶液,置于0 ℃冰浴中冷却搅拌4 h后,TLC监测(P/E 2∶1)反应完全,减压抽滤,滤液浓缩,柱层析分离(P/E 3∶1),得到油状物4.34 g,收率66.0 %.1H NMR (CDCl3) δ: 5.35 (dd, 1H,J2,3= 3.2 Hz, H-3), 5.27 (t, 1H,J3,4=J4,5= 9.9 Hz, H-4), 5.23 (s, 1H, H-2), 4.80 (s, 1H, H-1), 4.28 (dd, 1H,J5,6a= 5.3 Hz,J6a,6b= 12.2 Hz, H-6a), 4.11 (d, 1H, H-6b), 3.96~4.02 (m, 1H, H-5), 3.66~3.72(m, 1H, OCH2C3H7), 3.44~3.49 (m, 1H, OCH2C3H7), 2.16 (s, 3H, OAc), 2.10 (s, 3H, OAc), 2.04 (s, 3H, OAc), 1.99 (s, 3H, OAc), 1.59~1.64 (m, 2H, OCH2CH2CH2CH3), 1.36~1.43 (m, 2H, O(CH2)2CH2CH3), 0.94 (t, 3H,J= 7.3 Hz, O(CH2)3CH3). MALDI-TOF MS(m/z):理论计算C18H28O10:404.168 [M];实测427.189 [M+Na]+.
1.3.3 正己基-2,3,4,6-四-O-乙酰基-α-D-吡喃甘露糖苷(6)的合成 同上方法合成得到油状物4.85 g,收率68.9 %.1H NMR (CDCl3) δ: 5.35 (d, 1H, H-3), 5.28 (t, 1H,J3,4=J4,5= 9.5 Hz, H-4), 5.24 (s, 1H, H-2), 4.81 (s, 1H, H-1), 4.28 (d, 1H,J6a,6b= 11.8 Hz, H-6a),4.11(d, 1H,J6a,6b= 12.1 Hz, H-6b), 3.96~4.02 (m, 1H, H-5), 3.66~3.72 (m, 1H, OCH2C5H11), 3.42~3.48 (m, 1H, OCH2C5H11), 2.16 (s, 3H, OAc), 2.11 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.00 (s, 3H, OAc), 1.56~1.60 (m, 2H, OCH2CH2(CH2)3CH3), 1.26~1.39 (m, 6H, O(CH2)2(CH2)3CH3), 0.90 (t, 3H,J= 7.3 Hz, O(CH2)5CH3). MALDI-TOF MS(m/z):理论计算C20H32O10:432.200 [M];实测 455.147 [M+Na]+.
1.3.4 正辛基苯基-2,3,4,6-四-O-乙酰基-α-D-吡喃甘露糖苷(7)的合成 同上方法合成得到油状物5.26 g,收率70.2 %.1H NMR (CDCl3)δ: 5.35 (dd, 1H,J2,3= 3.3 Hz, H-3), 5.27 (t, 1H,J3,4=J4,5= 9.9 Hz, H-4), 5.24 (s, 1H, H-2), 4.80 (s, 1H, H-1), 4.28 (dd, 1H,J5,6a= 5.3 Hz,J6a,6b= 12.2 Hz, H-6a), 4.11 (dd, 1H,J5,6b= 1.8 Hz, H-6b), 3.96~4.02 (m, 1H, H-5), 3.64~3.70 (m, 1H, OCH2C7H15), 3.42~3.48 (m, 1H, OCH2C7H15), 2.16 (s, 3H, OAc), 2.10 (s, 3H, OAc), 2.04 (s, 3H, OAc), 1.99 (s, 3H, OAc), 1.57~1.64 (m, 2H, OCH2CH2(CH2)5CH3), 1.23~1.36 (m, 10H, O(CH2)2(CH2)5CH3), 0.89 (t, 3H,J=6.4 Hz, O(CH2)7CH3). MALDI-TOF MS(m/z):理论计算C22H36O10:460.231 [M];实测483.269[M+Na]+.
1.3.5 正癸基-2,3,4,6-四-O-乙酰基-α-D-吡喃甘露糖苷(8)的合成 同上方法合成得到油状物5.93 g,收率74.6 %.1H NMR (CDCl3)δ: 5.35 (dd, 1H,J2,3= 2.7 Hz, H-3), 5.27 (t, 1H,J3,4=J4,5= 10.0 Hz, H-4), 5.24 (s, 1H, H-2), 4.80 (s, 1H, H-1), 4.28 (dd, 1H,J5,6a= 5.2 Hz,J6a,6b= 12.2 Hz, H-6a), 4.11 (d, 1H, H-6b), 3.95~4.02 (m, 1H, H-5), 3.64~3.70(m, 1H, OCH2C9H19), 3.42~3.48 (m, 1H, OCH2C9H19), 2.16 (s, 3H, OAc), 2.10 (s, 3H, OAc), 2.04 (s, 3H, OAc), 1.99 (s, 3H, OAc), 1.57~1.64 (m, 2H, OCH2CH2(CH2)7CH3),1.23~1.36 (m, 14H, O(CH2)2(CH2)7CH3), 0.88 (t, 3H,J=6.1 Hz, O(CH2)9CH3). MALDI-TOF MS(m/z):理论计算C24H40O10:488.262 [M];实测511.301 [M+Na]+.
1.3.6 十二烷基-2,3,4,6-四-O-乙酰基-α-D-吡喃甘露糖苷(9)的合成 同上方法合成得到油状物6.02 g,收率71.6 %.1H NMR (CDCl3) δ: 5.35 (dd, 1H,J2,3= 3.2 Hz, H-3), 5.27 (t, 1H,J3,4=J4,5= 9.9 Hz, H-4), 5.24 (s, 1H, H-2), 4.80 (s, 1H, H-1), 4.28 (dd, 1H,J5,6a=5.2 Hz,J6a,6b= 12.2 Hz, H-6a), 4.11 (dd, 1H,J5,6b= 1.3 Hz, H-6b), 3.95~4.01 (m, 1H, H-5), 3.64~3.70 (m, 1H, OCH2C11H23), 3.42~3.48 (m, 1H, OCH2C11H23), 2.16 (s, 3H, OAc), 2.11 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.00 (s, 3H, OAc), 1.60~1.65 (m, 2H, OCH2CH2(CH2)9CH3), 1.23~1.36 (m, 18H, O(CH2)2(CH2)9CH3), 0.88 (t, 3H,J=6.4 Hz, O(CH2)11CH3). MALDI-TOF MS(m/z):理论计算C26H44O10:516.293 [M];实测539.346[M+Na]+.
1.3.7 十四烷基-2,3,4,6-四-O-乙酰基-α-D-吡喃甘露糖苷(10)的合成 同上方法合成得到油状物5.94 g,收率67 %.1H NMR (CDCl3) δ: 5.35 (dd, 1H,J2,3= 3.3 Hz, H-3), 5.27 (t, 1H,J3,4=J4,5= 9.9 Hz, H-4), 5.24 (s, 1H, H-2), 4.80 (s, 1H, H-1), 4.28 (dd, 1H,J5,6a= 5.3 Hz,J6a,6b= 12.2 Hz, H-6a), 4.11 (dd, 1H,J5,6b= 1.4 Hz, H-6b), 3.96~4.01 (m, 1H, H-5), 3.64~3.70 (m, 1H, OCH2C13H27), 3.42~3.48 (m, 1H, OCH2C13H27), 2.16 (s, 3H, OAc), 2.10 (s, 3H, OAc), 2.04 (s, 3H, OAc), 1.99 (s, 3H, OAc), 1.60~1.64 (m, 2H, OCH2CH2(CH2)11CH3), 1.23~1.36 (m, 22H, O(CH2)2(CH2)11CH3), 0.88 (t, 3H,J=6.6 Hz, O(CH2)13CH3). MALDI-TOF MS(m/z):理论计算C28H48O10:544.325 [M];实测567.359 [M+Na]+.
1.3.8 十六烷基-2,3,4,6-四-O-乙酰基-α-D-吡喃甘露糖苷(11)的合成 同上方法合成得到油状物6.76 g,收率72.4 %.1H NMR (CDCl3) δ: 5.35 (dd, 1H,J2,3= 3.3 Hz, H-3), 5.27 (t, 1H,J3,4=J4,5= 10.0 Hz, H-4), 5.23 (s, 1H, H-2), 4.80 (s, 1H, H-1), 4.28 (dd, 1H,J5,6a= 5.3 Hz,J6a,6b= 12.2 Hz, H-6a), 4.11 (dd, 1H,J5,6b= 2.0 Hz, H-6b), 3.96~4.01 (m, 1H, H-5), 3.64~3.70 (m, 1H, OCH2C15H31), 3.42~3.48 (m, 1H, OCH2C15H31),2.16(s, 3H, OAc), 2.10 (s, 3H, OAc), 2.04 (s, 3H, OAc), 1.99 (s, 3H, OAc), 1.60~1.64 (m, 2H, OCH2CH2(CH2)13CH3), 1.23~1.36 (m, 26H, O(CH2)2(CH2)13CH3), 0.88 (t, 3H,J= 6.6 Hz, O(CH2)15CH3). MALDI-TOF MS(m/z):理论计算C30H52O10:572.356 [M];实测595.377 [M+Na]+.
1.3.9 十八烷基-2,3,4,6-四-O-乙酰基-α-D-吡喃甘露糖苷(12)的合成 同上方法合成得到油状物7.5 g,收率76.9 %.1H NMR (CDCl3) δ: 5.35 (dd, 1H,J2,3= 3.2 Hz, H-3), 5.27 (t, 1H,J3,4=J4,5= 9.9 Hz, H-4), 5.23 (s, 1H, H-2), 4.80 (s, 1H, H-1), 4.28 (dd, 1H,J5,6a= 5.3 Hz,J6a,6b= 12.1 Hz, H-6a), 4.11 (dd, 1H,J5,6b= 1.3 Hz, H-6b), 3.96~4.01 (m, 1H, H-5), 3.64~3.70 (m, 1H, OCH2C17H35), 3.42~3.48 (m, 1H, OCH2C17H35), 2.16 (s, 3H, OAc), 2.10 (s, 3H, OAc), 2.04 (s, 3H, OAc), 1.99 (s, 3H, OAc), 1.60~1.64 (m, 2H, OCH2CH2(CH2)15CH3), 1.23~1.36 (m, 30H, O(CH2)2(CH2)15CH3), 0.88 (t, 3H,J=6.4 Hz, O(CH2)17CH3). MALDI-TOF MS(m/z):理论计算C32H56O10:600.387 [M];实测623.323 [M+Na]+.
2 结果与讨论
D-甘露糖及相应的糖苷端基质子的偶合常数J1,2=3Jea=3Jee较小,甚至接近于0,有时表现为一个变宽的单峰,不能依据J1,2确定其构型为1,2-顺式还是1,2-反式构型[16~18].但是,比对所合成的α-糖苷(5~12)1H NMR数据可知,α-糖苷结构的H-1的化学位移值与文献[6] H-1的化学位移值基本一致.此外,MS数据也得到佐证.
3 结 论
以D-甘露糖为原料,经全乙酰化得到1,2,3,4,6-五-O-乙酰基-D-甘露糖(2),经过一位脱保护得到化合物3,化合物3经过有机碱DBU催化得到化合物4,4作为活性高的供体与活性较低的受体醇偶联,立体选择性地获得了目标化合物烷基糖苷中间体甘露糖苷5~12,方法有效,产率较高.
[1] XU W J, OSEI-PREMPEH G, LEMA C, et a1. Synthesis, thermal properties, and cytotoxicity evaluation of hydrocarbon and fluorocarbon alkyl β-D-xylopyranoside surfactants[J]. Carbohydr ICes, 2012, 349: 12-23.
[2] YAKIMCHUK O D, KOTOMIN A A, PETEL’SKII M B, et a1. Cleaning action and surfactant properties of alkyl glucosides[J]. Russian Journal of Applied Chemistry, 2004, 77(12): 2 001-2 005.
[3] PERSSON C M, CLAESSON P M. Interfacial behavior ofn-octylβ-D-glucopyranoside compared to that of a technical mixture consisting of octyl glucosides[J]. Langmuir, 2000, 16: 10 227-10 235.
[4] OGAWA S, ASAKURA K, OSANAI S. Freezing and melting behavior of an octylβ-D-glucoside-water binary system-inhibitory effect of octylβ-D-glucoside on ice crystal formation[J]. Physical Chemistry Chemical Physics, 2012, 14(47): 16 312-16 320.
[5] MATSUMURA S, IMAI K, YOSHIKAWA S, et al. Surface activities, biodegradability and antimicrobial properties ofn-alkyl glucosides, mannosides and galactosides[J]. Journal of the American Oil Chemists’ Society, 1990, 67(12): 996-1 001.
[7] WELLENS A, LAHMANN M, TOUAIBIA M, et al. The tyrosine gate as a potential entropic lever in the receptor-binding site of the bacterial adhesin fimH[J]. Biochemistry, 2012, 51(24): 4 790-4 799.
[9] MAYATO C, DORTA R L, VZQUEZ J T. Experimental evidence on the hydroxymethyl group conformation in alkylβ-D-mannopyranosides[J]. Tetrahedron: Asymmetry, 2004, 15: 2 385-2 379.
[10] ITOH H, KAMIYAMA Y. Synthesis of alkyl β-mannosides from mannobiose byaspergillusnigerβ-mannosidase[J]. Journal of Fermentation and Bioengineering, 1995, 80(5): 510-512.
[11] ADASCH V, HOFFMANN B, MILIUS W, et al. Preparation of alkylα- andβ-D-glucopyranosides, thermotropic properties and X-ray analysis[J]. Carbohydrate research, 1998, 314(3): 177-187.
[12] BORNAGHI L F, POULSEN S A. Microwave-accelerated Fischer glycosylation[J]. Tetrahedron Letters, 2005, 46(20): 3 485-3 488.
[13] NICOLAOU K C, PFEFFERKORN J A, ROECKER A J, et al. Natural product-like combinatorial libraries based on privileged structures. 1. General principles and solid-phase synthesis of benzopyrans[J]. Journal of the American Chemical Society, 2000, 122(41): 9 939-9 953.
[14] 卢高超,陈朗秋,唐秋娥,等.L-薄荷基-β-D-乳糖苷的简便合成[J].食品科学, 2013, 34(04): 83-87.
[15] 刘灯峰,陈朗秋,李宏伟,等. 烷基-β-D-吡喃葡萄糖苷的合成及性能[J]. 应用化学, 2013, 30(10): 1 120-1 126.
[16] 陈朗秋, 刘开科, 刘永青,等.L-薄荷基-α-D-甘露糖苷的立体专一性合成[J]. 湘潭大学自然科学学报, 2011, 33( 3): 77-81.
[17] 陈朗秋,赖端,宋志伟,等. 寡糖的立体选择性合成策略[J]. 有机化学, 2006, 26(5): 627-642.
[18] 蔡孟深,李中军. 糖化学-基础、反应、合成、分离及结构[M]. 北京:化学工业出版社, 2006: 370-372.
责任编辑:朱美香
Syntheses of Alkylα-D-Mannopyranoside Intermediates
WUGui-long,KUANGNa,CHENLang-qiu*,CHENJing
(Key Laboratory of Envirmentally Friendly Chemistry and Application of Ministry of Education,College of Chemistry, Xiangtan University, Xiangtan 411105 China)
Alkylα-D-mannopyranosides are important non-ionic surfactant and antimicrobial. Alkylα-D-mannopyranosides were stereospecifically synthesized through five consecutive steps including acetylation, selective deacetylation at the C1 position, conversion to trichloroacetimidate and coupling with acceptors. The structure of the target compound was confirmed by the1H NMR and MS analysis, the method is effective and practical, and the yield is high.
alkylα-D-mannopyranoside;D-mannose; synthesis
2015-03-09
湖南省自然科学基金项目(14JJ2067;10JJ6023)
陈朗秋(1964— ),男,湖南 浏阳人,博士,教授.E-mail:chengood2003@263.net
O629.13
A
1000-5900(2015)02-0075-05