APP下载

粪菌移植在肠易激综合征中的研究进展

2015-04-15弓三东崔立红

解放军医学院学报 2015年10期
关键词:粪菌菌群杆菌

弓三东,崔立红

海军总医院 消化内科,北京 100048

粪菌移植在肠易激综合征中的研究进展

弓三东,崔立红

海军总医院 消化内科,北京 100048

粪菌移植(fecal microbiota transplantation,FMT)可以纠正肠道微生态失衡,近年来已成功应用于部分肠道微生态相关疾病的治疗,但FMT在肠易激综合征(irritable bowel syndrome,IBS)中的研究仍较少。本文对肠道微生态与IBS的关系、FMT在IBS中的临床应用、可能机制、安全性及应用前景等方面的最新进展进行综述。

粪菌移植;肠道菌群;肠道微生态;肠易激综合征

1 肠道微生态与肠易激综合征的关系

1.1 正常肠道微生态 人体肠道内含有100万亿多的微生物,种类多达500 ~ 1 000[6]。这些微生物包括细菌(99.9%以上)、真菌、病毒、原虫和寄生虫等[7]。它们参与维持肠道的正常生理和免疫功能。因此,FMT实际上应为“粪微生态移植”。人类肠道微生态受遗传、生活环境、饮食习惯和抗生素的影响而存在个体和地域差异[8-9]。目前研究发现,相比于人体其他部位(皮肤、口腔),肠道微生态能长期保持相对稳定[10-11]。

有学者将人类肠道菌群宏基因组分为拟杆菌属、普里沃菌属和瘤胃球菌属为代表的3个肠型[12]。肠道菌群可分为共生菌、条件致病菌和过路菌3类[13]:1)共生菌是肠道的优势菌群,对机体营养及免疫调节具有重大益处;2)条件致病菌在特定条件下具有侵袭性;3)过路菌在微生态失调而数量超出正常水平时可致人体发病。肠道微生态的多样性下降会破坏微生物群的稳定性。已有研究表明,肠道微生态紊乱与多种肠内外疾病相关[14],如难辨梭状芽胞杆菌感染[15]、炎症性肠病[16]、肠易激综合征[17-18]、代谢综合征[19]、帕金森病[20]、特发性血小板紫癜[21]、肿瘤[22]、慢性疲劳综合征[23]和食物过敏等[24-26]。

1.2 IBS发病机制及影响因素 IBS发病因素众多,涉及复杂的脑-肠轴、免疫系统和肠道微生态之间的互相作用[27]。其病理生理学改变包括肠道蠕动异常,内脏高敏感性,肠道细菌感染后状态,食物过敏及肠道微生态改变等[28]。肠道微生态失调和IBS患者的免疫、运动及神经等特征变化相关[29-30]。越来越多的证据表明,IBS是一种免疫-炎症模式的胃肠道疾病。IBS存在一个显著复杂的低度炎症常态,以T细胞、细胞因子和C反应蛋白等炎性因子为特征[31]。IBS免疫改变包括Toll样受体(toll-like receptors,TLRs)表达和促炎细胞因子、巨细胞及淋巴细胞增加[32-33]。TLRs常表达于免疫细胞如巨噬细胞、树突状细胞、中性粒细胞以及肠上皮细胞等。稳定的肠道微生态有赖于TLRs与肠道干细胞Wnt信号通道的正常调节机制[13]。其中,TLR2连同TLRl或TLR6形成二聚体可以识别细菌的细胞壁脂蛋白;TLR4可在CD14和MD-2辅助下识别革兰阴性菌产生的脂多糖;TLR5能识别细菌鞭毛蛋白,激活胞内信号核因子NF-κB、诱生黏附分子和炎性细胞因子。感染后IBS即为一重要的具体的病理类型。有研究证实,与传统饲养小鼠相比,无菌小鼠表现出胃排空延迟,肠转运时间减慢,更易发生肠道感染[34-35]。当机体发生急性胃肠炎后,病原菌可释放致死性细胞肿胀毒素,并通过分子模拟和自身抗体机制干扰内脏正常运动[36],导致肠道微生态失调而发展为IBS,最初疾病持续时间是发展为IBS的高危因素[37]。感染后IBS患者外周血中可见肿瘤坏死因子-α、IL-1、IL-6等水平升高,在肠黏膜中可见CD3、CD25细胞和淋巴细胞[37]。肠黏膜细胞组成改变、促炎/抗炎细胞因子失衡和神经递质紊乱是感染后IBS的可能发病机制[38]。抗生素可对肠道微生态造成短期或长期影响。一项26 107病例的回顾性研究显示,暴露于广谱抗生素的患者IBS发病率较高[39]。这有可能是抗生素的使用改变了肠道微生态,从而导致IBS的进展。清肠可能对肠道生态系统有害。基于聚乙二醇的肠道清洁剂的使用可导致肠道黏膜黏附细菌的损失[40]。这种清肠对IBS的影响从未被研究,但对肠道微生态的危害是可能的。

Tana等[41]研究显示,IBS中乳酸杆菌和韦永球菌的增加会导致短链脂肪酸,如乙酸、丙酸、丁酸和总有机酸升高。IBS中由于乳酸杆菌等降低而导致短链脂肪酸的减少可能与IBS的症状相关。有研究证实短链脂肪酸可直接影响IBS患者的症状表达及严重程度[42]。IBS患者粪便和肠道黏膜中丁酸生产菌群的比例较健康对照组低。丁酸是最主要的短链脂肪酸,由未消化的糖类在肠道经微生物发酵而成,是上皮细胞能量的重要来源,并对结肠黏膜有许多有益的作用。这些作用包括抑制炎症和癌变,增强结肠黏膜防御屏障等[43]。

1.3 IBS肠道微生态特点 数据表明,IBS组的肠道微生态与健康对照组不同,并且腹泻型IBS及便秘型IBS间也不同[44]。2005年有研究首次应用定量聚合酶链反应(polymerase chain reaction,PCR)方法发现IBS患者的粪便样本中链状双歧杆菌和拟球梭菌含量低[45]。Saulnier等[46]发现IBS儿童γ-蛋白菌含量较健康者显著增高。Rajilić-Stojanović等[47]检测到IBS患者粪便的厚壁菌门和拟杆菌的比例有所增加。Parkes等[48]利用原位杂交技术研究IBS患者的直肠黏膜相关菌群,发现IBS患者总体上细菌含量较高,尤以类杆菌和产气荚膜梭菌属为著。Simrén等[49]研究也表明IBS患者的菌群成分明显不同于健康对照组。Carroll等[50]应用了分子指纹技术调查腹泻型IBS患者的粪便和结肠黏膜,发现其微生物群落明显和正常对照组不同,且粪便样本中微生物多样性明显减少。便秘型IBS的肠道微生态表现为硬壁菌门和拟杆菌门的比例增加[51]。Chassard等[52]发现以便秘为主要表现的IBS患者肠道中硫酸盐还原菌较健康人明显减少。Kim等[53]对便秘型IBS和甲烷呼气试验阳性患者的肠道微生态分析后分离出了产甲烷菌-史氏甲烷短杆菌,并发现其数量增加。混合型IBS患者粪便中肠杆菌显著增加,乳杆菌明显减少,肠道定植抗力降低[54]。还有研究显示混合型IBS的亚利菌和拟杆菌含量较高[44,48]。

大量研究发现,IBS患者的肠道细菌差异丰富,然而没有具体哪一种特异性微生物和IBS特别相关[55]。目前关于IBS患者的肠道微生态变化有以下5个较为一致的结论[56]:1)肠道中优势微生物群数量显著降低;2)肠道微生物群多样性以及微生态稳定性遭到破坏而下降;3)肠道主要菌群代表如乳酸杆菌和双歧杆菌数量减少,而大肠菌群和拟杆菌属数量增加;4)腹泻型IBS较便秘型IBS患者的肠道微生群结构改变和数量变化更明显;5)腹泻型IBS与炎症性肠病及其他腹泻型疾患的肠道微生物群落的组成和数量改变具有一定相同之处。

IBS症状与菌群丰富度相关。Rajilić-Stojanović等[47]报道,厚壁菌门和变形菌的部分成员与IBS症状评分相关,例如双歧杆菌与疼痛评分呈负相关。Jeffery等[44]报道,蓝藻与饱腹感、腹胀以及胃肠道症状评分相关,而变形菌与心理和疼痛阈值相关。Parkes等[48]检测到双歧杆菌和乳酸杆菌与排便频率呈负相关。Malinen等[57]采用定量PCR的研究发现,瘤胃球菌与IBS症状的严重程度相关。产硫化氢菌可增加IBS内脏敏感性并减少肠道传输时间[58]。Attaluri等[59]的研究发现,慢传输型便秘患者的甲烷短杆菌检出率显著高于正常传输型便秘患者和对照者。

需要指出的是,粪菌样品不一定代表肠道黏膜细菌组成[5]。黏膜相关细菌与宿主密切接触,并有可能会对人体健康产生重大影响,因而应用黏膜活检来分析菌群成分对于澄清IBS背后的病理生理机制而言必不可少。

2 粪菌移植治疗肠易激综合征的临床应用

目前治疗肠易激综合征的主要方法包括止泻药、解痉药、抗抑郁药以及改善肠道微生态治疗等。益生菌能重建IBS患者的肠道微生态[18,60]。从某种意义上说,粪菌移植可能比益生菌更为有利,因为粪菌是人类的终极益生菌[61]。目前在粪菌的人性化获取、移植菌群的数量、移植的流程、粪菌库的建立、有效减少细菌死亡等方面已进行了一系列标准化建设[62],且国内已经研发出了智能化粪菌分离系统,显著提高了粪菌分离效率[63],因而有利于FMT的推广应用。目前FMT已被成功应用于严重的难辨艰难梭菌感染,以及炎症性肠病、多发性硬化、自闭症和慢性疲劳综合征等方面,然而,用来治疗肠易激综合征是最近才开始探究的[64-65],研究报道较少。据目前可查文献资料,FMT治疗IBS仅见于一些欧美国家的研究报道,并显示出了良好的疗效,但国内尚未开展此方面的研究。

澳大利亚悉尼消化疾病中心的研究人员曾首次通过肠镜行FMT治疗IBS和慢性便秘患者,结果显示,FMT的治愈率可达36%(20/55)[66]。荷兰阿姆斯特丹学术医疗中心的一项长期的随访研究显示,45例慢性便秘患者给予结肠镜下FMT治疗后,排便困难、腹胀和腹痛等症状明显减轻者占89%,其中18例患者在9 ~ 18个月后已能正常排便[1,19]。美国纽约贝斯以色列医学中心最近一项13例难治性IBS患者接受FMT治疗的研究结果显示,症状有所改善者占70%,包括腹痛(72%)、排便习惯(69%)、消化不良(67%)、腹胀(50%)和排气(42%)[67]。

3 粪菌移植治疗肠易激综合征的可能机制

肠道微生态失衡是IBS的重要病因之一,故目前几种治疗方法目的都是重新建立一个健康、有益的肠道微生态系统。重建肠道微生态主要有3种途径:抗生素、益生菌和FMT[68]。FMT可以调节肠道微生态,改善肠黏膜通透性;通过TLR途径激活肠道体液免疫反应合成IgA、IgG和IgM,对肠黏膜起保护作用;通过降低肠腔内的pH值,增加细菌素或H2O2的合成以竞争性抑制病原菌的黏附和易位[69]。FMT还可通过抑制促炎因子、Th1分化/细胞因子、T细胞活性、白细胞的黏附、免疫刺激因子和抗炎因子来改善免疫失调[13]。

总之,粪菌移植能够发挥确切疗效的原因,是移植的人粪菌群尽可能维持了健康供者的功能肠道微生态,并最终在受者肠道内重建了适合受者的肠道微生态平衡。其本质是通过对异常免疫、炎性反应、神经递质数量与活性、血管活性物质数量与活性、能量代谢等的调节而治疗疾病[70]。

4 粪菌移植的安全性探讨

FMT的途径包括灌肠、鼻胃管、十二指肠、空肠、结肠镜等,其中应用较多的是鼻胃(肠)管、结肠镜和灌肠[15,71],报道较多的是结肠镜和灌肠途径[22,72-73]。尽管通过结肠镜或灌肠的FMT在术前及术后有其严格的筛查和监测机制,但是FMT作为一种新型的治疗手段,其安全性必然受到关注。因为粪便由成千上万的充满生物活性物质的细菌菌株组成,且某些细菌可能与特定疾病有关,所以人们担心FMT可能导致新疾病的发生。迄今为止,FMT的安全性研究主要在难辨艰难梭菌感染方面,FMT不良反应较少,大多数患者在接受FMT治疗当天有一过性的腹泻,少数患者可能有腹胀、嗳气等症状,但多不严重,一般2 ~ 3 d后消失[74-75]。然而FMT在肠易激综合征方面的安全性研究仍然缺乏。一项13例IBS患者接受FMT治疗的长期随访研究中发现,只有1例有短暂的腹胀[67]。一项平均11个月的长期随访研究表明,FMT没有长期不良反应,并且参与者没有患有任何新疾病[29]。初步研究支持FMT重建肠道动态平衡有助于IBS的治疗。关于FMT的长期安全性,如是否会导致机体远期出现感染、炎症和消化道肿瘤等,目前缺乏长期随访资料[76]。

5 结语

粪菌移植有较好的临床应用前景,但也存在相当多问题。FMT在治疗IBS方面的初步病例报告和回顾性研究已显示出了满意结果。但迄今为止,还没有前瞻性、随机、双盲、安慰剂对照试验[29]。虽然有研究证实肠易激综合征患者和健康组的粪便菌群有所差异,但是未来的研究仍需通过实时酶链聚合反应来进一步评估FMT前后肠道菌群的组成情况,以及比较健康对照组和捐助者的细菌种群,观察改变的菌群及其代谢产物在IBS治疗中的作用和机制。相信随着FMT技术的不断发展、多中心临床研究的证实及相应伦理学跟进,FMT的研究和应用将获得全面、长足发展。

1 Borody TJ, Khoruts A. Fecal microbiota transplantation and emerging applications[J]. Nat Rev Gastroenterol Hepatol, 2012, 9(2):88-96.

2 张发明.粪菌移植的概念、历史、现状和未来[J].中国内镜杂志,2012,18(9):930-934.

3 Zhang F, Luo W, Shi Y, et al. Should we standardize the 1,700-year-old fecal microbiota transplantation?[J]. Am J Gastroenterol,2012, 107(11): 1755.

4 Drossman DA. The functional gastrointestinal disorders and the Rome III process[J]. Gastroenterology, 2006, 130(5): 1377-1390.

5 König J, Brummer RJ. Alteration of the intestinal microbiota as a cause of and a potential therapeutic option in irritable bowel syndrome[J]. Benef Microbes, 2014, 5(3): 247-261.

6 Hanahan D, Weinberg RA. Hallmarks of cancer: the next Generation[J]. Cell, 2011, 144(5): 646-674.

7 Clemente JC, Ursell LK, Parfrey LW. The impact of the gut microbiota on human health: an integrative view[J]. Cell, 2012,148(6): 1258-1270.

8 Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography[J]. Nature, 2012, 486(742):222-227.

9 Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes[J]. Science, 2011, 334(652): 105-108.

10 Rajilić-Stojanović M, Heilig HG, Tims S, et al. Long-term monitoring of the human intestinal microbiota composition[J]. Environ Microbiol, 2012, 15(4): 1146-1159.

11 Caporaso JG, Lauber CL, Costello EK, et al. Moving pictures of the human microbiome[J]. Genome Biol, 2011, 12(5): R50.

12 Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome[J]. Nature, 2011, 473(7346): 174-180.

13 肖传兴,任建林.粪菌移植治疗克罗恩病[J].临床内科杂志,2015,32(2):79-81.

14 De Vos WM, De Vos EA. Role of the intestinal microbiome in health and disease: from correlation to causation[J]. Nutr Rev, 2012, 70(Suppl 1): S45-S56.

15 Hamilton MJ, Weingarden AR, Sadowsky MJ, et al. Standardized frozen preparation for transplantation of fecal microbiota for recurrent Clostridium difficile infection[J]. Am J Gastroenterol, 2012, 107(5): 761-767.

16 Reddy SS, Brandt LJ. Clostridium difficile infection and inflammatory bowel disease[J]. J Clin Gastroenterol, 2013, 47(8):666-671.

17 Sekirov I, Russell SL, Antunes LC, et al. Gut microbiota in health and disease[J]. Physiol Rev, 2010, 90(3):859-904.

18 Ringel Y, Quigley EMM, Lin HC. Using probiotics in gastrointestinal disorders[J]. Am J Gastroenterol, 2012, (S1): 34-40.

19 Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome[J]. Gastroenterology, 2012, 143(4):913-6.e7.

20 Ananthaswamy A. Faecal transplant eases symptoms of Parkinson’s disease[J]. New Scientist, 2011, 209(2796): 8-9.

21 Borody TJ, Campbell J, Torres M, et al. Reversal of idiopathic thrombocytopenic purpura (ITP) with fecal microbiota transplantation(FMT)[J]. Am J Gastroenterol, 2011, 106: S352.

22 Brandt LJ, Aroniadis OC. An overview of fecal microbiota transplantation: techniques, indications, and outcomes[J]. Gastrointest Endosc, 2013, 78(2): 240-249.

23 Borody TJ, Nowak A, Torres M, et al. Bacteriotherapy in chronic fatigue syndrome: a retrospective review[J]. Am J Gastroenterol,2012, 107(S1):S591-S592.

24 Borody TJ, Campbell J. Fecal microbiota transplantation:techniques, applications, and issues[J]. Gastroenterol Clin North Am, 2012, 41(4): 781-803.

25 Borody TJ, Paramsothy S, Agrawal G. Fecal microbiota transplantation: indications, methods, evidence, and future directions[J]. Curr Gastroenterol Rep, 2013, 15(8): 337.

26 Smits LP, Bouter KE, De Vos WM, et al. Therapeutic potential of fecal microbiota transplantation[J]. Gastroenterology, 2013, 145(5): 946-953.

27 Ringel Y, Maharshak N. Intestinal microbiota and immune function in the pathogenesis of irritable bowel syndrome[J]. Am J Physiol Gastrointest Liver Physiol, 2013, 305(8): G529-G541.

28 Ohman L, Simrén M. Intestinal microbiota and its role in irritable bowel syndrome (IBS)[J]. Curr Gastroenterol Rep, 2013, 15(5):323.

29 Pinn DM, Aroniadis OC, Brandt LJ. Is fecal microbiota transplantation (FMT) an effective treatment for patients with functional gastrointestinal disorders (FGID)?[J]. Neurogastroenterol Motil, 2015, 27(1): 19-29.

30 Bonfrate L, Tack J, Grattagliano I, et al. Microbiota in health and irritable bowel syndrome: current knowledge, perspectives and therapeutic options[J]. Scand J Gastroenterol, 2013, 48(9):995-1009.

31 Hod K, Dickman R, Sperber A, et al. Assessment of high-sensitivity CRP as a marker of micro-inflammation in irritable bowel syndrome[J]. Neurogastroenterol Motil, 2011, 23(12): 1105-1110.

32 Brint EK, Macsharry J, Fanning A, et al. Differential expression of toll-like receptors in patients with irritable bowel syndrome[J]. Am J Gastroenterol, 2011, 106(2): 329-336.

33 Belmonte L, Beutheu Youmba S, Bertiaux-Vandaële N, et al. Role of toll like receptors in irritable bowel syndrome: differential mucosal immune activation according to the disease subtype[J]. PLoS One,2012, 7(8): e42777.

34 Stecher B, Chaffron S, Käppeli R, et al. Like will to like:abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria[J]. PLoS Pathog, 2010, 6(1): e1000711.

35 Dupont AW, Jiang ZD, Harold SA, et al. Motility abnormalities in irritable bowel syndrome[J]. Digestion, 2014, 89(2): 119-123.

36 Pimentel M, Chang C, Lembo A, et al. Anti-vinculin antibodies:multicenter validation of diagnostic blood test for irritable bowel syndrome (IBS)[J]. Am J Gastroenterol, 2013, 108(S1):A1887.

37 Spiller R, Lam C. An update on post-infectious irritable bowel syndrome: role of genetics, immune activation, serotonin and altered microbiome[J]. J Neurogastroenterol Motil, 2012, 18(3): 258-268.

38 Dahlqvist G, Piessevaux H. Irritable bowel syndrome: the role of the intestinal microbiota, pathogenesis and therapeutic targets[J]. Acta Gastroenterol Belg, 2011, 74(3): 375-380.

39 Villarreal AA, Aberger FJ, Benrud R, et al. Use of broad-spectrum antibiotics and the development of irritable bowel syndrome[J]. WMJ, 2012, 111(1): 17-20.

40 Harrell L, Wang Y, Antonopoulos D, et al. Standard colonic lavage alters the natural state of mucosal-associated microbiota in the human colon[J]. PLoS One, 2012, 7(2): e32545.

41 Tana C, Umesaki Y, Imaoka A, et al. Altered profiles of intestinal microbiota and organic acids May be the origin of symptoms in irritable bowel syndrome[J]. Neurogastroenterol Motil, 2010, 22(5):512-519.

42 Lee KJ, Tack J. Altered intestinal microbiota in irritable bowel syndrome[J]. Neurogastroenterol Motil, 2010, 22(5): 493-498.

43 Hamer HM, Jonkers DM, Vanhoutvin SA, et al. Effect of butyrate enemas on inflammation and antioxidant status in the colonic mucosa of patients with ulcerative colitis in remission[J]. Clin Nutr, 2010,29(6): 738-744.

44 Jeffery IB, O’toole PW, Öhman L, et al. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota[J]. Gut, 2012, 61(7): 997-1006.

45 Malinen E, Rinttilä T, Kajander K, et al. Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR[J]. Am J Gastroenterol, 2005, 100(2):373-382.

46 Saulnier DM, Riehle K, Mistretta TA, et al. Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome[J]. Gastroenterology, 2011, 141(5): 1782-1791.

47 Rajilić-Stojanović M, Biagi E, Heilig HG, et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome[J]. Gastroenterology, 2011,141(5): 1792-1801.

48 Parkes GC, Rayment NB, Hudspith BN, et al. Distinct microbial populations exist in the mucosa-associated microbiota of sub-groups of irritable bowel syndrome[J]. Neurogastroenterol Motil, 2012,24(1): 31-39.

49 Simrén M, Barbara G, Flint HJ, et al. Intestinal microbiota in functional bowel disorders: a Rome foundation report[J]. Gut,2013, 62(1): 159-176.

50 Carroll IM, Ringel-Kulka T, Keku TO, et al. Molecular analysis of the luminal- and mucosal-associated intestinal microbiota in diarrhea-predominant irritable bowel syndrome[J]. Am J Physiol Gastrointest Liver Physiol, 2011, 301(5): G799-G807.

51 Nelson TA, Holmes S, Alekseyenko AV, et al. PhyloChip microarray analysis reveals altered gastrointestinal microbial communities in a rat model of colonic hypersensitivity[J]. Neurogastroenterol Motil,2011, 23(2): 169-177.

52 Chassard C, Dapoigny M, Scott KP, et al. Functional dysbiosis within the gut microbiota of patients with constipated-irritable bowel syndrome[J]. Aliment Pharmacol Ther, 2012, 35(7): 828-838.

53 Kim G, Deepinder F, Morales W, et al. Methanobrevibacter smithii is the predominant methanogen in patients with constipationpredominant IBS and methane on breath[J]. Dig Dis Sci, 2012, 57(12): 3213-3218.

54 胡乐义,王巧民,姜彬言,等.肠易激综合征患者肠道菌群的变化及意义[J].安徽医科大学学报,2012,47(1):86-89.

55 Codling C, O’mahony L, Shanahan F, et al. A molecular analysis of fecal and mucosal bacterial communities in irritable bowel syndrome[J]. Dig Dis Sci, 2010, 55(2): 392-397.

56 王子恺,杨云生.肠道微生物与人类疾病[J].解放军医学杂志,2012,37(12):1168-1176.

57 Malinen E, Krogius-Kurikka L, Lyra A, et al. Association of symptoms with gastrointestinal microbiota in irritable bowel syndrome[J]. World J Gastroenterol, 2010, 16(36): 4532-4540.

58 Nakamura N, Lin HC, Mcsweeney CS, et al. Mechanisms of microbial Hydrogen disposal in the human colon and implications for health and disease[J]. Annu Rev Food Sci Technol, 2010, 1:363-395.

59 Attaluri A, Jackson M, Valestin J, et al. Methanogenic flora is associated with altered colonic Transit but not stool characteristics in constipation without IBS[J]. Am J Gastroenterol, 2010, 105(6):1407-1411.

60 Foxx-Orenstein AE, Chey W. Manipulation of the gut microbiota as a novel treatment strategy for gastrointestinal disorders[J]. Am J Gastroenterol Suppl, 2012, 1(1): 41-46.

61 Aroniadis OC, Brandt LJ. Intestinal microbiota and the efficacy of fecal microbiota transplantation in gastrointestinal disease[J]. Gastroenterol Hepatol (N Y), 2014, 10(4): 230-237.

62 崔伯塔,王敏,季国忠,等.粪菌移植:公元4世纪至2013年[J].世界华人消化杂志,2013,21(30):3222-3229.

63 Domínguez-Muñoz JE, Zhang F, Surawicz CM, et al. Is Fecal Microbiota Transplantation Through the Mid-Gut a Rescue Therapy for Refractory IBD?[J]. e-WGN, 2014, 19(2): 4-5.

64 Brandt LJ, Aroniadis OC. Long-term follow-up study of fecal microbiota transplantation (FMT) for ulcerative colitis (UC)[J]. Am J Gastroenterol, 2012, 107(S1):1626.

65 Anderson JL, Edney RJ, Whelan K. Systematic review: faecal microbiota transplantation in the management of inflammatory bowel disease[J]. Aliment Pharmacol Ther, 2012, 36(6): 503-516.

66 Borody TJ, Brandt LJ, Paramsothy S. Therapeutic faecal microbiota transplantation: current status and future developments[J]. Curr Opin Gastroenterol, 2014, 30(1): 97-105.

67 Pinn DM, Aroniadis OC, Brandt LJ. Follow-up study of fecal microbiota transplantation (FMT) for the treatment of refractory irritable bowel syndrome (IBS)[A]. Presented at: American College of Gastroenterology Annual Meeting[C]. 2013.

68 张发明,李潘,崔伯塔,等.粪菌移植:老故事与新未来[J].医学争鸣,2015,6(1):17-22.

69 Yang YX, Chen X, Gan HT. Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system:why were TLR3’s roles not tested?[J]. Gastroenterology, 2014,146(5): 1428.

70 张发明.将标准化粪菌移植推向主流[J].中华消化内镜杂志,2014,31(2):61-63.

71 Kunde S, Pham A, Bonczyk S, et al. Safety, tolerability, and clinical response after fecal transplantation in children and young adults with ulcerative colitis[J]. J Pediatr Gastroenterol Nutr, 2013, 56(6):597-601.

72 Kump PK, Gröchenig HP, Lackner S, et al. Alteration of intestinal dysbiosis by fecal microbiota transplantation does not induce remission in patients with chronic active ulcerative colitis[J]. Inflamm Bowel Dis, 2013, 19(10): 2155-2165.

73 Angelberger S, Reinisch W, Makristathis A, et al. Temporal bacterial community dynamics vary among ulcerative colitis patients after fecal microbiota transplantation[J]. Am J Gastroenterol, 2013, 108(10):1620-1630.

74 Gough E, Shaikh H, Manges AR. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection[J]. Clin Infect Dis, 2011, 53(10):994-1002.

75 Kassam Z, Lee CH, Yuan Y, et al. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and metaanalysis[J]. Am J Gastroenterol, 2013, 108(4): 500-508.

76 杨云生,王子恺.粪菌移植的研究进展[J].胃肠病学,2014,19(1):1-5.

Advances in fecal microbiota transplantation in irritable bowel syndrome

GONG Sandong, CUI Lihong
Department of Gastroenterology, Navy General Hospital, Beijing 100048, China

CUI Lihong. Email: luckycui861@sina.com

Fecal microbiota transplantation (FMT) can correct intestinal dysbiosis, and it has been successfully used in the treatment of partial intestinal microflora related diseases in recent years, but still few researches are found on irritable bowel syndrome (IBS). In this article, the latest progresses of the relationship between gut microflora and IBS, clinical applications, possible mechanisms, safety and application prospects of FMT in IBS will be reviewed.

fecal microbiota transplantation; intestinal flora; gut microflora; irritable bowel syndrome人粪菌移植(fecal microbiota transplantation,FMT)是将健康人粪便中的功能菌群移植到患者胃肠道内,使患者重建具有正常功能的肠道菌群,实现肠道及肠道外疾病的诊疗[1-2]。FMT至少已有1 700年历史[3],近年来又成为肠道微生态研究领域的热门而备受世界关注。肠易激综合征(irritable bowel syndrome,IBS)是一种以腹痛或腹部不适伴排便习惯改变为特征的功能性疾病[4]。按照罗马Ⅲ标准IBS主要有腹泻型、便秘型、混合型及不确定型4种亚型。IBS全球患病率为10% ~ 20%[5],是一种多因素疾病,其病因和病理生理学机制较为复杂。目前已有大量研究证实IBS与肠道微生态失衡密切相关。临床上采用益生菌治疗IBS已取得了很好的疗效,但用FMT治疗IBS的报道仍较少。现就粪菌移植在肠易激综合征中的研究进展做一综述。

R 574

A

2095-5227(2015)10-1006-05 DOI:10.3969/j.issn.2095-5227.2015.10.012

时间:2015-08-05 17:20

http://www.cnki.net/kcms/detail/11.3275.R.20150805.1720.008.html

2015-06-15

吴阶平临床科研专项资助基金(320.6750.13175)

Supported by the Foundation of WU Jie-Ping(320.6750.13175)

弓三东,男,硕士,主治医师。研究方向:酸相关疾病及功能性胃肠病诊治。Email: gsd945@com。

崔立红,女,博士,主任医师,教授,主任,博士生导师。Email: luckycui861@sina.com

猜你喜欢

粪菌菌群杆菌
粪菌移植可安全有效抑制耐药菌
“云雀”还是“猫头鹰”可能取决于肠道菌群
粪菌移植在肠道疾病临床应用中的研究进展
“水土不服”和肠道菌群
粪菌移植治疗肠易激综合征的研究进展
乳杆菌属分类学地位变迁后菌种名称英解汉译检索表(二)
解淀粉芽孢杆菌Lx-11
解淀粉芽孢杆菌的作用及其产品开发
侧孢短芽孢杆菌A60
粪菌移植在炎症性肠病中的应用进展