全球季风动力学与气候变化
2015-03-28安芷生吴国雄李建平孙有斌刘屹岷周卫健蔡演军段安民毛江玉石正国谭亮成
安芷生,吴国雄,李建平,,孙有斌,刘屹岷,周卫健,蔡演军,段安民,李 力,毛江玉,程 海,,石正国,谭亮成,晏 宏,敖 红,常 宏,冯 娟
(1. 中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,西安710061;2. 中国科学院大气物理研究所 大气科学和地球流体力学数值模拟国家重点实验室,北京100029;3. 西安交通大学 全球环境变化研究院,西安710049;4. 北京师范大学 全球变化与地球系统科学研究院,北京100875;5. 明尼苏达大学 地球科学系,美国 明尼苏达55455)
全球季风动力学与气候变化
安芷生1,3,吴国雄2,李建平2,4,孙有斌1,刘屹岷2,周卫健1,蔡演军1,段安民2,李 力1,毛江玉2,程 海3,5,石正国1,谭亮成1,晏 宏1,敖 红1,常 宏1,冯 娟2
(1. 中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,西安710061;2. 中国科学院大气物理研究所 大气科学和地球流体力学数值模拟国家重点实验室,北京100029;3. 西安交通大学 全球环境变化研究院,西安710049;4. 北京师范大学 全球变化与地球系统科学研究院,北京100875;5. 明尼苏达大学 地球科学系,美国 明尼苏达55455)
本文结合现代季风和古季风研究成果对全球季风进行了一个全面回顾,并引入了一个全球季风的新定义,该定义考虑了三维分布、终极成因,强调了季节性气压梯度变化对季风环流的影响,并同时使用了环流与降水来描述季风强度。我们在从构造到季节内的宽广时间尺度上来考察全球季风气候变化。全球季风的性质包括全球不均一性、区域差异性、季节性、准周期性、不规则性、不稳定性和穿时性。对全球季风动力学来说,太阳辐射、地球轨道参数、下垫面性质和海-陆-气相互作用十分重要。本文还讨论了季风变率在不同时间尺度上的主要驱动因子以及多时间尺度之间的动力学关系。自然过程与人类活动影响对我们理解未来全球季风行为都非常重要。
全球季风;季风动力学;气候变化;多时间尺度;古季风;青藏高原;亚洲季风;季风变率;季风性质;海-陆-气相互作用;太阳辐射;下垫面性质;季风定义
1 季风与季风动力学研究意义和历史
季风是大气环流中季节变化最为显著的环流系统,是全球气候系统的一个中心组成部分,其作用大到可以影响整个气候系统(WCRP,2009)。因此,季风一直以来是大气科学和气候学研究中的永恒话题。季风的异常往往会引起干旱、洪涝和其他极端天气气候事件。同时,季风区也是全球大气运动能量、水汽的主要供应地,全球其他地区的许多重要的天气气候现象的发生也与季风活动有着密切的关系。并且,全球70%以上的人口生活在季风区(WCRP, 2009),季风的变化对这些国家、地区的国民经济、社会及生存环境具有举足轻重的作用。因此,对季风的研究不仅是认识全球大气运动及气候变化的关键,而且对于防灾、减灾有重要指导作用,对社会可持续性发展意义重大。
季风是一个古老的气候学概念,人类对季风现象的感知、观测和研究的历史非常悠久。在英文中,季风一词起源于阿拉伯语“mausim”、“mausam”、“mausem”、“mawsim”、“mausin”(Dash,2005),或者马拉西亚语“Monsin”(Pédelaborde,1963),意思是季节“Season”。其实,人们很早就认识到它的存在。早在公元前23至公元前22世纪,中国的帝舜就著有诗歌《南风》,曰:
“南风之薰兮,可以解吾民之愠兮;南风之时兮,可以阜吾民之财兮。”
这是对东亚夏季风的主要特征及其对社会民生有重要影响的最早文字记载(Zeng,2005)。另外,中国最早的诗歌总集《诗经》(即公元前11世纪至公元前6世纪)中有诗歌《北风》:
“北风其凉,雨雪其雱。北风其喈,雨雪其霏。”
这是对东亚冬季风典型特征描述的最早文字。可见,早在3000年以前,中国的祖先就对东亚冬、夏季风有了感性认识。
事实上,早在中世纪人们就开始对季风进行了观测。阿拉伯航海家发现在印度与东非间的海域有两种风向的交替出现,4 — 9月以西南风为主,而10月到次年3月以东北风为主。阿拉伯科学家Sidi-Ali 于1554年利用印度洋的50个台站观测资料给出了季风的爆发与撤退日期(Pédelaborde,1963),这些观测记录和分析为后来季风的诊断与动力研究做了很好的铺垫。
哈莱(Halley,1686)首次提出了亚洲季风的理论解释,他认为季风是由太阳对海洋和陆地加热差异导致的,这个观点实际上是将季风视为了巨大的海陆风。之后,Hadley(1735)对哈莱的季风模型进行了修正和补充,考察了地转偏向力的影响,更好地解释了南亚季风的风向及其变化特征。沃耶科夫(Voyeikov,1879)将季风和降水的季节变化联系起来。之后其他一些科学家的研究延续了类似的观点。特别地,由Fein and Stephens(1987)主编的《Monsoons》一书全面回顾了如Webster提出的现代季风理论、Singh提出的历史季风观点、G. Kutzbach关于季风物理学的回顾、J. Kutzbach提出的对北半球夏季近日点可能作用的评估。同时,古季风也成为了研究热点(Fairbridge,1986)。主要是利用海洋和陆地多种载体的不同指标及数值模式等手段来广泛研究不同区域的古季风变化,包括印度季风(Kutzbach and Otto-Bliesner,1982;Prell,1984;Kutzbach et al,1989;Prell and Kutzbach,1992;Clemens et al,1996;Fleitmann et al,2003;An et al,2011)、东亚季风(An et al,1990,1991a,2000,2001;Liu and Ding,1998;Wang et al,2008c)、非洲古气候变化(Kutzbach,1980,1981;Sarnthein et al, 1981;Rossignol-Strick,1983;DeMenocal,1995;Kutzbach and Lin,1997)等。在2007年,古全球变化(Past Global Changes,PAGES)设立了全球季风工作组,专门将现代全球季风概念应用于古气候研究中(Wang et al,2012)。
传统的季风动力学认为季风是由于陆地和海洋热容量差异引起的温度对比产生的风向季节性反转,是一个具有很强地域性特点的气候学概念。传统的季风主要指发生在热带中低纬特定区域内环流和降水具有较强季节性变化的现象,强调的是区域海陆热力差异对于季风环流的影响。近些年随着认识的深入,对季风的研究逐渐向全球尺度扩展。
Sankar-Rao(1966,1970)最早使用了全球季风(global monsoons)这个名词,研究了海陆热力对比和地形对全球季风环流的影响。Charney(1969)指出季风是由于热带辐合带(ICTZ)的季风性移动造成的。Sikka and Gadgil(1980)、Chao and Chen(2001)、Gadgil(2003)与Wang(2009)的研究同样支持以上观点。Hoskins and Rodwell(1995)在全球背景下将亚洲夏季风作为全球环流的主要特征对其进行了研究;Trenberth et al(2000)指出全球季风为全球尺度上持续的大气环流的季节翻转,贯穿热带和副热带地区;Qian(2000)研究了干湿转换区与与全球尺度季风在南北纬40°间的关系。Wang and Ding(2006)研究了全球季风降水的区域,指出全球季风代表了热带降水与低层风年变化的主导模态,并将全球季风定义为热带区域降水年变化的主导模态(Wang and Ding 2008;Chang et al,2011);Nie et al(2010)利用考虑了湿对流非绝热效应及区域差异的对流准平衡方法研究了季风的变化,但是并未包括热带外季风。以上这些研究将季风研究发展到全球尺度,然而并未关注热带外季风。
Flohn(1951)对季风提出了新的理解,认为季风是行星环流区域的移动。在这样的理论框架下,包括印度、中印半岛、南海在内的热带区域,和包括加利福尼亚、马格利布、南非在内的副热带地区,以及包括西伯利亚沿岸岛屿、阿拉斯加、加拿大北部、冰岛、挪威北部在内的冰寒带区域均被认为是季风区域。然而,冰寒带季风仍然没有得到充分认知。
直到20世纪70年代,一系列关于轴对称Hadley环流动力学研究工作的发表(Schneider and Lindzen,1977;Held and Hou,1980;Schneider,1987),促进了全球季风理论的发展。这些研究结果指出作为对轴对称非绝热加热的响应,热带环流将遵循两个准则:热量平衡和角动量守恒。对于热带地区而言,行星涡度是个小量,而Rossby变形半径是个大量(Pierrehumbert et al,2011)。一个小的强迫会克服行星涡度,产生经向环流,形成非线性的角动量守恒格局。副热带地区的情形恰好相反,一个小的强迫不能生成经向环流,温度将遵循局地热量平衡。Lindzen and Hou(1988)的研究表明即使加热中心的位置偏离赤道几个纬度,就会强迫出关于赤道非对称的Hadley环流,使得位于夏半球的上升支和位于冬半球的下沉支快速发展。这可以利用热带辐合带ITCZ在赤道夏半球一侧内部的不稳定发展来解释(Tomas and Webster,1997;Tomas et al,1999;Pierrehumber,2000)。Plumb and Hou(1992)进一步研究了轴对称的大气对于赤道外以25°N为中心外部强迫的响应,并且量化了从热平衡到角动量守恒转变的理论强迫阈值。他们的研究表明,对于小于阈值的强迫,相对涡度小,绝对涡度由行星部分决定,大气的响应遵循常规的线性热平衡原则。相反,对于强度大于阈值的强迫,相对涡度大,绝对涡度由相对涡度部分决定,大气响应遵循角动量守恒原则。由于阈值并不大,作者建议对于真实的热带气流特别是热带季风环流的热强迫而言,角动量守恒原则更为适用。
Li and Zeng(2002)提出了动态标准化季风变率(DNS)指数来表征全球季风的特征,并给出了全球季风系统的三维空间分布。DNS指数利用标准化风场的季节变率强度,可以用来刻画不同季风区包括季风的季节循环、年际变率的强度。Li and Zeng(2002),Li et al(2010)进一步分析了该指数的物理意义及内涵。DNS指数适用于目前所有的季风环流(Ellis et al,2004),包括全球热带、副热带表层季风、垂直方向上的全球对流层、平流层季风。Li and Zeng(2005)的研究特别指出全球热带季风恰好处于北半球夏季与冬季ITCZ位置变动区域之间。
古气候学者从地质构造视角集成研究了全球古季风的变化(An,2000;Wang,2009; Clemens et al,2010;Ziegler et al,2010b;Caley et al,2011a;Cheng et al,2012)。数值模拟和地质证据表明,显生宙时期超级大陆的存在可能是超级季风产生的原因(Kutzbach et al,1989;Loope et al,2001)。从位于科罗拉多的早古新世热带雨林化石记录(Johnson and Ellis,2002)及位于澳大利亚中部(Greenwood,1996)的始新世季雨林的化石记录可以推断出新生代古季风的演化。古东亚季风系统可能建立于始新世期间,并于晚渐新世—早中新世期间得以持续,在这之后得到进一步发展(Parrish et al,1982;Zhou,1984;Gu and Renaut,1994;Sun and Wang,2005;Guo et al,2008;Qiang et al,2011;An et al,2014)。对于非洲与印度古季风的研究发展则较晚(Kroon et al,1991;Hilgen et al,1995;Sepulchre et al,2006)。Wang et al(2006)、Cheng et al(2012)利用全球分布的高分辨率石笋氧同位素记录分析了轨道到千年尺度上全球尺度的古季风变率。Liu et al(2003b,2004)利用海气耦合模式研究了全新世时期全球季风的演化。
总之,随着认识的深入,人们对季风的内涵有了更加深刻的理解和发展。在空间尺度上,从最初的局地、区域性概念上升到全球尺度,从热带扩展到副热带、温寒带,从近地层扩展到平流层;在时间尺度上,从单一时间尺度变化到多尺度相互作用;在物理过程上,从海陆热力差异的形成机制到太阳辐射年循环背景下的海-陆-气相互作用。从本质上讲,不同季风区域季风环流的变化与大尺度的气压梯度的变化相关。值得注意的是,不同区域表层季风是一种与人类环境紧密相联的全球现象。这里指的全球季风,是在全球范围内呈现出相似动力机理及过程的不同区域季风的集合(Wang et al,2012)。基于以上,我们提出了以下的全球季风的定义:
全球季风是由太阳辐射的季节循环、海-陆-气相互作用共同强迫所导致的具有显著季节变化现象的三维行星环流系统,表现为行星尺度气压系统性质及相关气压梯度的显著季节变化、盛行风向的季节性反转以及干湿季节的交替出现。
本文的章节安排如下:第二部分给出了全球季风的分布与特征;第三部分讨论了从轨道、千年、世纪、年代际、年际、到季节内多时间尺度季风的变率;第四部分阐述了青藏高原在亚洲季风形成及演化中的重要作用;第五部分总结全球季风的研究,展望了未来全球季风的研究方向。
2 全球季风分布及主要成员
这里我们利用Li and Zeng(2002)定义的DNS指数来刻画全球环流的分布(图1),并根据地理位置将全球季风进行分区。某个季风区区域平均的DNS值用来表征大尺度季风指数的强度。如图1所示,热带季风基本上位于ITCZ季节性移动的范围之内(Li and Zeng,2005;Wang,2009)。由于太阳辐射的年循环,ITCZ产生了季节性移动,造成了越赤道的气压梯度,导致了热带季风的形成(Tomas and Webster,1997;Zeng and Li,2002;Webster and Fasullo,2003)。全球热带季风主要包括热带亚洲、澳大利亚、非洲(Khromov,1957;Ramage,1971)、南美(Zhou and Lau, 1998)、赤道东太平洋(也称为中美季风区;Lau,2003;Li and Zeng,2003)、索马里-西印度洋季风(Krishnamurti,1996;Webster et al,1998)。其中,亚澳季风是全世界最典型且最重要的季风系统,其作为季风的原型包括以下主要子系统:印度季风(也称南亚季风;Goswami et al,2003)、南海季风(Ding and Lau,2001;Feng and Li,2009)、中印半岛-西北太平洋季风(Tao and Chen,1987;Wang et al,2008a)、澳洲热带季风,以及海洋大陆季风(Webster et al,1998)。
副热带季风在南、北半球都存在,由副热带高压的季节性移动和海陆分布造成,并且与地形、Rossby变形半径、急流及其相互作用、大地形(Molnar et al,2010)密切相关。北半球副热带季风包括:东亚季风(Tao and Chen,1987)、北美季风(Douglas et al,1993)、北非季风(Khromov,1957;Pedelaborde, 1963)、青藏高原季风(Tang and Reiter, 1984)、副热带北大西洋和副热带北太平洋季风(Li and Zeng,2003)等。南半球副热带季风有:南澳大利亚季风(Feng et al,2010)、南非季风(Khromov,1957;Pedelaborde,1963)、副热带南太平洋季风(Li and Zeng,2003)。
以上从地理分布讨论了近地层季风的分布,事实上全球季风有明显的垂直结构,即三维特征。全球季风的垂直结构显示出显著的斜压性及南北两半球明显的不对称性。在对流层中低层,全球季风包括热带季风、南北半球副热带季风;而在对流层中层及高层,仅包括南北半球副热带季风系统,且两者的强度与范围随着高度增加而增强与扩大;并且,两支副热带季风系统的范围为副热带高压脊线冬夏季节移动所包括的区域①见Li and Zeng,2000中图2-4,Li and Zeng,2005中图3-5。。在平流层中,南、北半球热带外区域均存在平流层季风(Li and Zeng,2000)。
图1 (a) 全球地表季风系统的地理分布。阴影区指示气候动力学季节标准化指数(美国国家环境预测中心(NCEP)再分析数据集,1958 — 2001)显著的区域。红色和蓝色实线分别代表冬(6月、7月、8月)、夏季(12月、1月、2月)热带辐合带。 据 Li and Zeng(2005),有修改。 (b) 叠加降雨分析数据(CMAP)的干-湿指数值(据气候预测中心)为正的区域。黄色阴影表示北半球夏季是雨季的区域,蓝色阴影区表示北半球冬季是雨季的区域。Fig.1 (a) Geographical distribution of global surface monsoon systems. The shading indicates the area where the climatological dynamicalnormalized seasonality index [National Centers for Environmental Prediction (NCEP) reanalysis data, 1958 — 2001] is signifi cant. The thick red and blue lines represent the intertropical convergence zone (ITCZ) in boreal summer ( June, July, and August) and winter (December, January, and February), respectively. Panel modifi ed with permission from Li and Zeng (2005). (b) Distribution of positive seasonal dry-wet index values from Climate Prediction Center Merged Analysis of Precipitation (CMAP) rainfall data, 1979 — 2008. Orange shading indicates areas where the boreal summer is the rainy season, and blue shading indicates areas where the boreal winter is the rainy season.
图2给出了从对流层低层非季风区与季风区的半永久性气压系统、冬夏盛行环流的分布。北半球夏季的时候,亚澳非热带季风区,其北半球部分(约0° ~ 20°N,20°W ~ 140°E)由西南季风和东南季风两股汇合;北半球冬季的时候,盛行东北季风,而南半球部分(约0° ~ 10°S,20° ~ 160°E之间)则盛行西北季风;在东亚副热带季风区,北半球夏季由西南季风和东南季风两股季风汇合,冬季盛行西北季风。北半球夏季时,从非洲、南印度洋、到澳大利亚(20°S ~ 0°,20°W ~ 140°E)的盛行东南风,跨过赤道后向右转向,在热带北非和南亚变成西南风。从流系的分布上可以发现,副热带、温寒带也有环流季风性反转的特征,并且环流流系更为复杂(图2)。同时发现,与季风系统相联系的半永久性气压系统从冬到夏要么是其性质发生了根本的改变(由高压变成低压或反之),要么是其在位置上有显著的移动。
图2 850 hPa全球季风风场环流(流线)阴影区域为干-湿指数为正值的区域(a)北半球冬季(b)北半球夏季。据Li and Zeng(2005)修改。Fig.2 Circulation patterns (streamlines) of the global monsoonal and nonmonsoonal winds at 850 hPaThe areas with positive seasonaldry-wet index values are shaded for (a) boreal winter and (b) boreal summer. The circulation patterns are modifi ed with permission from Li and Zeng (2005).
季风区降水的显著性季节变化与季风环流的季节变化有关。为进一步理解这个问题,定义如下标准化季节干湿指数(SDWI):
其中:RW、RD分别表示雨季、干季的降水量。简单来说, RW(RD)在北半球指的是6 —8月(12 — 2月)的季节平均降水,而在南半球指的是12 — 2月(6 — 8月)的季节平均降水。SDWI指数与Wang and Ding(2008)定义的季风降水指数具有不同的意义,SDWI指数扩展为全球范围,并且强调了季风区降水的季节性特征。SDWI值大于0的区域为降水具有显著干湿季节变化的区域,意味着该区域雨季的降水至少为干季降水的3倍以上,突出了季风区降水强的季节性及集中性。当北半球夏季为雨季时,SDWI大于0的区域基本处于北半球的季风区和南半球的副热带季风区;而当北半球冬季为雨季时,SDWI大于0的区域主要处于南半球的热带季风区及北半球的一些副热带区(图2)。总体来看,全球降水显著季节变化的区域与全球季风区基本重合(图1)。季风环流带来的水汽传送主要产生于热带海洋,为全球季风提供了一个潜在的联系。
3 多尺度季风变率
3.1 上新世以来轨道尺度季风变率
风尘沉积、深海和湖泊沉积物以及石笋等古气候载体,都记录了轨道尺度季风演化过程。整合海陆季风记录并与数值模拟结果对比,可深入探究轨道尺度季风变率的驱动机制。
3.1.1 印度夏季风
阿拉伯海沉积的生物和沉积指标已被成功用于重建上新世-更新世的印度夏季风变化(Clemens et al,1996),比如阿拉伯海碎屑颗粒物的粒度变化,揭示出北半球冰盖自3.5 Ma以来的持续增长削弱了印度夏季风的强度(图3)。多代用指标的变率特征和内部相位关系表明,印度夏季风强度演化对轨道参数变化和北半球冰量消长响应敏感(Clemens et al,1996)。自2.6 Ma以来,强印度季风的发生时间在岁差和斜率周期上相对于全球冰量最大值分别有83°和124°的变化。近350 ka多季风指标研究表明,有三个重要因素影响斜率和岁差尺度印度季风变化,分别是亚洲地形加热作用、冰期下垫面条件和南半球亚热带印度洋的潜热释放(Clemens and Prell,2003)。
保存在阿拉伯海中的三个独立指标(溴含量、有孔虫G. bulloides含量和碎屑组分粒度)变化表明,阿拉伯海的古生产力和风力信号主要受印度夏季风控制(图4)。通过对比阿拉伯海高分辨率的季风代用指标变化和瞬变气候模拟试验结果,重新评估了对轨道尺度印度季风变化在岁差和斜率周期上的周期特征和相位滞后关系,结果说明气候内部因素可能在岁差和倾斜度周期上对印度季风演化有重要调控作用(Clemens et al,2010; Ziegler et al,2010a;Caley et al,2011b)。
来自鹤庆古湖泊的一个高分辨率陆相沉积记录表明,更新世印度季风变化包含了偏心率(100 ka)和岁差(23 ka和19 ka)的轨道周期信号(表1),在冰期-间冰期时间尺度上半球间气压梯度对驱动印度夏季风变化有着重要意义(An et al,2011)。基于印度夏季风、深海氧同位素和北大西洋浮冰碎屑记录之间相位和幅度的关系,将印度夏季风演化过程划分成三个阶段:0.92 ~ 0.13 Ma,1.82 ~ 0.92 Ma和2.60 ~ 1.82 Ma(图3)。在较老和较新的阶段内,印度夏季风变化与南北半球间动力过程的相互作用紧密相关,而在中间时段北半球热力牵引为印度季风演化的主要控制因素。冰期-间冰期时间尺度上,印度夏季风变化受到北半球低压和南半球高压系统的相对控制,半球间相互作用驱动的穿赤道气压梯度变化为理解全球季风动力学提供了新线索(An et al,2011;Caley et al,2013)。
3.1.2 东亚夏季风
多种陆地和海洋指标已被成功用于东亚夏季风演化历史的重建(如An et al,1990,1991a,1991b;Liu and Ding,1998;An,2000;Wang et al,2005b;Clemens et al,2008)(图3)。根据中国黄土-红粘土序列中磁化率和碳酸盐含量的变化,晚中新世以来东亚夏季风演化过程可划分为三个阶段:3.6 Ma前为初现期、3.6 — 2.7 Ma为加强期、2.7 Ma以来为大幅度振荡期,第四纪以来东亚季风分别在1.2 Ma和0.5 Ma发生了两次大的幅度转变(An et al,1990;Xiao and An,1999;Sun et al,2006b)。因为同时受到季风环流和海平面变化的影响,中国南海沉积指标的解译相对复杂,但也有多种指标被用于揭示季风引起的海洋环境变化(Wang et al,1999a,2003,2005a,2005b)。比如,南海沉积物的Ba/Al比值变化,指示了2.7 Ma前东亚夏季风强烈,2.7 — 1.2 Ma期间季风振荡幅度较小,而1.2 Ma之后波动幅度增强(Clemens et al,2008)。
约2.7 Ma发生的气候转变是一个全球现象,在季风区尤为明显。不同季风指标在该时期相位关系和变化幅度都呈现出剧烈的变化(An,2000;Ding et al,2000;Clemens et al,2008;Sun et al,2010)。随后在约1.2 Ma和0.6 Ma,东亚季风表现出阶段性增强的特征,气候主导周期从1.2 Ma前的41 ka转变为0.6 Ma后的100 ka(Liu et al,1999)。因为东亚夏季风气候在特定的东亚地理背景下受到全球大气、陆地、海洋、冰川系统的综合影响,中更新世的季风变化有可能与下边界条件变化相关,例如区域性构造隆升(An et al,1990;Xiao and An,1999),北半球高纬冰盖扩张(Clark et al,2006;Raymo et al,2006),以及南北半球气候的不对称性(Guo et al,2009)。自800 ka以来,黄土代用指标变化(磁化率和粒度)和深海δ18O记录的良好对比,说明中更新世以来东亚季风演化与冰量变化是高度耦合的(Ding et al,1995;Liu et al,1999)。
图3 3.6 Ma以来季风与冰量指标的对比(a) 非洲季风代用指标:大洋钻探(ODP)659站粉尘通量(蓝色, Tiedemann et al,1994);(b)印度夏季风 (ISM)代用指标:ODP 722站(深绿, Clemens et al,1996)粒度和标准化鹤庆古湖的Rb/Sr 和总有机碳含量得到的的ISM 指数(浅绿,An et al,2011);(c)东亚夏季风代用指标:ODP 1146站Ba/Al比(橙色,Clemens et al,2008)和灵台-赵家川黄土剖面磁化率(χ)集成(红色,Sun et al,2006b);(d)全球冰量代用指标:深海底栖有孔虫δ18O (灰色,Lisiecki and Raymo,2005)。垂直的灰色虚线表示区域季风系统的主要转变。Fig.3 Comparison of monsoon and global ice volume proxies since 3.6 Ma(a) African monsoon proxy: dust fl ux of Ocean Drilling Program (ODP) site 659 (blue, Tiedemann et al, 1994); (b) Indian summer monsoon (ISM) proxies: lithogenic grain size of ODP site 722 (dark green, Clemens et al, 1996) and ISM index derived from normalized Rb/Sr and total organic carbon content of the Heqing paleolake (light green, An et al, 2011); (c) East Asian summer monsoon proxies: Ba/Al of ODP site 1146 (orange, Clemens et al, 2008) and magnetic susceptibility ( χ) stack of the Lingtai and Zhaojiachuan loess sections (red, Sun et al, 2006b); (d) Global ice volume proxy: marine benthic δ18O stack ( gray, Lisiecki and Raymo, 2005). Vertical gray dashed lines denote major shifts in these regional monsoon systems.
精确测年的石笋氧同位素记录显示出23 ka的主导周期,该序列比65°夏季太阳辐射滞后43°,表明东亚夏季风变化可能主要受到太阳辐射变化调控(Wang et al,2008c;Cheng et al,2009)。黄土磁化率、南海沉积指标、石笋氧同位素表现出不同轨道尺度变率特征(图4),可能与这些记录中代用指标对东亚夏季风变化的敏感度性不同有关(Clemens et al,2010;Cheng et al,2012)。黄土磁化率能否记录岁差尺度季风变化很大程度上依赖于沉积速率变化,粉尘沉积后的混合和成壤过程也会不同程度减弱黄土指标变率的敏感性(Feng et al,2004;Sun et al,2006a)。同样地,大气环流格局、降水量和水汽来源的季节性变化等因素对石笋氧同位素变化产生重要影响(Wang et al,2001b;Yuan et al,2004;Clemens et al,2010;Pausata et al,2011;Cheng et al,2012)。因此,未来仍需开展高分辨率敏感季风代用指标研究,查明中国黄土和石笋记录的变化周期显著差异的原因,尤其是中国黄土没有表现出明显的岁差信号而石笋缺少100 ka和41 ka周期信号,全面理解东亚夏季风的变化特征和机理。
图 4 350 ka以来季风代用指标与全球冰量和夏季太阳辐射变化的对比(a)非洲季风代用指标:地中海Ti/Al(深蓝)和颜色反射率(浅蓝)(Ziegler et al,2010b);(b)印度夏季风(ISM)代用指标:阿拉伯海Br的X射线荧光(XRF)计数(浅绿)和 ISM集成指标(深绿)(Ziegler et al,2010a;Caley et al,2011b);(c)东亚夏季风代用指标:中国黄土磁化率(χ) 集成 (红色)和石笋δ18O记录 (橙色)(Sun et al,2006a, b;Wang et al,2008c;Cheng et al,2009)(d)冰量和太阳辐射指标: 深海底栖有孔虫δ18O集成(浅灰,Lisiecki and Raymo,2005)和北半球7月太阳辐射(深灰,Berger,1978)。Fig.4 Comparison of monsoon proxies with changes in global ice volume and summer insolation since 350 ka(a) African monsoon proxies: Ti/Al (dark blue) and color refl ectance (light blue) from the Mediterranean Sea (Ziegler et al, 2010b); (b) Indian summer monsoon (ISM) proxies: Br X-ray fl uorescence (XRF) counts (light green) and ISM stack (dark green) from the Arabian Sea (Ziegler et al, 2010a; Caley et al, 2011b). (c) East Asian summer monsoon proxies: Chinese loess magnetic susceptibility ( χ ) stack (red ) and speleothem δ18O records (orange) (Sun et al, 2006a, b; Wang et al, 2008c; Cheng et al, 2009). (d ) Ice volume and insolation proxies: marine benthic δ18O stack (light gray, Lisiecki and Raymo, 2005) and Northern Hemisphere July insolation (dark gray, Berger 1978).
3.1.3 非洲季风
非洲季风变化的典型特征表现为地中海东部富有机质层(腐殖质层)的周期性出现(Rossignol-Strick,1983;Hilgen et al,1995),腐殖质S1到S10层可以清楚地通过颜色反射率(例如540 nm反射百分比)和元素地球化学变化来辨认(Wehausen and Brumsack,2000;Calvert and Fontugne,2001;Lourens et al,2001;Ziegler et al,2010b)。亚热带大西洋和地中海深海沉积物中的风成粉尘记录,同样为解释上新世-更新世非洲气候变化提供海洋的证据(Tiedemann et al,1994;DeMenocal,1995;Larrasoaña et al,2003)。
表1 轨道周期总结和全新世全球季风变化趋势Tab.1 Synthesis of orbital periodicities and Holocene trend of global paleomonsoon variation
(续表1)
赤道大西洋地区的风尘沉积记录在大约2.8 Ma、1.7 Ma和1 Ma时表现出明显周期转变(图3),在2.8 Ma之前非洲季风变化主导周期是岁差周期,而在2.8 Ma之后,41 ka周期明显且一直持续到1 Ma。41 ka信号在2.8 Ma时的加强与北半球冰期发生相一致,指示了非洲季风对高纬气候的远程变化敏感,这种敏感度在1 Ma后愈加明显,表现为在冰期-间冰期周期尺度上粉尘沉积通量的大幅度变化(DeMenocal and Rind,1993)。地中海东部沉积物高分辨率地球化学记录也表现出明显的100 ka和23 ka周期(图3,表1),表明高低纬动力过程对非洲季风变化有综合影响(DeMenocal and Rind,1993;Ziegler et al,2010b)。
季风指标变化结果表明,东非季风对北半球夏季太阳辐射有直接响应,以100 ka和23 ka周期为主导(表1),但是西非季风相对于岁差最小值和倾斜度最大值均有几千年的滞后(Weldeab et al,2007a;Caley et al,2011a)。值得注意的是,由一个火山湖指示的南非季风却与北半球非洲季风表现出反相位变化(Partridge et al,1997)。基于太阳辐射强迫和同时考虑太阳辐射和冰量变化的瞬变模拟试验结果表明,南非季风对太阳辐射驱动表现出线性响应(Tuenter et al,2005;Kutzbach et al,2008;Ziegler et al,2010b),而全球冰量变化能够影响非洲季风强度的幅度,但是对岁差相位变化只有微弱影响(Ziegler et al,2010b)。岁差尺度的相位滞后也许与北大西洋变冷事件的发生相关,这些事件的发生不同程度地晚于西非和东非季风的增强时间。
轨道尺度季风变化受到轨道参数(偏心率、倾斜度和岁差)、下垫面条件和大气CO2浓度等因素变化的综合影响(Kutzbach and Otto-Bliesner,1982;Prell and Kutzbach,1987,1992)。轨道参数能够影响地表接收的太阳辐射,导致季节变化(Berger,1978),太阳辐射强度季节性变化及其引起的海陆热力-气压差异,会引起季风强度在轨道尺度上的显著波动(Kutzbach and Guetter,1986;Prell and Kutzbach,1987)。地轴倾斜度(变化范围是22.1°到24.5°,周期大约为41 ka)能显著影响南北半球高纬地区接收的太阳辐射变化,两半球具有同步性(Milankovic,1941)。岁差表征地球远日点和近日点的季节性变化,主导周期大约为23 ka和19 ka,岁差变化对南北半球太阳辐射季节性变化的影响相反,在低纬地区表现强烈,导致了半球间气候的显著差异。太阳辐射的年变化会进一步影响高纬海冰以及热带海平面温度变化,进而通过高-低纬气候相互作用影响季风强度变化(Kutzbach and Gallimore,1988)。因此,倾斜度和岁差的变化会通过直接太阳辐射驱动和间接海洋反馈来影响季风变化(Liu et al,2003b,2004),地质记录中明显的倾斜度和岁差周期信号就是很好的证据(表1)。虽然太阳辐射对偏心率变化的响应很弱,但是偏心率能够强烈调控岁差幅度,导致季节性辐射变化、影响低纬碳循环过程进而改变古季风变率(Wang et al,2003)。
下垫面条件和大气CO2浓度变化也会影响冰期-间冰期尺度季风变化,尤其是在中纬地区(Kutzbach and Guetter,1986)。南北半球冰盖消长主要通过相关的气压和温度系统,特别是通过跨赤道气压梯度和经向温度差异来影响季风环流的强度(Tomas and Webster,1997;An et al,2011)。温室气体变化(尤其是CO2)与全球温度变化在轨道尺度上高度耦合,同样会影响温度和气压梯度进而改变季风强度。与海陆分布变化和冰盖消长相关的海平面变化,能够导致海岸线进退和海洋环流条件的改变,这些因素能够进一步通过改变海陆温度/气压差异和海洋到陆地的热力-水汽传输距离来影响季风变率。综上所述,不同区域的季风变化对太阳辐射强迫均有明显响应,但对倾斜度和冰量变化的响应有明显的区域差异。
3.2 末次冰期以来千年尺度的季风变率
亚轨道/千年尺度气候变率以数十年内气候快速变化,而后又持续稳定数百年至数千年为特征(Broecker et al,1985;Cronin,2009)。例如,末次冰消期的新仙女木事件和最早在格陵兰冰心记录中检出的D/O事件(Dansgaard et al,1993),以及在北大西洋中发现的冰漂碎屑事件等(Heinrich,1988)。至今,在南北两个半球的环境记录中均已发现这些快速气候变化事件对季风变率的影响。这些事件在北半球的影响具有几乎相同的变化模式,但是在南半球,这些变化却与北半球相反(Augustin et al,2004;Wolff et al,2010)。
千年尺度上印度夏季风的变率较早地在阿拉伯海沉积物的多种指标中被发现(Sirocko et al,1993;Overpeck et al,1996;Schulz et al,1998;Altabet et al,2002)。这些不同的代用指标主要反映了季风风场强度变化所引起的上涌流强度、海表面生物产率以及低氧层中层水中供氧强度的变化。这些指标的时间序列在误差范围内与格陵兰冰心记录中的D/O旋回可以很好地对比,其中弱季风事件与北半球末次冰期中的冷事件相联系(图 5)。在大陆上,众多的石笋δ18O记录表明,印度季风降水减少的时段与格陵兰的冷事件相联系(Neff et al,2001;Burns et al,2003;Fleitmann et al,2003;Sinha et al,2005;Cai et al,2006)。这些海陆记录结合起来就一致解释了晚更新世以来千年尺度上印度季风的变率及其环境影响。
在东亚,东亚冬季风与北大西洋气候变化之间的远程联系被黄土粒径变化与北大西洋冰漂碎屑事件的对比所证实(Porter and An,1995;An and Porter,1997),表明北方西风在传输北大西洋温度变化至东亚地区过程中具有重要的作用。随后,黄土中其他多种代用指标均揭示了类似的远程联系(Xiao et al,1995;Guo et al,1996;Chen et al,1997;Zhang et al,1997;Ding et al,1998;Fang et al,1999;Wu et al,2006)。东亚夏季风千年尺度的变率也被南中国海的海洋沉积物研究所揭示(Wang et al,1999b;Oppo and Sun,2005)。最近黄土粒度记录和石笋碳酸盐δ18O记录与模拟结果的集成研究表明,北大西洋经向环流很可能是东亚季风系统快速变化中重要驱动因子(Sun et al,2012)。
来自于中国东部葫芦洞精确定年的石笋δ18O记录提供了一个末次冰期快速季风变化与北半球高纬地区的D/O旋回和Heinrich事件良好对比的有力证据(Wang et al,2001b),明确了北大西洋气候事件与亚洲夏季风存在着动力机制的联系。弱的东亚夏季风与北大西洋气候冷期同时出现,反之亦然的这种联系,已经被中国中部和南部的石笋记录所证实(图 5)(Yuan et al,2004; Dykoski et al,2005;Cheng et al,2006;Kelly et al,2006;Wang et al,2008c)。值得指出的是,青海湖湖相记录揭示了亚洲夏季风和西风气候的反相位关系,表明了亚洲夏季风和西风气候在青海湖地区的交替作用(An et al,2012)。
图5 过去110 ka不同季风记录同冰心记录的对比(a)格陵兰:北格陵兰冰心项目(NGRIP)δ18O(湖绿色,Andersen et al,2004);(b)北美:美国西南石笋δ18O 记录(深绿,Asmerom et al,2007;浅绿, Asmerom et al,2010);(c)南亚: 阿拉伯海总有机碳含量(TOC)(褐色,Schulz et al,1998);(d)东亚:东亚石笋记录 δ18O(粉红色,Dykoski et al,2005:橙色,Wang et al,2001b;红色,Wang et al,2008c);(e)南美:巴西南部石笋记录δ18O(浅蓝,Wang et al,2006);(f)北非:几内亚湾北部Ba/Ca 比(紫色,Weldeab et al,2007a);(g)南极:南极冰心钻探欧洲项目(EPICA)的冰心δD(深黄,Augustin et al,2004);标准:VPDB,维也纳PeeDee箭石标准; VSMOW,维也纳标准海水。Fig.5 Comparison of different monsoon records with ice-core records since 110 ka(a) Greenland: δ18O from the North Greenland Ice Core Project (NGRIP) ice core (aqua, Andersen et al, 2004). (b) North America: speleothem δ18O records from the southwestern United States (dark green, Asmerom et al, 2007; light green, Asmerom et al, 2010). (c) South Asia: total organic carbon (TOC) from the Arabian Sea (brown, Schulz et al, 1998). (d ) East Asia: speleothem δ18O records from East Asia ( pink, Dykoski et al, 2005; orange,Wang et al, 2001b; red,Wang et al, 2008c). (e) South America: speleothem δ18O records from southern Brazil (light blue,Wang et al, 2006). (f) North Africa: Ba/Ca ratios from eastern Gulf of Guinea ( purple,Weldeab et al, 2007a). ( g) Antarctica: δD of the European Project for Ice Coring in Antarctica (EPICA) ice core (dark yellow, Augustin et al, 2004). Standards: VPDB, Vienna Pee Dee Belemnite; VSMOW, Vienna Standard Mean OceanWater.
中国石笋碳酸盐δ18O的解译至今依然存在争议。一些研究者认为洞穴碳酸盐δ18O值反映了水汽传输路径和印度洋和印度季风区上风区降水的变化(Maher,2008;Dayem et al,2010;Pausata et al,2011)。而最近的模拟研究结果表明,石笋碳酸盐δ18O确实可以反映东亚夏季风强度的变化(Liu et al,2014)。目前我们尚不能够清楚地阐明区域降水、不同水汽源和水汽在传输路径上分馏这些因素对石笋碳酸盐氧同位素组成变化贡献的大小,以及温度在何种程度上影响石笋碳酸盐的δ18O值。更多关键地区的石笋δ18O记录以及更为成熟的集成降水氧同位素组成的全球气候模式模拟将是回答这一问题的关键和主要途径。
在南美季风区,石笋记录同样记录了千年尺度的气候变化。尽管这些变化也可以与北大西洋的气候事件很好地对比(图 5)(Wang et al,2004,2006;Cruz et al,2005;Kanner et al,2012;Cheng et al,2013),但与亚洲季风区石笋δ18O值的变化相比,它们表现出反相位的变化特点。这种与亚洲季风区石笋δ18O反相位的变化表明了南北半球气候之间密切的相互作用,揭示了热带辐合带的南北摆动可能是南北半球气候突变事件联系的动力学过程(Wang et al,2004,2006)。在北美西南部,晚更新世千年尺度的气候变化也在石笋δ18O记录中有明显的表现(图5)(Asmerom et al,2007,2010;Wagner et al,2010)。然而,与亚洲季风区不同的是,北美西南部石笋δ18O值在冷的冰阶减小而在暖的间冰阶增加。这主要反映了夏季风盛行的季节,源自于墨西哥湾和加利福尼亚的同位素组成偏正的水汽与来自于北太平洋同位素组成偏负水汽比率的变化,这与亚洲季风区的夏季来自远源偏负水汽比率增加,降水同位素组成偏负的模式正好相反。
在北非季风区,海洋和陆地沉积记录一致表明,在新仙女木事件、Heinrich 事件以及全新世的8.4 — 8.0 ka 和4.2 — 4 ka 阶段,季风降水明显减少,揭示了北非季风对北大西洋温度变化的响应(DeMenocal et al,2000;Gasse,2000)。随后,大量的记录进一步确认了在D/O事件的冰阶和全新世的冷期,北非季风趋于减弱,造成撒哈拉地区的干旱和扬尘的显著增加(图5)(Talbot et al,2007;Weldeab et al,2007a,2007b;Itambi et al,2009;Niedermeyer et al,2010;Zarriess and Mackensen,2010)。与之相反,南非地区在这些时段是较湿的,并在冰阶时期具有显著的季节变化。这种反相的变化可能与北大西洋冷期时,热带辐合带(ITCZ)南移造成雨带向南摆动有关,也就是与海表面温度对北大西洋经向环流的不对称响应相联系(Garcin et al,2007;Moernaut et al,2010)。
由于在不同的季风区,千年尺度的季风变率都表现出高度的一致性,并与北大西洋地区的快速气候变化事件很好地对应,因此大洋热盐环流的假说被广泛接受,被认为是不同季风区远程联系的纽带(Broecker et al,1992;Alley et al,1999;Clement and Peterson,2008)。地质观测和数值模拟研究表明北大西洋淡水的注入和/或海冰范围的扩大,都可能引起北大西洋深水环流和经向环流的显著变化,造成高北纬地区温度的降低和热带辐合带的南移(Zhang and Delworth 2005;Broccoli et al,2006;Menviel et al,2008;Zhang et al,2010)。不仅如此,北大西洋地区海冰的变化还可能有助于放大和传输这些信号,导致热带辐合带的南移,进而导致亚洲夏季风的减弱和南半球巴西和南非对流降水的增加(Chiang and Bitz,2005)。在亚洲季风区,高北纬地区降低的温度也可能通过加强东亚冬季风和增加青藏高原冰雪的覆盖,进而通过耦合响应而减弱夏季风(Barnett et al,1989;Overpeck et al,1996)。
尽管大西洋经向环流的假说能够解释千年尺度气候突变事件及其与全球的联系,D/O事件的发生具有1500年的准周期似乎与太阳辐射的外部驱动以及大洋-冰-气候系统内部的相互作用相联系(Ghil et al,1987;Maasch and Saltzman,1990;Mayewski et al,1997)。数值模拟结果则揭示D/O旋回可能由太阳辐射活动这一外部因子引起的北大西洋地区淡水的周期性注入所驱动(Braun et al,2005;Clemens,2005;Li et al,2005)。最近,Pettersen et al(2013)提出假设,认为D/O旋回开始时的快速变暖由北冰洋冰架崩塌后造成海冰的快速退却所导致,而随后间冰阶的逐渐变冷主要受控于冰架再生长过程时间的长短。无论哪种假设更为合理,北大西洋经向环流应是解释这些突变气候事件发生机制的关键,海-陆-气相互作用可能在放大太阳活动的影响和调制季风千年尺度变化方面扮演了至关重要的角色。
在不同的季风区,千年尺度的季风气候事件可能有着不同的特征和表现。例如,Zhou et al(2001)发现新仙女木事件在东亚表现出与全球不同的气候特征,进而指出类ENSO事件和其他热带气候因子的影响可能叠加在干冷的气候背景之上。An(2000)提出南方贸易风的加强及与其联系的南方涛动,有可能通过穿赤道气流增强东亚地区的降水。中国西南地区的石笋记录也显示南半球的气候变化对亚洲夏季风千年尺度的变化有重要的影响(Cai et al,2006)。
在全新世,亚洲夏季风表现出突出的千年到十年尺度的波动(图 6)(Neff et al,2001;Fleitmann et al,2003;Gupta et al,2003,2005;Dykoski et al,2005;Wang et al,2005b;Cai et al,2012),其中弱季风事件大致对应于北大西洋地区的冷事件(Bond et al,1997)。北大西洋经向环流周期性的减弱,及其影响下的北半球大气环流的加强,被认为是热带辐合带南移,进而导致低纬季风降水模式发生变化的主要影响因子(Barber et al,1999;Murton et al,2010;Yu et al,2010)。一方面,中国中部一个多指标,具有年层的石笋记录最近表明8200气候事件的持续时间和降水的变化与格陵兰冰心记录观察到的变化没有显著的差异,揭示了有效且快速的大气远程联系存在于北大西洋和东亚夏季风区两地之间(Liu et al,2013)。另一方面,太阳活动和季风记录的周期特征与树轮记录的大气Δ14C浓度变化的周期很好地对比,表明太阳能量输出变化可能部分影响了全新世较短时间尺度季风气候的变化(图 6)(Shindell et al,2001;Fleitmann et al,2003;Gupta et al,2003,2005;Wang et al,2005b;Asmerom et al,2007;An et al,2012;Cai et al,2012)。然而,其他的响应和反馈机制也可能参与放大太阳能量输出的影响(Kodera,2004),因为全新世太阳辐射强度在千年至十年尺度上的变化非常小(Vieira et al,2011)。
3.3 过去千年中全球季风的百年尺度变化
过去千年全球气候的主要特征是明显的阶段性变化,主要有中世纪暖期(Medieval Warm Period,MWP,800 — 1300),小冰期(Little Ice Age,LIA,1400 — 1850),以及最近的温暖期(Current Warm Period,CWP,1850 — present)。近20年,有关过去千年中全球季风的百年-多年代际变化特征以及自然因素和人为因素对这一时间段季风变化的贡献被大量研究(Kumar et al,1999;Verschuren et al,2000;Russell and Johnson,2005;Stager et al,2005;Newton et al,2006;Tan et al,2008;Liu et al,2009;Sachs et al,2009)。
3.3.1 亚洲-澳大利亚季风
许多古气候载体,如石笋、湖泊沉积物、海洋沉积物、历史文献记录等都被广泛用来探讨过去千年亚洲-澳大利亚季风的百年尺度变化(图 7)。大量证据表明,在亚洲季风区的北部边缘,如中国北方(Tan et al,2008;Zhang et al,2008;Liu et al,2011)和印度地区(Sinha et al,2011),小冰期相对于中世纪暖期气候都显著偏干旱。与之相对的是,在亚洲-澳大利亚季风区的南部,比如印度尼西亚等地(Newton et al,2006;Oppo et al,2009;Tierney et al,2010),小冰期气候则相对湿润。小冰期期间亚洲季风区干旱、澳大利亚季风区湿润这一南北半球的反相变化被认为可能跟小冰期期间热带辐合带(ITCZ)的整体南移有关(Newton et al,2006;Sachs et al,2009;Tierney et al,2010)。然而,还有一些结果与这一观点相冲突,比如有些研究发现在亚洲季风区的南部小冰期并没有出现干旱的情况,反而相对湿润(Chu et al,2002;Tan et al,2009;Yan et al,2011;Zeng et al,2011)(图 7);也有研究发现澳大利亚北部季风区小冰期降水并没有增加,反而出现了干旱(Wasson and Bayliss,2010)(图 7),这些记录都是很难被小冰期ITCZ整体南移理论所解释的(Yan et al,2011)。
最近的研究显示出亚洲夏季风过去千年的多年代际尺度的变化特征(Zhang et al,2008;Tan et al,2011)。功率谱分析显示中国不同区域的石笋δ18O序列中有一致的太阳活动周期,如80 ~ 12年、27 ~ 35年、 ~ 20年以及 ~ 11 年周期,这揭示太阳活动对亚洲夏季风多年代际尺度变化的影响。太阳活动可能通过影响亚洲大陆和北太平洋的海陆热力差,进而控制东亚夏季风的变化(Zhao et al,2007b;Tan et al,2011)。数值模拟实验结果表明,火山活动也可能对过去千年全球季风的多年代际尺度变化造成影响(Liu et al,2009)。其他因素如ENSO和热带海表面温度变化也可能贡献于亚洲-澳大利亚夏季风的多年代际尺度变化(Kumaret al,1999;Oppo et al,2009)。另外,最近1800年万象洞石笋δ18O记录显示出和北大西洋浮冰碎屑记录以及NAO记录的相似性,暗示东亚夏季风和NAO之间的可能联系(Zhang et al,2008)。
图6 全新世亚洲季风记录同其他记录的对比(a)北大西洋冰筏赤铁矿浸染颗粒(深蓝,Bond et al,1997);(b)阿曼Hoti岩洞(浅绿,Fleitmann et al,2003)和青藏高原南部天门洞(深绿,Cai et al,2012)石笋δ18O;(c)中国南部董歌洞石笋δ18O(深紫,Wang et al,2005b;浅紫,Dykoski et al,2005);(d)青海湖亚洲夏季风代用指标(橙色,An et al,2012);(e)大气 Δ14C(浅蓝,Reimer et al,2009).Fig.6 Comparison of Asian monsoon records with other records during the Holocene(a) North Atlantic ice-rafted hematite-stained grains (dark blue, Bond et al, 1997); (b) Speleothem δ18O records from Hoti Cave, Oman (light green, Fleitmann et al, 2003) and Tianmen Cave, southern Tibetan Plateau, China (dark green, Cai et al, 2012); (c) Speleothem δ18O records from Dongge Cave, southern China (dark purple,Wang et al, 2005b; light purple, Dykoski et al. 2005); (d) Asian summer monsoon index from Lake Qinghai, China (orange, An et al, 2012); (e) Atmospheric Δ14C (light blue, Reimer et al, 2009).
3.3.2 非洲季风和南美季风
相对于亚洲-澳大利亚季风区,有关非洲季风过去千年变化的高分辨率记录相对较少,现有记录主要集中在赤道非洲东部,以湖泊沉积物为主(Verschuren et al,2000;Johnson et al,2001;Russell and Johnson,2005;Stager et al,2005;Wolff et al,2011;Tierney et al,2013)。湖泊水位记录以及湖泊沉积物记录显示非洲东部季风区中世纪暖期与小冰期期间降水并没有出现显著的阶段性变化,但是存在明显的多年代际震荡,可能与太阳活动以及印度洋海表面温度变化有关 (Verschuren et al,2000;Russell and Johnson 2005;Stager et al,2005;Tierney et al,2013)。
有不少研究对南美季风过去千年的变化进行过讨论,总体来看,南美季风过去千年变化表现出很明显的区域性差异(图 7)。来自卡里亚科盆地和尤卡坦半岛的古气候记录表明在现代ITCZ北界附近小冰期期间出现了显著的干旱情况(Haug et al,2001;Hodell et al,2005),与ITCZ小冰期整体南移导致的区域降水减少相对应(图 7)。同样,ITCZ整体南移现象也被一些来自南美安第斯山脉的冰心、石笋、湖泊沉积物记录所支持(Thompson et al,1986;Reuter et al,2009;Bird et al,2011),这些记录表明在现代ITCZ南界附近小冰期降水出现了增加。但是,也有不少来自南美东西两岸的古气候记录很难被ITCZ整体南移所解释(Novello et al,2012;Moy et al,2002;Conroy et al,2008),这些记录发现在ITCZ南界附近的一些区域,小冰期降水反而出现了减少 (图7),说明其他的一些气候因素,比如ENSO,大西洋多年代际涛动等,可能也对南美季风区百年-年代际气候变化起到了重要的作用 (Moy et al,2002;Novello et al,2012)。
总的来看,小冰期ITCZ整体南移理论(导致北半球季风区降水减少、南半球季风区降水增多)可以解释全球季风区大部分古气候记录在过去千年中的百年尺度变化(Newton et al,2006;Sachs et al,2009),但是也有一些古气候记录和模拟研究提出了不同的看法(Liu et al,2009;Yan et al,2011)。此外,多年代际准周期震荡在过去千年全球季风记录中也被广泛发现,这些多年代际变化被认为可能与太阳活动、火山爆发以及地球气候系统的内震荡有关(Kumar et al,1999;Verschuren et al,2000;Russell and Johnson 2005;Stager et al,2005;Tan et al,2011)。
图7 全球季风的百年尺度变化底图为全球热带和副热带地区年降水量(mm · d-1,来自1979—2010年的 National Centers for Environmental Prediction(NCEP)再分析资料)。有关全球季风过去千年变化的古降水记录在图中也被标注。小冰期相对于中世纪暖期偏干旱的记录标为红色:D1(Talbot and Delibrias,1977),D2(Maley,1981),D3(Johnson et al,2001),D4(Sinha et al,2011),D5(Liu et al,2011),D6(Tan et al,2008),D7(Zhang et al,2008),D8(Tan et al,2011),D9(Wasson and Bayliss,2010),D10(Hodell et al,2005),D11(Haug et al,2001),D12(Conroy et al,2008),D13(Moy et al,2002),and D14(Stríkis et al,2011;Novello et al,2012)。小冰期相对于中世纪暖期偏湿润的记录标为蓝色:W1 (Stager et al,2005),W2(Verschuren et al,2000),W3(Tan et al,2009),W4(Chu et al,2002;Zeng et al,2011),W5(Yan et al,2011),W6(Newton et al,2006;Oppo et al,2009),W7(Tierney et al,2010),W8(Reuter et al,2009),W9(Bird et al,2011),and W10(Thompson et al,1986)。Fig.7 Centennial-scale variations of the global monsoonThe base map is the annual mean precipitation rate (mm · d-1) in the global tropics and subtropics derived from National Centers for Environmental Prediction (NCEP) reanalysis 2 data from January 1979 to December 2010. Locations of hydrological records in the global monsoon area covering the past millennium are also marked. Locations that were drier during the Little Ice Age (1400 — 1850) than during the Medieval Climate Anomaly (800 — 1300) are marked in dark red: D1 (Talbot and Delibrias, 1977), D2 (Maley, 1981), D3 ( Johnson et al, 2001), D4 (Sinha et al, 2011), D5 (Liu et al, 2011), D6 (Tan et al, 2008), D7 (Zhang et al, 2008), D8 (Tan et al, 2011), D9 (Wasson and Bayliss, 2010), D10 (Hodell et al, 2005), D11 (Haug et al, 2001), D12 (Conroy et al, 2008), D13 (Moy et al, 2002), and D14 (Stríkis et al, 2011; Novello et al, 2012). Locations that were wetter during the Little Ice Age than during the Medieval Climate Anomaly are marked in dark blue: W1 (Stager et al, 2005), W2 (Verschuren et al, 2000), W3 (Tan et al, 2009), W4 (Chu et al, 2002; Zeng et al, 2011), W5 (Yan et al, 2011), W6 (Newton et al, 2006; Oppo et al, 2009), W7 (Tierney et al, 2010), W8 (Reuter et al, 2009), W9 (Bird et al, 2011), and W10 (Thompson et al, 1986).
3.4 年代际变率
过去的30年间,全球季风降水明显增加,这主要与北半球夏季风的显著加强有关。全球季风降水增加的主要原因是太平洋和印度洋之间纬向热力对比的加强,表现为副热带东太平洋的海平面气压升高,而印太暖池区的海平面气压降低。上述海平面气压纬向梯度的变化会同时加强南、北半球的夏季风,但由于在全球变暖的背景下,北半球的增暖幅度明显强于南半球,令半球间的经向热力对比加大,受其影响,一方面北半球夏季风增强,另一方面南半球夏季风却减弱。而太平洋纬向热力对比的加强既与自然变率有关,又和全球增暖相联系,同时人类活动也能够增加半球间的热力对比(Luo et al,2012;Wang et al,2012)。然而也有学者认为这种东西向海温梯度的增加是由观测误差引起的(Tokinaga et al,2012)。因此,太平洋地区纬向海温梯度加强进而导致全球季风降水增多的机制仍需进一步研究。
3.4.1 亚洲夏季风
印度夏季风降水存在以55 ~ 60 a为周期的年代际变化特征,其长期趋势并不明显。一般而言,印度夏季风降水在1891 — 1900年和1930 — 1960年期间偏多,而在1901 — 1930年和1971 — 2000年期间偏少(Goswami,2006)。印度夏季风降水的年代际变化与复杂的类ENSO型太平洋海表温度(SST)年代际变化有关(Graham,1994;Kawamura,1994)。印度夏季风降水和Niño 3 SST的显著负相关说明两者在年代际尺度上存在紧密联系(Parthasarathy et al,1994;Torrence and Webster,1999;Krishnamurthy and Goswami,2000)。但是,在20世纪70年代后期以后,印度夏季风与ENSO的反相关关系明显减弱(Fig.8)(Kumar et al,1999)。 除了海洋强迫,气溶胶也能够通过改变云密度,来调控大气辐射平衡,进而改变云微物理过程和大气稳定度,最终影响云和降水。近期研究(Ganguly et al,2012)表明,南亚地区自20世纪中叶以来的夏季持续干旱主要与人类活动排放的气溶胶有关,即该时期南北半球间由气溶胶造成的能量不平衡减弱了热带经圈翻转环流,进而导致了持续干旱。
传统定义的强东亚夏季风表现为季风雨带异常偏北,且华北地区降水偏多。自20世纪70年代末以来,东亚夏季风明显减弱,表现为“南涝北旱”型降水分布更加突出(Zhou et al,2009a)。一方面,印度洋和西太平洋在该时期的异常增暖会加强赤道印度洋和海洋性大陆附近的热带对流,令西太副高向西扩展,进而加剧我国的“南涝北旱”(Zhou et al,2009b)。另一方面,青藏高原雪盖范围深度的增加和春季感热加热的减小也能够令东亚夏季风减弱,使得季风雨带异常偏南(Zhao et al,2007a;Duan et al,2013)。同时,副热带急流也是影响东亚夏季风的重要因素之一(Molnar et al,2010)。在全球变暖背景下,欧亚大陆较高纬度地区的增暖更剧烈,这时副热带西风急流将减速,并引起东亚夏季风的年代际变化。此外,人类活动排放的气溶胶也可能是造成东亚夏季风年代际变化的重要原因。Jiang et el(2013)认为人类活动排放的气溶胶会减少华北降水,但却能够增加华南及临近海域上空的降水。但是,也有研究认为东亚夏季风的年代际变化是气候系统内部振荡的结果(Ding et al,2008;Lei et al,2011)。而近期亚洲夏季风的年代际变化可能既与气候系统的自然变率有关,也受人类活动影响。
3.4.2 非洲夏季风
已有大量研究表明西非季风具有明显的年代际变化(Fontaine and Janicot,1996;Le Barbé et al,2002):西非季风降水在20世纪50 — 60年代异常偏多,而在20世纪70 — 90年代整个西非地区季风雨季(8月至9月初)的降水均偏少(Le Barbé and Lebel,1997;Le Barbé et al,2002)。此外,撒哈拉地区7 — 9月的降水变化与北非季风的年代际振荡有关,而北非季风在20世纪50年代异常偏强,而在随后的20世纪60 — 80年代异常偏弱。
早期研究将非洲地区的长期干旱趋势归因于人类活动及其引发的陆-气正反馈(Charney,1975)。但最近的模式研究结果却表明,撒哈拉降水的年代际变化是非洲夏季风对海洋强迫的响应(Giannini et al,2008)。同时,陆-气相互作用的正反馈也存在争议。尽管早期的模式结果表明陆-气正反馈能够通过表面反照率和土壤湿度完成,但这却无法在非洲季风降水的观测事实中得到验证。并且最近的遥感观测更是指出植被正反馈与非洲降水之间并无显著的统计关系(Liu et al,2006)。因此,陆-气反馈和人类活动在非洲季风年代际变化中的作用仍尚无定论。
图8 (a)标准化的印度夏季风降水序列(细红线)和6 — 8月Niño 3区(5°S ~ 5°N,150°W ~ 90°W)海表温度序列(细蓝线)。粗线表示21 a滑动平均结果。(b)印度夏季风降水与6 — 8月Niño 3区海表温度序列的21 a滑动相关。淡蓝色虚线表示95%置信度水平。Fig.8 (a) The standardized time series of Indian summer monsoon rainfall (thin red line) and the June — July — August Niño 3 sea surface temperature index (averaged from 5°S to 5°N and 150°W to 90°W) (thin blue line) for the period 1871 — 2011. The thick lines show corresponding 21 a running means. (b) The 21 a sliding correlation between the Indian summer monsoon rainfall and the June — July — August Niño 3 sea surface temperature index. The light blue horizontal dashed line indicates the 95% confi dence level (5% signifi cance).
3.4.3 美洲夏季风
北美季风区范围很大,可从美国西部延伸至墨西哥西北部(Adams and Comrie,1997)。在1948 — 2009年,北美季风系统的强度、爆发和撤退时间都表现出明显的年代际变化。在1948 — 1970年和1991 — 2005年,北美季风降水偏少,相应地,夏季风爆发偏晚,撤退偏早;而在1971 — 1990年,北美季风降水偏多,这时夏季风爆发偏早,撤退偏晚。已有研究表明,北美季风的年代际变率受PDO(Higgins and Shi,2000;Castro et al,2007)、AMO(Hu and Feng,2008)和AO/北半球环状模(Hu and Feng,2010)共同影响。Arias et al(2012)认为美洲季风的年代际变率与AMO和全球海表温度增暖所引起的海温异常有关。但是对南美夏季风而言,其年代际变化特征为20世纪80年代巴西东北部和安第斯中部至格兰查科地区的降水异常偏多,而在赤道北部和亚马逊平原南部地区的降水异常偏少;而在20世纪80年代末期至90年代初,上述地区的降水异常出现反位相特征(Zhou and Lau,2001)。美洲季风的年代际和长期变率与太平洋和大西洋海表状况的变化有关(Zhou and Lau,2001)。
总之,在过去的一个世纪内,全球季风都表现出明显的年代际变化,但不同季风子系统的年代际变化具有其独特的时空分布特征。海洋强迫是造成全球季风年代际变化的重要原因,但不同海域的强迫作用也不尽相同。太平洋海表温度的类ENSO型年代际变化决定了亚澳季风的长期变率,而热带大西洋和印度洋的年代际变化却对非洲季风具有深远影响。此外,人类活动排放的气溶胶也会令亚洲夏季风降水减少。尤其是在东亚夏季风区,气溶胶能够削弱青藏高原表面感热,进而减弱季风环流,令我国东部的夏季风雨带异常偏南。对美洲季风而言,其年代际变化主要受PDO、AMO(Hu and Feng,2008)和北半球环状模共同影响。
3.5 年际和季节内变化
在季风的多尺度变率中,其年际和季节内变化对社会经济造成的影响最显著,因而被广泛地研究。
3.5.1 年际变化
年际变化是全球季风变率的主要模态。在印度季风区以及印度尼西亚-澳大利亚季风区,降水的年际变化主要表现为准2年的周期振荡(Yasunari,1991;Webseter et al,1998);而在东亚季风区,其主要振荡周期为2 ~ 3年(Chang et al,2001,李建平和曾庆存,2005)。图9给出了全球各主要子季风区的DNS季风强度指数(Li and Zeng,2002)的时间序列。除了显著的准2年振荡以外,每个子季风区的季风强度还明显与ENSO事件有关联。这是由于ENSO事件通常引起纬向的Walker环流发生变化,进而在赤道印度洋地区强迫出异常的垂直运动,该异常垂直运动又影响季风区所在经度带内的经向Hadley环流(Krishnamurthy and Goswami,2000;Kumar et al,2006)。在20世纪70年代末之前,印度夏季风的年际变化与ENSO呈显著的负相关关系(Kumar et al,1999)。另一方面,印度夏季风异常可能会影响澳大利亚夏季风的年际变化:当印度夏季风偏弱时,澳大利亚夏季风爆发偏晚;而当印度夏季风偏强时,澳大利亚夏季风爆发偏早(Joseph et al,1991)。此外,印度夏季风和西非夏季风在年际尺度上也存在遥相关关系,这是由于地中海东部地区的印度季风低层异常环流可以影响到非洲地区的赤道辐合带(ITCZ)上升支,从而影响西非地区的季风环流(Rodwell and Hoskins,1996;Raicich et al,2003)。北美夏季风的年际变化主要受一些与热带气候异常(如ENSO)有关的海洋和陆地表面状况异常所控制(例如,海表温度和土壤湿度)(Higgins et al,1998)。然而,对于东亚夏季风,其年际变化比其他子季风复杂得多。梅雨是东亚夏季风的基本特征。梅雨以纬向带状的形式自6月至7月相继在华南、江淮流域、朝鲜半岛以及日本建立。东亚夏季风的年际变化受多种因子的影响。除了ENSO之外还包括印度夏季风、欧亚大陆及青藏高原冬季积雪、北半球环状模和南半球环状模等(Wang et al,2001;Nan and Li,2003;Ding and Chan,2005)。
总之,与ENSO事件有关的太平洋和印度洋海表温度异常是全球季风年际变化的最主要强迫因子。欧亚大陆积雪、青藏高原热力强迫以及南北半球环状模等因素可能对亚洲夏季风的年际变化造成一定影响。
3.5.2 季节内振荡
季节内振荡是季风年循环中的一种重要的变率;在每年夏季,季风一般呈现出活跃、中断、活跃和中断的交替变化。季节内振荡不仅显著地影响局地的天气、气候,而且影响全球大气环流。
亚洲夏季风最主要的季节内振荡是周期为30 ~ 60天低频变化(Mao and Chan,2005),这类季节内振荡同时具有向东和向北传播的特征 (Lawrence and Webster,2002;Mao et al,2010)。另一种调控亚洲夏季风的季节内振荡是向西传播的10 ~ 20天低频模态(Krishnamurti and Ardanuy,1980;Mao and Chan,2005)。印度夏季风活跃期和中断期的交替出现与印度季风槽的位置变动密切相关 (Webster et al,1998),降水的季节内变化取决于印度大陆地区热带对流辐合带强度的变化(Sikka and Gadgil,1980;Gadgil,2003),而后者源于印度洋洋面的对流辐合带从春末至夏季的向北推进。对流稳定度和水汽供应的经向梯度造成了总体热源的南北向梯度,进而驱动了对流辐合带的向北传播;最强的对流加热又总是位于最大上升运动的北侧(Gadgil and Srinivasan,1990)。东亚夏季风梅雨降水的季节内变化与中国南部-菲律宾海的对流异常有关,后者受到来源于赤道西太平洋北传/西北传播的类Rossby波对流环流耦合系统的影响(Mao et al,2010)。
夏季风的爆发是季节内振荡最重要的表现之一(Webster et al,1998)。在亚澳季风区,夏季风的爆发总与东传的热带季节内振荡有关(Madden and Julian,1994)。澳大利亚北部季风建立日期被定义为南半球夏季首发西风事件的起始日期(Wheeler and McBride,2012)。亚洲季风的爆发日期主要取决于热带季节内振荡的湿位相到达各子季风区的时间或者不同频率季节内振荡湿位相锁相的时间(Ding and Chan,2005)。亚洲夏季风最早于5月初在孟加拉湾东部建立,于5月中旬在南海建立,最后于6月初在南亚建立(Wu and Zhang,1998;Mao and Wu,2007)。亚洲夏季风的建立与青藏高原南部对流层中高层经向温度梯度反转的时间相一致(Flohn,1957;Li and Yanai,1996)。因此,Mao and Wu(2007)提出利用区域平均的对流层中高层的经向温度梯度作为定义亚洲夏季风在各子季风区建立的指标。Rajagopalan and Molnar(2012)指出基于经向温度梯度的印度季风爆发和撤退时间的异常(Goswami and Xavier,2005)与ENSO的关联比基于其他指标如降水和大尺度环流等要素所确定的日期异常与ENSO的关系更加密切(Joseph et al,2006)。
虽然亚澳夏季风活跃位相的对流异常主要起源于赤道印度洋和赤道西太平洋,因为在这些区域海气相互作用有利于对流的生成,但是夏季风的季节内振荡通常被认为是一种大尺度大气环流与深对流耦合的大气内部变率。对流异常能够从洋面北传至陆地季风区表明存在这种内在动力机制,例如调控热带对流辐合带位置的云-辐射反馈机制(Gadgil,2003)以及海-气耦合系统的不稳定机制(Webster et al,1998)。来自中纬度冷涌等热带外扰动也能够触发热带对流。因此,亚澳季风的季节内振荡可能与热带-热带外系统相互作用有关 (Hsu,2012;Wheeler and McBride,2012)。
4 青藏高原与新生代亚洲季风
4.1 新生代亚洲季风的形成
新生代时期亚洲夏季风的形成和发展与海陆分布变化(包括副特提斯海的退缩)和青藏高原生长有密切的关系;此外,还受全球冰量、海平面和大气CO2等因素的影响(Prell and Kutzbach;1992;DeMenocal and Rind,1993;Kutzbach et al,1993;Ramstein et al,1997;Liu and Yin, 2002)。之前认为新生代亚洲夏季风最早形成于渐新世晚期至中新世早期(Qiang et al,2001;Sun and Wang,2005;Guo et al,2008)。然而在始新世,副热带干旱区的南部边缘却有大量的煤炭和油页岩沉积(Gu and Renaut,1994),中国南方开始出现常青树木(Guo,1965,1983),喜湿和树木环境的哺乳动物也在中国东南部普遍出现(Qiu and Li,2005)。这些现象暗示亚洲古季风可能早在始新世时期就开始在热带地区的南部出现,并伴随着同等程度的干旱区和行星西风系统的北撤 (Guo,1965;Qiu and Li,2005;Huber and Goldner,2012)。
数值试验证明,仅0 ~ 120°E,20° ~ 30°N地区和北极存在热带以外的陆地时,陆地南部边缘地区出现弱季风雨带(Liang et al,2005;Privé and Plumb,2007;Wu et al,2012a)。古地理重建研究指出始新世时期印度与欧亚的碰撞造成北半球热带外地区产生大块的陆地(Molnar and Stock,2009)。因此,根据这一思路,新生代亚洲夏季风应该开始于始新世。此外,数值试验表明当青藏高原达到目前高度的一半时,亚洲夏季风环流在太阳辐射作用下将得以加强(Prell and Kutzbach,1992)。38 Ma后西宁盆地高海拔地区植被的出现(Dupont-Nivet et al,2008),~40 Ma时可可西里盆地沉积速率的快速增加(Wang et al,2008b),伦坡拉盆地的同位素测高(Rowley and Currie,2006),和~35 Ma昆仑山脉侵蚀作用的增强 (Clark et al,2010)均表明青藏高原在始新世晚期就达到了相当的高度。此外,从始新世开始副特提斯海就向西撤退(Bosboom et al,2011),这也可能对亚洲夏季风的出现有贡献(Ramstein et al,1997)。
4.2 青藏高原生长与构造尺度上的亚洲季风演化
在印度板块与欧亚板块于55— 45 Ma发生碰撞之后,青藏高原开始逐步隆升,这一隆升过程伴随着向北和向东生长及中部和南部地区大幅抬升的复杂过程(安芷生等,2006;Molnar et al,2010;Wang et al,2014)。在35 — 20 Ma,青藏高原中部可能已隆升到3000 ~ 4500 m的高度(Rowley and Currie,2006;DeCelles et al,2007)。在15 — 8 Ma,青藏高原向东及东北继续生长,其高度和范围已基本接近现在水平(Yuan et al ,2013)。自上新世以来,青藏高原北部和东部的边缘地带可能仍然发生了有限的生长和隆升(Fang et al,2005;安芷生等,2006;Chang et al,2012)。青藏高原在新生代的形成以及横向和垂向生长不仅对亚洲夏季风以及全球气候变化有着深刻影响,同时也影响区域植被生态模式、流域模式及盆地和海洋中的侵蚀产物堆积(安芷生等,2006)。
图9 标准化季节性(DNS)指数(Li and Zeng,2002)表示的不同季风区平均的夏季风强度时间序列在中等强度之上的厄尔尼诺-南方涛动事件和相应El Niño 和La Niña年分别用橙色和蓝色表示。紫色实线是9 a 高斯滤波值。Fig.9 Time series of area-averaged summer monsoon intensity (bars) indicated by the dynamical normalized seasonality (DNS) index (Li and Zeng, 2002) over different submonsoon regionsThe corresponding El Niño and La Niña years with El Niño-Southern Oscillation events above moderate intensity are colored orange and blue, respectively. The solid purple lines indicate the 9 a Gaussian-type fi ltered values.
气象学观察(Bolin,1950;Yeh,1952,1957)和数值模拟“有山/无山”条件下的气候响应(Kasahara et al,1973;Manabe and Terpstra,1974;Hahn and Manabe,1975)最早揭示出青藏高原对大气环流具有重要的热力和机械效应。随后更为复杂的敏感性实验表明青藏高原不仅能增强夏季风环流,而且也能增强冬季风环流(Kutzbach et al,1989;Ruddiman et al,1989;Prell and Kutzbach,1992;Kutzbach et al,1993;An et al,2001)。这是因为青藏高原阻挡了来自热带印度洋向北传输的水汽,并且使得下沉气流强度增强,进而亚洲内陆干旱化(Manabe and Broccoli,1990;Broccoli and Manabe,1992)和相关大气粉尘循环(Shi et al,2011)明显加剧。对整个青藏高原按10%逐步抬升的数值实验表明,东亚夏季风的响应比印度夏季风的响应更为灵敏(Liu and Yin,2002),而且这种响应可通过海洋的反馈进一步加强(Kitoh,2004)。此外,青藏高原生长还增强了东亚季风对轨道驱动的响应(Liu et al,2003)。
来自美国的Kutzbach教授及其合作者运用大气环流模式(GCM)率先进行了基于有限地质证据改变青藏高原地形高度的敏感性试验,结果表明随着高原由南向北的不断扩张,西风环流和冬季风不断增强,中亚地区由夏季降水率所反映的干旱程度不断加剧;与此同时,亚洲大陆上的夏季海平面气压反映的夏季风强度不断增强(An et al,2001)。最近的数值模型试验也表明东亚夏季风和印度夏季风对青藏高原不同地区抬升的响应是不同的(Zhang and Liu,2010;Tang et al,2013)。此外,一项最近的研究表明,蒙古高原的抬升也在很大程度上加强了西风急流(Shi et al,2015)。这些数值试验直观地说明青藏高原的生长与亚洲季风及内陆干旱化的演化历史有着重要关系。
An et al(2001)综合地质证据及数值模拟实验结果揭示了晚新生代东亚季风与青藏高原阶段性隆升的耦合演化过程。随后基于更广泛的古气候记录,安芷生等(2006)进一步揭示出季风强度及内陆干旱化在25 — 22 Ma、16 — 14 Ma、10 — 7 Ma和4 — 2.6 Ma四个阶段显著增强。这四个阶段的全球冰量都相对稳定,或者在某些阶段还是增加的,全球CO2浓度也保持在一个相对恒定的低位状态(Zachos et al,2001;Tipple and Pagani,2007)。因此季风在这四个阶段的增强很难用冰量或者CO2含量的变化来解释,而地质证据和数值模拟结果表明东亚季风的加强可能与青藏高原同期隆升的环境效应的联系更为密切。沉积学、地球化学和构造证据都表明青藏高原在这四个阶段均发生了显著的生长(Molnar,2005;安芷生等,2006)。此外,2.6 Ma以后,北半球进入大冰期时代,全球冰量增加的趋势和冰期-间冰期旋回无疑对亚洲内陆干旱化和季风气候造成重大影响。中国黄土磁化率证据表明亚洲夏季风在2.6 Ma之后的周期性波动与冰期-间冰期旋回是一致的。
4.3 青藏高原与亚洲季风
季风不是仅由海陆热力对比控制,纬向非对称的非绝热加热和大地形也显著地影响了季风(Hahn and Manabe 1975;Molnar et al,1993;Chakraborty et al,2002;Liu et al,2007)。冬季青藏高原机械强迫占主导地位,而夏季对于热带和副热带季风定长波而言,加热比地形动力迫使更为重要(Wu et al,2005,2007)。近年来Wu et al(2012a,2012b)重新考查了海陆分布和大地形对当代亚洲夏季风系统形成的影响。他们强调了热带陆地对越赤道气流起源的作用。在水球试验中,没有季风(Liang et al,2005)。当只有温带陆地存在的模型中,产生了一个弱的夏季风。当引入热带陆地时,赤道辐合带在陆地存在的地区消失,那里产生了从冬半球到夏半球的强的越赤道气流和亚洲夏季风。特别地,亚洲热带季风就基本形成了。然而,季风仍然局限在印度南部和南部的中国,不能延伸到较高纬度(Wu et al,2012a)。
夏季大地形斜坡的表面感热抽吸周边大气,产生表面辐合气流;在冬季冷的高原向外辐散气流,形成一个感热加热的季节的驱动气泵,从而影响季风环流(Wu et al,1997,2007)。夏季抬升的高原加热加强了副热带和热带环流之间、对流层上层和下层之间的耦合。除了青藏高原大地型以外,伊朗高原的融入使围绕两个高原在对流层低层产生一个额外的气旋性环流,这有助于形成干燥的北非和在阿拉伯海和印度北部的强降水,增强印度和东亚夏季风,促进中亚沙漠的发展(图10)(Wu et al,2012a)。
图10 (a)青藏高原热力和动力强迫都存在的全高原试验中的夏季降水速度(彩色阴影)和σ = 0.89层上的流线。虚线表示500 m,1500 m,2000 m和2500 m的海拔高度。深蓝色开放箭头表示主要的大气气流或向高原辐合攀登,或在周围移动。(b)相应的青藏高原地表感热驱动气泵(TP-SHAP)机制。黄色梯形和粗红线分别代表高原和其表面感热加热。虚黑线表示等熵表面的分层θ1和θ2。白色矢量表示由于TP-SHAP,上升气流从较小的等熵面θ1穿透到较大等熵面θ2(Wu et al,2007,2012b)。加热后的空气气团在高原斜坡向上穿透等熵面θ1和θ2,产生了强烈的上升运动和青藏高原上的强降水。Fig.10 (a) The summer precipitation rate (colored shading) and streamlines at the σ = 0.89 model level for the full Tibetan Plateau experiment in which surface heating exists. Dashed contours denote elevations at 500 m, 1500 m, 2000 m, and 2500 m. Dark blue open arrows denote the main atmospheric fl ows that impinge on the Tibetan Plateau, either climbing up or moving around it. (b) The corresponding mechanism for the Tibetan Plateau surface sensible heat-driven air pump (TP-SHAP). The yellow trapezoid and thick red line represent the plateau and its surface sensible heating, respectively. Dashed black lines denote the stratifi cation of the isentropic surfaces θ1and θ2. The white vectors indicate the ascending air fl ow penetrating the isentropic surfaces from smaller θ1to larger θ2due to the pumping of the TP-SHAP (Wu et al, 2007, 2012b). The heated air particles at the sloping surface penetrate the isentropic surfaces θ1and θ2and slide upward, creating a strong rising motion and even heavy rainfall over the Tibetan Plateau.
Boos and Kuang(2010,2013)提出了喜马拉雅阻断来自北方的干、冷空气,并认为与青藏高原热力强迫相比,印度北部高的表面熵对当地季风降雨和南亚上空的暖中心起了更重要的作用。而与此相反,Wu et al(2007,2012b)强调的大地形的感热气泵有效地抽吸低层水汽,形成从印度洋到青藏高原南部的水汽平流,支撑了印度北部的高的表面熵,维持了夏季亚洲北支季风。由于高表面熵需要高的表面位温和高比湿,局地表面加热和来自海洋向陆地的水汽输送是必要的。因而,在任何情况下,所有的结果都表明亚洲夏季风是热力控制的。
青藏高原加热的强度影响了季风变化。Duan et al(2006)和Duan and Wu(2008)发现,在近几十年来,在北半球的春夏季,青藏高原上表面气温和低温显著增加。但是1970年代中期以后,由于表面风速随时间的减少比地气温差的变化大,青藏高原表面感热加热持续地减弱 (Liu et al,2012)。
夏季青藏高原热力强迫的减弱削弱了近地面气旋性环流,至少从物理上(Wu et al,2012a,2012b)部分地解释了中国南方降水增多、北方减少的变化趋势。基于大气环流模式和海气耦合模式进行的数值试验证明了年代际时间尺度上,青藏高原热力强迫的变化对南涝北旱的降雨分布型有贡献(Liu et al,2012)。
5 总结和展望
5.1 季风气候的共同特征
在第一部分提出的季风定义强调了全球季风的共同特征与内在动力学联系。不同季风区的气候变化都有显著的季节性及相似的周期与轨道时间尺度上的趋势变化。例如,在所有季风代用指标中,都存在明显的岁差周期,表明全球季风都存在着太阳辐射所导致的内在共同变率。但是,由于区域差异,比如下垫面性质、海陆分布、云辐射强迫等不同,区域季风可以对同一强迫产生不同响应。例如,巨大的欧亚大陆,青藏高原和印度-太平洋暖池使得亚洲季风成为地球上最大最强的季风。
季风变化在不同时间尺度上的周期性源自对内、外强迫的响应。不规则季风变化是在对非线性过程响应和随机扰动中产生的。全球季风的不稳定性,或突然变化表现为从一种稳定状态快速跳转到另一种稳定状态,反应了对外强迫参数连续变化的非线性响应。例如,记录在石笋和黄土沉积中的末次冰期季风突然减弱事件就是对北大西洋冷事件的响应。亚洲夏季风爆发日期和雨带迁移(Ding and Chan,2005;Li and Zhang,2009),以及全新世东亚最大降雨带向南退却(An et al,2000)都是季风具有穿时性的例子。季风的不规则性、突变性和穿时性使季风变化更加复杂,限制了季风演化的可预测性。
5.2 多时间尺度的季风变率
季风动力学可视为外部驱动(轨道参数、太阳活动)与内部驱动(地表条件、海-陆-气相互作用)在不同时间尺度相互作用的综合结果。季风变率包含了从季节到年际、年代际、多年代际、世纪、亚轨道(千年)、轨道、构造等范围广泛的时间尺度变化(图11)。然而,季风变率的主要驱动随时间尺度的不同而有所变化。并且,多尺度的季风动力学涉及不同时间尺度内部的相互作用。
在构造尺度上,季风的演化与变率主要受山体隆升/生长、海陆分布格局(例如青藏高原隆升和特提斯海退缩),以及南、北半球冰盖变化的影响。在轨道尺度上,季风变化主要受由于轨道参数(例如岁差、倾角、偏心率)改变造成的辐射的季节变化的控制,还受冰量、温室气体浓度及两半球间对比的调制。千年尺度的季风变率与由于外部太阳活动和地球系统内部相互作用共同强迫的北大西洋气候变化相联系。而受太阳输出及人类活动共同强迫(如温室气体、气溶胶、土地利用等)的地球系统内部海-陆-气相互作用(如温盐环流、海冰范围、海温等)则会对世纪到季节内尺度的季风变率产生影响。
图11 季风变率与多尺度季风动力学每个标签下面的数字代表时间尺度。太阳、月亮和行星的图标分别代表太阳辐射、月球引力和太阳系星球对地球引力造成的轨道变化。Fig.11 Monsoon variability and multiscale monsoon dynamicsThe number under each label represents the corresponding timescale. The Sun, Moon, and planet icons respectively denote solar insolation, lunar gravity, and orbital changes associated with the gravitational pull of Solar System stars on Earth.
多尺度相互作用增加了季风变率的复杂性。通常较长时间尺度的季风变率会为短时间尺度的变率提供变化背景。例如,青藏高原的隆升、特斯提斯海的退缩、以及始新世形成的海陆分布格局为随后的季风变化提供了一个大的气候背景。青藏高原的生长可能会放大轨道时间尺度的季风变率(Prell and Kutzbach,1992;Liu et al,2003a)。北半球的冰期开始后,季风变化的频率与振幅受到冰量和大气中温室气体的调制。在冰期与间冰期,千年尺度气候事件的频率与振幅明显不同,表明冰量对于千年尺度气候事件的主要调制作用(Sima et al,2004;Wang and Mysak,2006;Wang et al,2008b)。就全新世东亚夏季风的减弱来说,其在世纪到多年代际时间尺度上的振幅较千年尺度的减弱要小(Wang et al,2005b),表明千年尺度的强迫对于世纪到多年代际变率有着重要的约束作用。
5.3 未来季风研究展望
季风气候变化主要由内、外动力驱动,表现为环流与降水变化。这些内、外驱动因子能通过影响下垫面热力差异所造成的气压梯度变化来影响季风变率。由于固有机制,全球季风对这些驱动因子的响应显示了时空变化上的某种一致性。但是,解译全球季风动力学仍然颇具挑战性,诸如低纬过程和高、低纬气候相互作用,南北半球相互作用等因素在不同时间尺度上所起的作用仍然还不清楚。在构造时间尺度上,季风变率与山地生长、海峡开闭,南北半球冰盖扩张,大气CO2变化等因素之间的关系尚需进一步研究。在轨道时间尺度上,评估不同季风代用指标的物理含义,识别全球季风变化的通用指标可以解决多季风代用指标间的不一致问题,阐明季风动力学。通常认为北大西洋气候变化影响着全球季风在千年-百年尺度上变化,但这种影响究竟是通过大气还是海洋环流传导的还仍不清楚。季风气候变率在年代际和更短时间尺度上主要由海-陆-气相互作用和人类活动驱动,但是我们还不能很好地理解它们的相对贡献。
不同时空尺度上季风驱动要素之间有怎样的联系?季风同其他大气环流间有怎样的联系?季风环流及其降水变化的非均一性、穿时性特征如何解释?这些都是面临的挑战。结合古今季风变化,综合对比观测资料、代用指标和模型的集成研究十分关键。工业革命以来,特别是过去几十年的季风变化研究尤其应加以重视。未来研究应优先关注包括数值模拟,影响评价,以及预测、预估不同时空尺度,特别是季节到百年尺度的季风变率研究。在全球变暖背景下,从自然和人类活动相对贡献的角度来评估全球和区域变化趋势以及环境效应。人类活动影响中诸如温室气体、气溶胶、植被和土地利用都需要在更大的海-陆-气耦合系统中加以理解。
致谢:作者感谢John Kutzbach、Peter Molnar、王斌、刘征宇、宋洋、罗京佳对本文初稿提出的创新性修改建议和细致评论,感谢Jocelyn Rice 对文稿的编辑和润饰。
安芷生,张培震, 王二七, 等. 2006. 中新世以来我国季风-干旱环境演化与青藏高原的生长[J]. 第四纪研究,26(5): 678- 693. [An Z S, Zhang P Z, Wang E Q, et al. 2006. Changes of the monsoon-arid enviornment in China and growth of the Tibetan Plateau since the Miocene [J]. Quaternary Science, 26(5): 678 - 693.]
冯 娟, 李建平. 2009. 南海夏季风变化及其与全球大气和海温的关系[J]. 大气科学, 33(3): 568 - 580. [Feng J, Li J P. 2009. Variation of the South China Sea summer monsoon and its association with the global atmosphere circulation and sea surface temperature [J]. Chinese Journal of Atmospheric Sciences, 33(3): 568 - 80.]
郭双兴. 1983. 我国晚白垩世和第三纪植物地理区与生态环境的探讨[M]//古生物学基础理论丛书编委会. 中国古生物地理区系. 北京:科学出版社, 164 - 177. [Guo S X. 1983. Note on phytogeographic province and ecological environment of Late Cretaceous and Tertiary floras in China [M]// Editorial Committee of Fundamental Theory of Palaeontology Book Series. Palaeobiogeography Provinces of China. Beijing: Science Press, 164 - 177.]
李建平,曾庆存. 2005. 一个新的季风指数及其年际变化和与雨量的关系 [J]. 气候与环境研, 10(3): 351 - 365. [Li J P, Zeng Q C. 2005. A new monsoon index, its interannual variability and relation with monsoon precipitation [J]. Climate and Environment Research, 10(3): 351 - 365.]
叶笃正. 1952. 西藏高原对于大气环流影响的季节变化[J].气象学报,23: 33 - 47. [Yeh T C. 1952. The seasonal variation of the influence of Tibetan Plateau on the general circulation [J]. Acta Meteorologica Sinica, 23:33 - 47.]
叶笃正, 罗四维, 朱抱真. 1957. 西藏高原及其附近的流场结构和对流层大气的热量平衡[J]. 气象学报, 28: 108 - 121. [Yeh T C, Lo S W, Chu P C. 1957. The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding [J]. Acta Meteorologica Sinica, 28: 108 - 121.]
曾庆存. 2005. 帝舜《南风》歌考[J]. 气候与环境研究, 10(3): 283 - 284. [Zeng Q C. 2005. About King Shun’s poem “Southerly wind” [J]. Climate and Environment Research, 10(3): 283 - 284.]
周廷儒. 1984. 中国自然地理-古地理 [M].北京:科学出版社. [Zhou T R. 1984. Chinese Natural Geography. Paleogeography [M]. Beijing: Science Press.]
Adams D K, Comrie A C. 1997. The North American monsoon [J]. Bulletin of the American Meteorological Society, 78: 2197 - 2213.
Alley R, Clark P, Keigwin L, et al. 1999. Making sense of millennial-scale climate change [J]. Geophysical Monograph Series, 112: 385 - 394.
Altabet M A, Higginson M J, Murray D W. 2002. The effect of millennial-scale changes in Arabian Sea denitrifi cation on atmospheric CO2[J]. Nature, 415: 159 - 162.
An Z S. 2000. The history and variability of the East Asian paleomonsoon climate [J]. Quaternary Science Reviews, 19: 171 - 187.
An Z S, Clemens S C, Shen J, et al. 2011. Glacial-interglacial Indian summer monsoon dynamics [J]. Science, 333: 719 - 723.
An Z S, Colman S M, Zhou W, et al. 2012. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka [J]. Scientific Reports, 2, doi: 10.1038/srep00619.
An Z S, Kukla G, Porter S C, et al. 1991a. Magnetic susceptibility evidence of monsoon variation on the loess plateau of central China during the last 130000 years [J]. Quaternary Research, 36: 29 - 36.
An Z S, Kutzbach J E, Prell W L, et al. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibet Plateau since Late Miocene times [J]. Nature, 411: 62 - 66.
An Z S, Liu T S, Lu Y C, et al. 1990. The long-term paleomonsoon variation recorded by the loess-paleosol sequence in central China [J]. Quaternary International, 7 - 8: 91 - 95.
An Z S, Porter S C. 1997. Millennial-scale climatic oscillations during the last interglaciation in central China [J]. Geology, 25: 603 - 606.
An Z S, Porter S C, Kutzbach J E, et al. 2000. Asynchronous Holocene optimum of the East Asian monsoon [J]. Quaternary Science Reviews, 19: 743 - 762.
An Z S, Sun Y B, Chang H, et al. 2014. Late Cenozoic climate in monsoon-arid Asia and global changes [M]// An Z S. Late Cenozoic Climate Change in Asia: Loess, Monsoon and Monsoon-Arid Environment Evolution. Dordrecht, Netherland: Springer, 491 - 582.
An Z S, Wu X H, Wang P X, et al. 1991b. Paleomonsoons of China over the last 130,000 years [J]. Science in China Series B, 34: 1007 - 1024.
Andersen K K, Azuma N, Barnola J. et al. (NGRIP members). 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period [J]. Nature, 431: 147 - 151.
Ao H, Dekkers M J, Qin L, et al. 2011. An updated astronomical timescale for the Plio-Pleistocene deposits from South China Sea and new insights into Asian monsoon evolution [J]. Quaternary Science Review, 30: 1560 - 1575.
Arias P A, Fu R, Mo K C. 2012. Decadal variation of rainfall seasonality in the North American monsoon region and its potential causes [J]. Jounal of Climate, 25: 4258 - 4274.
Asmerom Y, Polyak V, Burns S, et al. 2007. Solar forcing of Holocene climate: new insights from a speleothem record, southwestern United States [J]. Geology, 35: 1 - 4.
Asmerom Y, Polyak V J, Burns S J. 2010. Variable winter moisture in the southwestern United States linked to rapid glacial climate shifts [J]. Nature Geoscience, 3: 114 - 117.
Augustin L, Barbante C, Barnes P R F, et al. (EPICA community members). 2004. Eight glacial cycles from an Antarctic ice core [J]. Nature, 42: 623 - 628.
Baker P A, Rigsby C A, Seltzer G O, et al. 2001. Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano [J]. Nature, 409: 698 - 701.
Barber D C, Dyke A, Hillaire-Marcel C, et al. 1999. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide Lakes [J]. Nature, 400: 344 - 348.
Barnett T P, Dümenil L, Schlese U, et al. 1989. The effectof Eurasian snow cover on regional and global climate variations [J]. Journal of the Atmospheric Sciences. 46: 661 - 686.
Beaufort L, Van der Kaars S, Bassinot F, et al. 2010. Past dynamics of the Australian monsoon: precession, phase and links to the global monsoon concept [J]. Climate of the Past, 6: 695 - 706.
Berger A. 1978. Long term variations of daily insolations and Quaternary climatic changes [J]. Journal of the Atmospheric Sciences, 35: 2362 - 2367.
Bird B W, Abbott M B, Vuille M, et al. 2011. A 2,300-year-long annually resolved record of the South American summer monsoon from the Peruvian Andes [J]. Proceedings of National Academy of Sciences of the United States of America, 108: 8583 - 8588.
Bolin B. 1950. On the infl uence of the Earth’s orography on the general character of the Westerlies [J]. Tellus, 2: 184 - 195.
Bond G, Showers W, Cheseby M, et al. 1997. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates [J]. Science, 278: 1257 - 1266.
Boos W R, Kuang Z. 2010. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating [J]. Nature, 463: 218 - 222.
Boos W R, Kuang Z. 2013. Sensitivity of the South Asian monsoon to elevated and non-elevated heating [J]. Scientifi c Reports, 3, doi:10.1038/srep01192.
Bosboom R E, Dupont-Nivet G, Houben A J P, et al. 2011. Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 299: 385 - 398.
Braun H, Christl M, Rahmstorf S, et al. 2005. Possible solar origin of the 1,470-year glacial climate cycle demonstrated in a coupled model [J]. Nature, 438: 208 - 211.
Broccoli A J, Dahl K A, Stouffer R J. 2006. Response of the ITCZ to Northern Hemisphere cooling [J]. Geophysical Research Letters, 33: 1 - 4.
Broccoli A J, Manabe S. 1992. The effects of orography on midlatitude Northern Hemisphere dry climates [J]. Journal of Climate, 5: 1181 - 1201.
Broecker W S, Bond G, Klas M, et al. 1992. Origin of the northern Atlantic’s Heinrich events [J]. Climate Dynamics, 6: 265 - 273.
Broecker W S, Peteet D M, Rind D. 1985. Does the oceanatmosphere system have more than one stable mode of operation? [J]. Nature, 315: 21 - 26.
Burns S J, Fleitmann D, Matter A, et al. 2003. Indian Ocean climate and an absolute chronology over Dansgaard/ Oeschger events 9 to 13 [J]. Science, 301: 1365 - 1367.
Cai Y, An Z S, Cheng H, et al. 2006. High-resolution absolutedated Indian monsoon record between 53 and 36 ka from Xiaobailong Cave, southwestern China [J]. Geology, 34: 621 - 624.
Cai Y, Zhang H, Cheng H, et al. 2012. The Holocene Indian monsoon variability over the southern Tibetan Plateau and its teleconnections [J]. Earth and Planetary Science Letters, 335 - 36: 135 - 144.
Caley T, Malaizé B, Kageyama M, et al. 2013. Bi-hemispheric forcing for Indo-Asian monsoon during glacial terminations [J]. Quaternary Science Reviews, 59: 1 - 4.
Caley T, Malaizé B, Revel M, et al. 2011a. Orbital timing of the Indian, East Asian and African boreal monsoons and the concept of a “global monsoon” [J]. Quaternary Science Reviews, 30: 3705 - 3715.
Caley T, Malaizé B, Zaragosi S, et al. 2011b. New Arabian Sea records help decipher orbital timing of Indo-Asian monsoon [J]. Earth and Planetary Science Letters, 308: 433 - 444.
Calvert S E, Fontugne M R. 2001. On the late Pleistocene-Holocene sapropel record of climatic and oceanographic variability in the eastern Mediterranean [J]. Paleoceanography, 16: 78 - 94.
Castro C L, Pielke R A, Adegoke J O, et al. 2007. Investigation of the summer climate of the contiguous United States and Mexico using the Regional Atmospheric Modeling System (RAMS). Part Ⅱ: Model climate variability [J]. Journal of Climate, 20: 3866 - 3887.
Chakraborty A, Nanjundiah R S, Srinivasan J. 2002. Role of Asian and African orography in Indian summer monsoon [J]. Geophysical Research Letters, 29: 50 - 51.
Chang C P, Ding Y H, Lau G N C, et al. 2011. The Global Monsoon System: Research and Forecast (2nd) [M]. Singapore: World Scientifi c Publishing, 594.
Chang C P, Zhang Y, Li T. 2001. Interannual and interdecadal variations of the East Asian summer andtropical Pacific SSTs. PartⅠ: Roles of the subtropical ridge [J]. Journal ofClimate, 13: 4310 - 4325.
Chao W C, Chen B D. 2001. The origin of monsoon [J]. Journal of the Atmospheric Sciences, 58: 3497 - 3507.
Charney J G. 1969. The intertropical convergence zone and the Hadley circulation of the atmosphere [C]// Proceedings of the WMO/IUGG Symposium on Numerical Weather Prediction in Tokyo, Nov. 26 — Dec. 4, 1968. Tokyo: Japan. Meteorology Agency, 73 - 79.
Charney J G. 1975. Dynamics of deserts and drought in the Sahel [J]. Quarterly Journal of the Royal Meteorological Society, 101: 193 - 202.
Chen F H, Bloemendal J, Wang J M, et al. 1997. Highresolution multi-proxy climate records from Chinese loess: evidence for rapid climatic changes over the last 75 kyr [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 130: 323 - 335.
Cheng H, Edwards R L, Broecker W S, et al. 2009. Ice age terminations [J]. Science, 326: 248 - 252.
Cheng H, Edwards R L, Wang Y, et al. 2006. A penultimate glacial monsoon record from Hulu Cave and two-phase glacial terminations [J]. Geology, 34: 217 - 220.
Cheng H, Sinha A, Cruz F W, et al. 2013. Climate change patterns in Amazonia and biodiversity [J]. Nature Communications, 4, doi: 10.1038/ncomms2415.
Cheng H, Sinha A, Wang X F, et al. 2012. The global paleomonsoon as seen through speleothem records from Asia and the Americas [J]. Climate Dynamics, 39: 1045 - 1062.
Chiang J C H, Bitz C M. 2005. Infl uence of high latitude ice cover on the marine intertropical convergence zone [J]. Climate Dynamics, 25: 477 - 496.
Chu G, Liu J, Sun Q, et al. 2002. The “Mediaeval Warm Period” drought recorded in Lake Huguangyan, tropical South China [J]. Holocene, 12: 511 - 516.
Clark M K, Farley K A, Zheng D W, et al. 2010. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th) /He ages [J]. Earth and Planetary Science Letters, 296: 78 - 88.
Clark P, Archer D, Pollard D, et al. 2006. The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2[J]. Quaternary Science Reviews, 25: 3150 - 3184.
Clemens S C. 2005. Millennial-band climate spectrum resolved and linked to centennial-scale solar cycles [J]. Quaternary Science Reviews, 24: 521 - 531.
Clemens S C, Murray D W, Prell W L. 1996. Non-stationary phase of the Plio-Pleistocene Asian monsoon [J]. Science, 274: 943 - 948.
Clemens S C, Prell W L. 2003. A 350,000-year summer monsoon multiproxy stack from the Owen Ridge, Northern Arabian Sea [J]. Marine Geology, 201: 35 - 51.
Clemens S C, Prell W, Murray D, et al. 1991. Forcing mechanisms of the Indian Ocean monsoon [J]. Nature, 353: 720 - 725.
Clemens S C, Prell W L, Sun Y. 2010. Orbital-scale timing and mechanisms driving Late Pleistocene Indo-Asian summer monsoons: reinterpreting cave speleothem δ18O [J]. Paleoceanography, 25, doi: 10.1029/2010PA001926.
Clemens S C, Prell W L, Sun Y, et al. 2008. Southern Hemisphere forcing of Pliocene δ18O and the evolution of Indo-Asian monsoons [J]. Palaeoceanography, 23, doi: 10.1029/2008PA001638.
Clement A C, Peterson L C. 2008. Mechanisms of abrupt climate change of the last glacial period [J]. Reviews of Geophysics, 46, doi: 10.1029/2006RG000204.
Conroy J L, Overpeck J T, Cole J E, et al. 2008. Holocene changes in eastern tropical Pacifi c climate inferred from a Galapagos lake sediment record [J]. Quaternary Science Reviews, 27: 1166 - 1180.
Cronin T M. 2009. Paleoclimates: Understanding Climate Change Past and Present [M]. New York: Columbia University Press.
Cruz F W, Burns S J, Karmann I, et al. 2005. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil [J]. Nature, 434: 63 - 66.
Dansgaard W, Johnsent S J, Clausen H B, et al. 1993. Evidence for general instability of past climate from a 250-kyr icecore record [J]. Nature, 364: 218 - 220.
Dash S. 2005. Monsoons and monsoon climate [M]// Oliver J. Encyclopedia of World Climatology. Dordrecht, Netherland: Springer, 509 - 516.
Dayem K E, Molnar P, Battisti D S, et al. 2010. Lessons learned from oxygen isotopes in modern precipitation applied to interpretation of speleothem records of paleoclimate from eastern Asia [J]. Earth and Planetary Science Letters, 295: 219 - 230.
DeCelles P G, Quade J, Kapp P, et al. 2007. High and dry in central Tibet during the Late Oligocene [J]. Earth and Planetary Science Letters, 253: 389 - 401.
DeMenocal P B. 1995. Plio-Pleistocene African climate [J]. Science, 270: 53 - 59.
DeMenocal P, Ortiz J, Guilderson T, et al. 2000. Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing [J]. Quaternary Science Reviews, 19: 347 - 361.
DeMenocal P, Rind D. 1993. Sensitivity of Asian and African climate to variations in seasonal insolation, glacial ice cover, sea surface temperature, and Asian orography [J]. Journal of Geophysical Research, 98(D4): 7265 - 7287.
Ding Y, Chan J C. 2005. The East Asian summer monsoon: an overview [J]. Meteorology and Atmospheric Physics, 89: 117 - 142.
Ding Y H, Liu Y J. 2001. Onset and the evolution of the summer monsoon over the South China Sea during the SCSMEX field experiment in 1998 [J]. Journal of the Meteorological Society of Japan, 79: 255 - 276.
Ding Y H, Wang Z, Sun Y. 2008. Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part Ⅰ: Observed evidences [J]. International Journal of Climatology, 28: 1139 - 1161.
Ding Z L, Liu T S, Rutter R W, et al. 1995. Ice-volume forcing of East Asian winter monsoon variations in the past 800,000 years [J]. Quaternary Research, 44: 149 - 159.
Ding Z L, Rutter N W, Liu T S, et al. 1998. Correlation of Dansgaard-Oeschger cycles between Greenland ice and Chinese loess [J]. Paleoclimates, 4: 281 - 291.
Ding Z L, Rutter N W, Sun J M, et al. 2000. Re-arrangement of atmospheric circulation at about 2.6 Ma over northern China: evidence from grain size records of loess-palaeosol and red clay sequences [J]. Quaternary Science Reviews, 19: 547 - 558.
Ding Z L, Xiong S F, Sun J M, et al. 1999. Pedostratigraphy and paleomagnetism of a ~7.0 Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 152: 49 - 66.
Douglas M W, Maddox R A, Howard K, et al. 1993. The Mexican monsoon [J]. Journal of Climate, 6: 1665 - 1677.
Duan A M, Wang M R, Lei Y H, et al. 2013. Trends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980—2008 [J]. Journal of Climate, 26: 261 - 275.
Duan A M, Wu G X. 2008. Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part Ⅰ: Observations [J]. Journal of Climate, 21: 3149 - 3164.
Duan A M, Wu G X, Zhang Q, et al. 2006. New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions [J]. Chinese Science Bulletin, 51: 1396 - 1400.
Dupont-Nivet G, Hoorn C, Konert M. 2008. Tibetan uplift prior to the Eocene-Oligocene climate transition: evidence from pollen analysis of the Xining Basin [J]. Geology, 36: 987 - 990.
Dykoski C A, Edwards R L, Cheng H, et al. 2005. A highresolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China [J]. Earth and Planetary Science Letters, 233: 71 - 86.
Ellis AW, Saffell E M, Hawkins T W. 2004. A method for defining monsoon onset and demise in the southwestern USA [J]. International Journal of Climatology, 24: 247 - 265.
Fang X M, Ono Y, Fukusawa H, et al. 1999. Asian summer monsoon instability during the past 60,000 years: magnetic susceptibility and pedogenic evidence from the western Chinese Loess Plateau [J]. Earth and Planetary Science Letters, 168: 219 - 232.
Fairbridge R W. 1986. Monsoons and paleomonsoons [J]. Episodes, 9: 143 - 149.
Fein J S, Stephens P L. 1987. Monsoons [M]. New York: Wiley.
Felzer B, Webb T Ⅲ, Oglseby R J. 1998. The impact of ice sheets, CO2, and orbital insolation on late quaternary climate: sensitivity experiments with a general circulation model [J]. Quaternary Science Reviews, 17: 507 - 534.
Feng J, Li J P, Li Y. 2010. A monsoon-like southwest Australian circulation and its relation with rainfall in southwest Western Australia [J]. Journal of Climate, 23: 1334 - 1353.
Feng Z D, Wang H B, Olson C G. 2004. Pedogenic factors affecting magnetic susceptibility of the last interglacial palaeosol S1 in the Chinese Loess Plateau [J]. EarthSurface Processes and Landforms, 29: 1389 - 1402.
Fleitmann D, Burns S J, Mudelsee M, et al. 2003. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman [J]. Science, 300: 1737 - 1739.
Flohn H. 1951. Passatzirkulation und äquatoriale Westwindzone [J]. Archiv für Meteorologie, Geophysik, und Bioklimatologie Serie B, 3: 3 - 15.
Flohn H. 1957. Large-scale aspects of the “summer monsoon”in south and east Asia [J]. Journal of the Meteorological Society of Japan, 75: 180 - 186.
Fontaine B, Janicot S. 1996. Sea surface temperature fields associated with West African rainfall anomaly types [J]. Journal of Climate, 9: 2935 - 2940.
Gadgil S. 2003. The Indian monsoon and its variability [J]. Annual Review of Earth and Planetary Sciences, 31: 429 - 467.
Gadgil S, Srinivasan J. 1990. Low frequency variation of tropical convergence zones [J]. Meteorology and Atmospheric Physics, 44: 119 - 132.
Ganguly D, Rasch P J, Wang H, et al. 2012. Climate response of the South Asian monsoon system to anthropogenic aerosols [J]. Journal of Geophysical Research, 117, doi: 10.1029/2012JD017508.
Garcin Y, Vincens A, Williamson D, et al. 2007. Abrupt resumption of the African Monsoon at the Younger Dryas—Holocene climatic transition [J]. Quaternary Science Reviews, 26: 690 - 704.
Gasse F. 2000. Hydrological changes in the African tropics since the Last Glacial Maximum [J]. Quaternary Science Reviews, 19: 189 - 211.
Ghil M, Mullhaupt A, Pestiaux P. 1987. Deep water formation and Quaternary glaciations [J]. Climate Dynamics, 2: 1 - 10.
Giannini A, Biasutti M, Verstraete M M. 2008. A climate model-based review of drought in the Sahel: desertifi cation, the re-greening and climate change [J]. Global Planetary Change, 64: 119 - 128.
Goswami B N. 2006. The Asian monsoon: interdecadal variability [M]// Wang B. The Asian Monsoon. London: Springer, 295 - 327.
Goswami B N, Ajayamohan R, Xavier P K, et al. 2003. Clustering of synoptic activity by Indian summer monsoon intraseasonal oscillations [J]. Geophysical Research Letters, 30, doi: 10.1029/2002GL016734.
Goswami B N, Xavier P K. 2005. ENSO control on the South Asian monsoon through the length of the rainy season [J]. Geophysical Research Letters, 32, doi: 10.1029/2005GL023216.
Graham N E. 1994. Decadal-scale climate variability in the tropical and North Pacific during the 1970s and 1980s: observations and model results [J]. Climate Dynamics, 10: 135 - 162.
Greenwood D R. 1996. Eocene monsoon forests in central Australia? [J]. Australian Systematic Botany, 9: 95 - 112.
Gu C, Renaut R W. 1994. The effect of Tibetan uplift on the formation and preservation of Tertiary lacustrine sourcerocks in eastern China [J]. Journal of Paleolimnology, 11: 31 - 40.
Guo S. 1965. On discovery of fossil palms from Tertiary formation of Kwangtung and Kwangsi [J]. Acta Palaeontologica Sinica, 13: 598 - 609.
Guo Z T, Berger A, Yin Q Z, et al. 2009. Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records [J]. Climate of the Past, 5: 21 - 31.
Guo Z T, Liu T S, Guiot J, et al. 1996. High frequency pulses of East Asian monsoon climate in the last two glaciations: link with the North Atlantic [J]. Climate Dynamics, 12: 701 - 709.
Guo Z T, Sun B, Zhang Z S, et al. 2008. A major reorganization of Asian climate by the early Miocene [J]. Climate of the Past, 4: 153 - 174.
Gupta A K, Anderson D M, Overpeck J T. 2003. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean [J]. Nature, 421: 354 - 357.
Gupta A K, Das M, Anderson D M. 2005. Solar infl uence on the Indian summer monsoon during the Holocene [J]. Geophysical Research Letters, 32, doi: 10.1029/2005GL022685.
Hadley G. 1735. Concerning the cause of the general trade winds [J]. Philosophical Transactions of the Royal Society, 39: 58 - 62.
Hahn D, Manabe S. 1975. The role of mountains in the South Asian monsoon circulation [J]. Journal of the Atmospheric Sciences, 32: 1515 - 1541.
Halley E. 1686. An historical account of the trade winds, andmonsoons, observable in the seas between and near the tropicks, with an attempt to assign the phisical cause of the said winds [J]. Philosophical Transactions of the Royal Society, 16: 153 - 168.
Haug G H, Hughen K A, Sigman D M, et al. 2001. Southward migration of the Intertropical Convergence Zone through the Holocene [J]. Science, 293: 1304 - 1308.
Held I M, Hou A Y. 1980. Nonlinear axially symmetric circulations in a nearly inviscid atmosphere [J]. Journal of the Atmospheric Sciences, 37: 515 - 533.
Heinrich H. 1988. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years [J]. Quaternary Research, 29: 142 - 152.
Heslop D, Dekkers M J, Langereis C G. 2002. Timing and structure of the mid-Pleistocene transition: records from the loess deposits of northern China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 185: 133 - 143.
Higgins R W, Mo K C, Yao Y. 1998. Interannual variability of the US summer precipitation regime with emphasis on the southwestern monsoon [J]. Journal of Climate, 11: 2582 - 2606.
Higgins R W, Shi W. 2000. Dominant factors responsible for interannual variability of the summer monsoon in the southwestern United States [J]. Journal of Climate, 13: 759 - 776.
Hilgen F J, Krijgsman W, Langereis C G, et al. 1995. Extending the astronomical (polarity) time scale into the Miocene [J]. Earth and Planetary Science Letters, 136: 495 - 510.
Hodell D A, Brenner M, Curtis J H, et al. 2005. Climate change on the Yucatan Peninsula during the Little Ice Age [J]. Quaternary Research, 63: 109 - 121.
Hopley P J, Weedon G P, Marshall J D, et al. 2007. High- and low-latitude orbital forcing of early hominin habitats in South Africa [J]. Earth and Planetary Science Letters, 256: 419 - 432.
Hoskins B J, Rodwell M J. 1995. A model of the Asian summer monsoon. Part Ⅰ: The global scale [J]. Journal of the Atmospheric Sciences, 52: 1329 - 1340.
Hsu H H. 2012. Intraseasonal variability of the atmosphereocean-climate system: East Asian monsoon [M]// Lau W K, Waliser D E. Intraseasonal variability in the atmosphereocean climate system. Berlin: Springer-Verlag, 73 - 110.
Hu Q, Feng S. 2008. Variation of the North American summer monsoon regimes and the Atlantic multidecadal oscillation [J]. Journal of Climate, 21: 2371 - 2383.
Hu Q, Feng S. 2010. Influence of the Arctic oscillation on central United States summer rainfall [J]. Journal of Geophysical Research, 115, doi: 10.1029/2009JD011805.
Huber M, Goldner A. 2012. Eocene monsoons [J]. Journal of Asian Earth Sciences, 44: 3 - 23.
Itambi A C, Von Dobeneck T, Mulitza S, et al. 2009. Millennialscale northwest African droughts related to Heinrich events and Dansgaard-Oeschger cycles: evidence in marine sediments from offshore Senegal [J]. Paleoceanography, 24: PA1205.
Jian Z M, Huang B Q, Kuhnt W, et al. 2001. Late Quaternary upwelling intensity and East Asian monsoon forcing in the South China Sea [J]. Quaternary Research, 55: 363 - 370.
Jiang Y Q, Liu X H, Yang X Q, et al. 2013. A numerical study of the effect of different aerosol types on East Asian summer clouds and precipitation [J]. Atmospheric Environment, 70: 51 - 63.
Johnson K R, Ellis B. 2002. A tropical rainforest in Colorado 1.4 million years after the Cretaceous-Tertiary boundary [J]. Science, 296: 2379 - 2383.
Johnson T C, Barry S L, Chan Y, et al. 2001. Decadal record of climate variability spanning the past 700 yr in the Southern Tropics of East Africa [J]. Geology, 29: 83 - 86.
Joseph P V, Liebmann B, Hendon H H. 1991. Interannual variability of the Australian summer monsoon onset: possible infl uence of Indian summer monsoon and El Niño [J]. Journal of Climate, 4: 529 - 538.
Joseph P V, Sooraj K P, Rajan C K. 2006. The summer monsoon onset process over South Asia and an objective method for the date of monsoon onset over Kerala [J]. International Journal of Climatology, 26: 1871 - 1893.
Kanner L C, Burns S J, Cheng H, et al. 2012. High-latitude forcing of the South American summer monsoon during the last glacial [J]. Science, 335: 570 - 573.
Kasahara A, Sasamori T, Washington W M. 1973. Simulation experiments with a 12-layer stratospheric global circulation model. Ⅰ. Dynamical effect of the Earth’s orography and thermal influence of continentality [J]. Journal of the Atmospheric Sciences, 30: 1229 - 1251.
Kawamura R. 1994. A rotated EOF analysis of global sea surface temperature variability with interannual and interdecadal scales [J]. Journal of Physical Oceanography, 24: 707 - 715.
Kelly M J, Edwards R L, Cheng H, et al. 2006. High resolution characterization of the Asian Monsoon between 146,000 and 99,000 years BP from Dongge Cave, China and global correlation of events surrounding Termination Ⅱ [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 236: 20 - 38.
Khromov S. 1957. Die geographische verbreitung der monsune [J]. Petermanns geographische Mitteilungen, 101: 234 - 237.
Kitoh A. 2004. Effects of mountain uplift on East Asian summer climate investigated by a coupled atmosphereocean GCM [J]. Journal of Climate, 17: 783 - 802.
Kodera K. 2004. Solar infl uence on the Indian Ocean monsoon through dynamical processes [J]. Geophysical Research Letters, 31, doi: 10.1029/2004GL020928.
Krishnamurthy V, Goswami B N. 2000. Indian monsoon-ENSO relationship on interdecadal timescale [J]. Journal of Climate, 13: 579 - 595.
Krishnamurti T N, Ardanuy P. 1980. The 10 to 20-day westward propagating mode and “Breaks in the Monsoons” [J]. Tellus, 32: 15 - 26.
Kroon D, Steens T, Troelstra S R. 1991. Onset of monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifers [J]. Proceedings of the Ocean Drilling Program Scientifi c Results, 117: 257 - 264.
Kumar K K, Rajagopalan B, Cane M A. 1999. On the weakening relationship between the Indian monsoon and ENSO [J]. Science, 284: 2156 - 2159.
Kumar K K, Rajagopalan B, Hoerling M, et al. 2006. Unraveling the mystery of Indian monsoon failure during El Niño [J]. Science, 314: 115 - 119.
Kutzbach J E. 1980. Estimates of past climate at Paleolake Chad, North Africa, based on a hydrological and energybalanced model [J]. Quaternary Research, 14: 210 - 223.
Kutzbach J E. 1981. Monsoon climate of the early Holocene: climate experiment with the Earth’s orbital parameters for 9000 years ago [J]. Science, 214: 59 - 61.
Kutzbach J E, Gallimore R G. 1988. Sensitivity of a coupled atmosphere/mixed layer ocean model to changes in orbital forcing at 9000 years BP [J]. Journal of Geophysical Research, 93(D1): 803 - 821.
Kutzbach J E, Guetter P J. 1986. The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18000 years [J]. Journal of the Atmospheric Sciences, 43: 1726 - 1759.
Kutzbach J E, Guetter P J, Ruddiman W F, et al. 1989. Sensitivity of climate to late Cenozoic uplift in southern Asia and the American west: numerical experiments [J]. Journal of Geophysical Research, 94(D15): 18393 - 18407.
Kutzbach J E, Liu X, Liu Z, et al. 2008. Simulation of the evolutionary response of global summer monsoons to orbital forcing over the past 280,000 years [J]. Climate Dynamics, 30: 567 - 579.
Kutzbach J E, Liu Z. 1997. Oceanic feedback on the western African monsoon at 6000 BP [J]. Science, 278: 440 - 443.
Kutzbach J E, Otto-Bliesner B L. 1982. The sensitivity of the African-Asian monsoonal climate to orbital parameter changes for 9000 years BP in a low-resolution general circulation model [J]. Journal of the Atmospheric Sciences, 39: 1177 - 1188.
Kutzbach J E, Prell W L, Ruddiman W F. 1993. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau [J]. The Journal of Geology, 101: 177 - 190.
Larrasoaña J C, Roberts A P, Rohling E J, et al. 2003. Three million years of monsoon variability over the northern Sahara [J]. Climate Dynamics, 21: 689 - 698.
Lau K. 2003. ENSO-monsoon interactions [M]// Holton J. Encyclopedia of atmosphere sciences. London: Elsevier, 1386 - 1391.
Lawrence D M, Webster P J. 2002. The boreal summer intraseasonal oscillation: relationship between northward and eastward movement of convection [J]. Journal of the Atmospheric Sciences, 59: 1593 - 1606.
Le Barbé L, Lebel T. 1997. Rainfall climatology of the HAPEX-Sahel region during the years 1950—1990 [J]. Journal of Hydrology, 43: 188 - 189.
Le Barbé L, Lebel T, Tapsoba D. 2002. Rainfall variability in West Africa during the years 1950—1990 [J]. Journal of Climate, 15: 187 - 202.
Lei Y H, Hoskins B, Slingo J. 2011. Exploring the interplay between natural decadal variability and anthropogenic climate change in summer rainfall over China. Part Ⅰ: Observational evidence [J]. Journal of Climate, 24: 4584 - 4599.
Li C, Battisti D S, Schrag D P, et al. 2005. Abrupt climate shifts in Greenland due to displacements of the sea ice edge [J]. Geophysical Research Letters, 32, doi: 10.1029/2005GL023492.
Li C, Yanai M. 1996. The onset and interannual variability of the Asian summer monsoon in relation to land-sea thermalcontrast [J]. Journal of Climate, 9: 358 - 375.
Li J P, Wu Z W, Jiang Z H, et al. 2010. Can global warming strengthen the East Asian summer monsoon? [J]. Journal of Climate, 23: 6696 - 6705.
Li J P, Zeng Q C. 2000. Significance of the normalized seasonality of wind field and its rationality for characterizing the monsoon [J]. Science in China Series D, 43: 646 - 653.
Li J P, Zeng Q C. 2002. A unifi ed monsoon index [J]. Geophysical Research Letters, 29, doi: 10.1029/2001GL013874.
Li J P, Zeng Q C. 2003. A new monsoon index and the geographical distribution of the global monsoons [J]. Advances in Atmospheric Sciences, 20: 299 - 302.
Li J P, Zhang L. 2009. Wind onset and withdrawal of Asian summer monsoon and their simulated performance in AMIP models [J]. Climate Dynamics, 32: 935 - 968.
Liang X, Liu Y, Wu G. 2005. The role of land-sea distribution in the formation of the Asian summer monsoon [J]. Geophysical Research Letters, 32, doi: 10.1029/2004GL021587.
Lindzen R S, Hou A Y. 1988. Hadley circulations for zonally averaged heating centered off the equator [J]. Journal of the Atmospheric Sciences, 45: 2416 - 2427.
Lisiecki L E, Raymo M E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records [J]. Paleoceanography, 20, doi: 10.1029/2004PA001071.
Liu J, Chen F, Chen J, et al. 2011. Humid Medieval Warm Period recorded by magnetic characteristics of sediments from Gonghai Lake, Shanxi, North China [J]. Chinese Science Bulletin, 56: 2464 - 2474.
Liu J, Wang B, Ding Q, et al. 2009. Centennial variations of the global monsoon precipitation in the last millennium: results from ECHO-G model [J]. Journal of Climate, 22: 2356 - 2371.
Liu T S, Ding Z L. 1998. Chinese loess and the paleomonsoon [J]. Annual Review of Earth and Planetary Sciences, 26: 111 - 145.
Liu T S, Ding Z L, Rutter N. 1999. Comparison of Milankovitch periods between continental loess and deep sea records over the last 2.5 Ma [J]. Quaternary Science Reviews, 18: 1205 - 1212.
Liu X D, Kutzbach J E, Liu Z Y, et al. 2003a. The Tibetan Plateau as amplifi er of orbital-scale variability of the East Asian monsoon [J]. Geophysical Research Letters, 30, doi: 10.1029/2003GL017510.
Liu X D, Yin Z Y. 2002. Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 183: 223 - 245.
Liu Y, Henderson G, Hu C, et al. 2013. Links between the East Asian monsoon and North Atlantic climate during the 8,200 year event [J]. Nature Geoscience, 6: 117 - 120.
Liu Y. Hoskins B J, Blackburn M. 2007. Impacts of the Tibetan topography and heating on the summer fl ow over Asia [J]. Journal of the Meteorological Society of Japan, 85B: 1 - 19.
Liu Y, Wu G, Hong J, et al. 2012. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing. II: Change [J]. Climate Dynamics, 39: 1183 - 1195.
Liu Z, Harrison S, Kutzbach J, et al. 2004. Global monsoons in the mid-Holocene and oceanic feedback [J]. Climate Dynamics, 22: 157 - 182.
Liu Z, Notaro M, Kutzbach J, et al. 2006. Assessing global vegetation-climate feedbacks from observation [J]. Journal of Climate, 19: 787 - 814.
Liu Z, Otto-Bliesner B, Kutzbach J, et al. 2003b. Coupled climate simulation of the evolution of global monsoons in the Holocene [J]. Journal of Climate, 16: 2472 - 2490.
Liu Z, Wen X, Brady EC, et al. 2014. Chinese cave records and the East Asia summer monsoon [J]. Quaternary Science Reviews, 83: 115 - 128.
Loope D B, Rowe C M, Joeckel R M. 2001. Annual monsoon rains recorded by Jurassic dunes [J]. Nature, 412: 64 - 66.
Lourens L J, Wehausen R, Brumsack H J. 2001. Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years [J]. Nature, 409: 1029 - 1033.
Lu H Y, Zhang F Q, Liu X D, et al. 2004. Periodicities of palaeoclimatic variations recorded by loess-paleosol sequences in China [J]. Quaternary Science Reviews, 23: 1891 - 1900.
Luo J J, Sasaki W, Masumoto Y. 2012. Indian Ocean warming modulates Pacific climate change [J]. Proceedings of National Academy of Sciences of the United States of America, 109: 18701 - 18706.
Maasch K A, Saltzman B. 1990. A low-order dynamical model of global climatic variability over the full Pleistocene [J]. Journal of Geophysical Research, 95(D2): 1955 - 1963.
Madden R A, Julian P R. 1994. Observations of the 40-50-day tropical oscillation — a review [J]. Monthly Weather Review, 122: 814 - 837.
Maher B A. 2008. Holocene variability of the East Asian summer monsoon from Chinese cave records: a reassessment [J]. Holocene, 18: 861 - 866.
Maley J. 1981. Etudes palynologiques dans le bassin du Tchad et paléoclimatologie de l’Afrique nord-tropicale de 30 000 ans à l’époque actuelle [M]. Paris: ORSTOM.
Manabe S, Broccoli A. 1990. Mountains and arid climates of middle latitudes [J]. Science, 247: 192 - 195.
Manabe S, Terpstra T B. 1974. The effects of mountains on the general circulation of the atmosphere as identifi ed by numerical experiments [J]. Journal of the Atmospheric Sciences, 31: 3 - 42.
Mao J Y, Chan J C. 2005. Intraseasonal variability of the South China Sea summer monsoon [J]. Journal of Climate, 18: 2388 - 2402.
Mao J Y, Sun Z, Wu G X. 2010. 20-50-day oscillation of summer Yangtze rainfall in response to intraseasonal variations in the subtropical high over the western North Pacific and South China Sea [J]. Climate Dynamics, 34: 747 - 761.
Mao J Y, Wu G X. 2007. Interannual variability in the onset of the summer monsoon over the eastern Bay of Bengal [J]. Theoretical and Applied Climatology, 89: 155 - 170.
Mayewski P A, Meeker L D, Twickler M S, et al. 1997. Major features and forcing of high-latitude Northern Hemisphere atmospheric circulation using a 110,000-yearlong glaciochemical series [J]. Journal of Geophysical Research, 102(C12): 26345 - 2666.
Mayle F E, Burbridge R, Killeen T J. 2000. Millennial-scale dynamics of southern Amazonian rain forests [J]. Science, 290: 2291 - 2294.
Menviel L, Timmermann A, Mouchet A, et al. 2008. Meridional reorganizations of marine and terrestrial productivity during Heinrich events [J]. Paleoceanography, 23: PA1203.
Milanković M. 1941. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem [M]. Belgrade, Serbia: Mihaila Ćurčića.
Moernaut J, Verschuren D, Charlet F, et al. 2010. The seismicstratigraphic record of lake-level fluctuations in Lake Challa: hydrological stability and change in equatorial East Africa over the last 140 kyr [J]. Earth and Planetary Science Letters, 290: 214 - 223.
Molnar P. 2005. Mio-Pliocene growth of the Tibetan Plateau and evolution of East Asian climate [J]. Palaeontologia Electronica, 8: 1 - 23.
Molnar P, Boos W R, Battisti D S. 2010. Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau [J]. Annual Review of Earth and Planetary Sciences, 38: 77 - 102.
Molnar P, England P, Martinod J. 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon [J]. Reviews of Geophysics, 31: 357 - 396.
Molnar P, Stock J M. 2009. Slowing of India’s convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics [J]. Tectonics, 28, doi: 10.1029/2008TC002271.
Moy C M, Seltzer G O, Rodbell D T, et al. 2002. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch [J]. Nature, 420: 162 - 165.
Murton J B, Bateman M D, Dallimore S R, et al. 2010. Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean [J]. Nature, 464: 740 - 743.
Nan S, Li J. 2003. The relationship between the summer precipitation in the Yangtze River valley and the boreal spring Southern Hemisphere annular mode [J]. Geophysical Research Letters, 30, doi: 10.1029/2003GL018381.
Neff U, Burns S, Mangini A, et al. 2001. Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago [J]. Nature, 411: 290 - 293.
Newton A, Thunell R, Stott L. 2006. Climate and hydrographic variability in the Indo-Pacifi c Warm Pool during the last millennium [J]. Geophysical Research Letters, 33, doi: 10.1029/2006GL027234.
Nie J, Boos W R, Kuang Z. 2010. Observational evaluation of a convective quasi-equilibrium view of monsoons [J]. Journal of Climate, 23: 4416 - 4428.
Niedermeyer E M, Schefuß E, Sessions AL, et al. 2010. Orbitaland millennial-scale changes in the hydrologic cycle and vegetation in the western African Sahel: insights from individual plant wax δD and δ13C [J]. Quaternary Science Reviews, 29: 2996 - 3005.
Novello V F, Cruz F W, Karmann I, et al. 2012. Multidecadal climate variability in Brazil’s Nordeste during the last 3000 years based on speleothem isotope records [J]. GeophysicalResearch Letters, 39, doi: 10.1029/2012GL053936.
Oppo D W, Rosenthal Y, Linsley B K. 2009. 2,000-year-long temperature and hydrology reconstructions from the Indo-Pacifi c warm pool [J]. Nature, 460: 1113 - 1116.
Oppo D W, Sun Y. 2005. Amplitude and timing of sea-surface temperature change in the northern South China Sea: dynamic link to the East Asian monsoon [J]. Geology, 33: 785 - 788.
Overpeck J, Anderson D, Trumbore S, et al. 1996. The southwest Indian Monsoon over the last 18000 years [J]. Climate Dynamics, 12: 213 - 225.
Overpeck J T, Cole J E. 2006. Abrupt change in Earth’s climate system [J]. Annual Review of Environment and Resources, 31: 1 - 31.
Parrish J T, Ziegler A, Scotese C R. 1982. Rainfall patterns and the distribution of coals and evaporites in the Mesozoic and Cenozoic [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 40: 67 - 101.
Parthasarathy B, Munot A, Kothawale D. 1994. All-India monthly and seasonal rainfall series: 1871—1993 [J]. Theoretical an d Applied Climatology, 49: 217 - 224.
Partridge T, deMenocal P, Lorentz S, et al. 1997. Orbital forcing of climate over South Africa: a 200,000-year rainfall record from the Pretoria Saltpan [J]. Quaternary Science Reviews, 16: 1125 - 1133.
Pausata FS, Battisti DS, Nisancioglu KH, et al. 2011. Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event [J]. Nature Geoscience, 4: 474 - 480.
Pédelaborde P. 1963. The Monsoon [M]. London: Methuen.
Petersen S, Schrag D, Clark P. 2013. A new mechanism for Dansgaard-Oeschger cycles [J]. Paleoceanography, 28: 24 - 30.
Petit J R, Jouzel J, Raynaud D, et al. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica [J]. Nature, 399: 429 - 436.
Plumb R A, Hou A Y. 1992. The response of a zonally symmetric atmosphere to subtropical thermal forcing: threshold behavior [J]. Journal of the Atmospheric Sciences, 49: 1790 - 1799.
Pierrehumbert R T. 2000. Climate change and the tropical Pacific: the sleeping dragon wakes [J]. Proceedings of National Academy of Sciences of the United States of America, 97: 1355 - 1358.
Pierrehumbert R T, Abbot D S, Voigt A, et al. 2011. Climate of the Neoproterozoic [J]. Annual Review of Earth and Planetary Sciences, 39: 417 - 460.
Pisias N G, Clark P U, Brook E J. 2010. Modes of global climate variability during marine isotope stage 3 (60—26 ka) [J]. Journal of Climate, 23: 1581 - 1588.
Porter S C, An Z S. 1995. Correlation between climate events in the North Atlantic and China during the last glaciation [J]. Nature, 375: 185 - 188.
Prell W L. 1984. Monsoonal climate of the Arabian Sea during the Late Quaternary: a response to changing solar radiation [M]// Berger A L. Milankovitch and Climate. Dordrecht, Netherland: Reidel, 349 - 366.
Prell W L, Kutzbach J E. 1987. Monsoon variability over the past 150,000 years [J]. Journal of Geophysical Research, 92(D7): 8411 - 8425.
Prell W L, Kutzbach J E. 1992. Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution [J]. Nature, 360: 647 - 652.
Privé N C, Plumb R A. 2007. Monsoon dynamics with interactive forcing. Part Ⅱ: Impact of eddies and asymmetric geometries [J]. Journal of the Atmospheric Sciences, 64: 1431 - 1442.
Qian W H. 2000. Dry/wet alternation and global monsoon [J]. Geophysical Research Letters, 27: 3679 - 3682.
Qiang X, An Z S, Song Y, et al. 2011. New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertifi cation about 25 Ma ago [J]. Science in China Series D, 54: 136 - 144.
Qiang X, Li Z, Powell C M, et al. 2001. Magnetostratigraphic record of the Late Miocene onset of the East Asian monsoon, and Pliocene uplift of northern Tibet [J]. Earth and Planetary Science Letters, 187: 83 - 93.
Qiu Z, Li C. 2005. Evolution of Chinese mammalian faunal regions and elevation of the Qinghai-Xizang (Tibet) Plateau [J]. Science in China Series D, 48: 1246 - 1258.
Raicich F, Pinardi N, Navarra A. 2003. Teleconnections between Indian monsoon and Sahel rainfall and the Mediterranean [J]. International Journal of Climatology, 23: 173 - 186.
Rajagopalan B, Molnar P. 2012. Pacific Ocean sea-surface temperature variability and predictability of rainfall in the early and late parts of the Indian summer monsoon season [J]. Climate Dynamics, 39: 1543 - 1557.
Ramage C S. 1971. Monsoon Meteorology [M]. New York: Academic.
Ramstein G, Fluteau F, Besse J, et al. 1997. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years [J]. Nature, 386: 788 - 795.
Raymo M, Lisiecki L, Nisancioglu K H. 2006. Plio-Pleistocene ice volume, Antarctic climate, and the global δ18O record [J]. Science, 313: 492 - 495.
Reichart G J, Lourens L J, Zachariasse W J. 1998. Temporal variability in the northern Arabian Sea oxygen minimum zone (OMZ) during the last 225,000 years [J]. Paleoceanography, 13: 607 - 621.
Reimer P J, Baillie M G, Bard E, et al. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0—50,000 years cal BP [J]. Radiocarbon, 51: 1111 - 1150.
Reuter J, Stott L, Khider D, et al. 2009. A new perspective on the hydroclimate variability in northern South America during the Little Ice Age [J]. Geophysical Research Letters, 36, doi: 10.1029/2009GL041051.
Rodwell M J, Hoskins B J. 1996. Monsoons and the dynamics of deserts [J]. Quarterly Journal of the Royal Meteorological Society, 122: 1385 - 1404.
Rossignol-Strick M. 1983. African monsoons, an immediate climate response to orbital insolation [J]. Nature, 304: 46 - 49.
Rowley D B, Currie B S. 2006. Palaeo-altimetry of the late Eocene to Miocene Lunpola Basin, central Tibet [J]. Nature, 439: 677 - 681.
Ruddiman W, Prell W, Raymo M. 1989. Late Cenozoic uplift in southern Asia and the American West: rationale for general circulation modeling experiments [J]. Journal of Geophysical Research, 94(D15): 18379 - 18391.
Russell J M, Johnson T C. 2005. A high-resolution geochemical record from Lake Edward, Uganda Congo and the timing and causes of tropical African drought during the late Holocene [J]. Quaternary Science Reviews, 24: 1375 - 1389.
Sachs J P, Sachse D, Smittenberg R H, et al. 2009. Southward movement of the Pacific intertropical convergence zone AD 1400—1850 [J]. Nature Geoscience, 2: 519 - 525.
Sankar-Rao M. 1966. Equations for global monsoons and toroidal circulations in the s-coordinate system [J]. Pure Applied Geophysics, 65: 196 - 215.
Sankar-Rao M. 1970. On global monsoons—further results [J]. Tellus, 22: 648 - 654.
Sarnthein M, Tetzlaff G, Koopmann B, et al. 1981. Glacial and interglacial wind regimes over the eastern subtropical Atlantic and North-West Africa [J]. Nature, 293: 193 - 196.
Schneider E K. 1987. A simplified model of the modified Hadley circulation [J]. Journal of the Atmospheric Sciences, 44: 3311 - 3328.
Schneider E K, Lindzen R S. 1977. Axially symmetric steady state models of the basic state of instability and climate studies. Part Ⅰ: Linearized calculations [J]. Journal of the Atmospheric Sciences, 34: 253 - 279.
Schulz H, von Rad U, Erlenkeuser H. 1998. Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years [J]. Nature, 393: 54 - 57.
Sepulchre P, Ramstein G, Fluteau F, et al. 2006. Tectonic uplift and Eastern Africa aridification [J]. Science, 313: 1419 - 1423.
Shi Z, Liu X, Liu Y, et al. 2014. Impact of Mongolian Plateau versus Tibetan Plateau on the westerly jet over North Pacific Ocean [J]. Climate Dynamics, 44(11 - 12): 3067 - 3076.
Shi Z, Liu X, An Z S, et al. 2011. Simulated variations of eolian dust from inner Asian deserts at the mid-Pliocene, last glacial maximum, and present day: contributions from the regional tectonic uplift and global climate change [J]. Climate Dynamics, 37: 2289 - 2301.
Shindell D T, Schmidt G A, Mann M E, et al. 2001. Solar forcing of regional climate change during the Maunder Minimum [J]. Science, 294: 2149 - 2152.
Sikka D, Gadgil S. 1980. On the maximum cloud zone and the ITCZ over Indian, longitudes during the southwest monsoon [J]. Monthly Weather Review, 108: 1840 - 1853.
Sima A, Paul A, Schulz M. 2004. The Younger Dryas—an intrinsic feature of late Pleistocene climate change at millennial timescales [J]. Earth and Planetary Science Letters, 222: 741 - 750.
Sinha A, Cannariato K G, Stott L D, et al. 2005. Variability of Southwest Indian summer monsoon precipitation during the Bølling-Allerød [J]. Geology, 33: 813 - 816.
Sinha A, Stott L, Berkelhammer M, et al. 2011. A global context for megadroughts in monsoon Asia during the past millennium [J]. Quaternary Science Reviews, 30: 47 - 62.
Sirocko F, Sarnthein M, Erlenkeuser H, et al. 1993. Century-scale events in monsoonal climate over the past 24,000 years [J]. Nature, 364: 322 - 324.
Stager J C, Ryves D, Cumming B F, et al. 2005. Solar variability and the levels of Lake Victoria, East Africa, during the last millenium [J]. Journal of Paleolimnology, 33: 243 - 51.
Stríkis N M, Cruz F W, Cheng H, et al. 2011. Abrupt variations in South American monsoon rainfall during the Holocene based on a speleothem record from central-eastern Brazil [J]. Geology, 39: 1075 - 1078.
Sun D H, An Z S, Shaw J, et al. 1998. Magnetostratigraphy and palaeoclimatic significance of late Tertiary aeolian sequences in the Chinese Loess Plateau [J]. Geophysical Journal International, 134: 207 - 212.
Sun X J, Wang P X. 2005. How old is the Asian monsoon system? Palaeobotanical records from China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 222: 181 - 222.
Sun Y B, An Z S. 2004. An improved comparison of Chinese loess with deep-sea δ18O record over the interval 1.6 —2.6 Ma [J]. Geophysical Research Letters, 31, doi: 10.1029/2004GL019716.
Sun Y B, An Z S, Clemens S C, et al. 2010. Seven million years of wind and precipitation variability on the Chinese Loess Plateau [J]. Earth and Planetary Science Letters, 297: 525 - 535.
Sun Y B, Chen J, Clemens S C, et al. 2006a. East Asian monsoon variability over the last seven glacial cycles recorded by a loess sequence from the northwestern Chinese Loess Plateau [J]. Geochemistry, Geophysics, Geosystems, 7, doi: 10.1029/2006GC001287.
Sun Y B, Clemens S C, An Z S, et al. 2006b. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau [J]. Quaternary Science Reviews, 25: 33 - 48.
Sun Y B, Clemens S C, Morrill C, et al. 2012, Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon [J]. Nature Geoscience, 5: 46 - 49.
Talbot M, Delibrias G. 1977. Holocene variations in the level of Lake Bosumtwi, Ghana [J]. Nature, 268: 722 - 724.
Talbot M, Filippi M L, Jensen N B, et al. 2007. An abrupt change in the African monsoon at the end of the Younger Dryas [J]. Geochemistry Geophysics Geosystems, 8, doi: 10.1029/2006GC001465.
Tan L, Cai Y, An Z S, et al. 2011. Climate patterns in north central China during the last 1800 yr and their possible driving force [J]. Climate of the Past, 7: 685 - 692.
Tan L, Cai Y, Cheng H, et al. 2009. Summer monsoon precipitation variations in central China over the past 750 years derived from a high-resolution absolute-dated stalagmite [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 280: 432 - 439.
Tan L, Cai Y, Yi L, et al. 2008. Precipitation variations of Longxi, northeast margin of Tibetan Plateau since AD 960 and their relationship with solar activity [J]. Climate of the Past, 4: 19 - 28.
Tang H, Micheels A, Eronen J T, et al. 2013. Asynchronous responses of East Asian and Indian summer monsoons to mountain uplift shown by regional climate modelling experiments [J]. Climate Dynamics, 40: 1531 - 1549.
Tang M C, Reiter E R. 1984. Plateau monsoons of the Northern Hemisphere: a comparison between North America and Tibet [J]. Monthly Weather Review, 112: 617 - 637.
Tao S Y, Chen L X. 1987. A review of recent research on the East Asian summer monsoon in China [M]// Chang C P, Krishnamurti T N. Monsoon Meteorology. Oxford, UK: Oxford University Press, 60 - 92.
Thompson L G, Mosley-Thompson E, Dansgaard W, et al. 1986. The Little Ice Age as recorded in the stratigraphy of the tropical Quelccaya ice cap [J]. Science, 234: 361 - 364.
Tiedemann R, Sarnthein M, Shackleton N J. 1994. Astronomical timescale for the Pliocene Atlantic δ18O and dust fl ux records of Ocean Drilling Program site 659 [J]. Paleoceanography, 9: 619 - 638.
Tierney J, Oppo D, Rosenthal Y, et al. 2010. Coordinated hydrological regimes in the Indo-Pacific region during the past two millennia [J]. Paleoceanography, 25, doi: 10.1029/2009PA001871.
Tierney J E, Smerdon J E, Anchukaitis K J, et al. 2013. Multidecadal variability in East African hydroclimate controlled by the Indian Ocean [J]. Nature, 493: 389 - 392.
Tipple B J, Pagani M. 2007. The early origins of terrestrial C4photosynthesis [J]. Annual Review of Earth and Planetary Sciences, 35: 435 - 461.
Tokinaga H, Xie S P, Deser C, et al. 2012. Slowdown of the Walker circulation driven by tropical Indo-Pacific warming [J]. Nature, 491: 439 - 443.
Tomas R A, Holton J R, Webster P J. 1999. The influence of cross-equatorial pressure gradient on the location of nearequatorial convection [J]. Quarterly Journal of the Royal Meteorological Society, 125: 1107 - 1127.
Tomas R A, Webster P J. 1997. The role of inertial instability in determining the location and strength of nearequatorial convection [J]. Quarterly Journal of the Royal Meteorological Society, 123: 1445 - 1482.
Torrence C, Webster P. 1999. Interdecadal changes in the ENSO-monsoon system [J]. Journal of Climate, 12: 2679 - 2690.
Trauth M H, Larrasoaña J C, Mudelsee M. 2009. Trends, rhythms and events in Plio-Pleistocene African climate [J]. Quaternary Science Reviews, 28: 399 - 411.
Trenberth K E, Stepaniak D P, Caron J M. 2000. The global monsoon as seen through the divergent atmospheric circulation [J]. Journal of Climate, 13: 3969 - 3993.
Tuenter E, Weber S L, Hilgen F J, et al. 2005. Simulation of climate phase lags in response to precession and obliquity forcing and the role of vegetation [J]. Climate Dynamics, 24: 279 - 295.
Verschuren D, Laird K R, Cumming B F. 2000. Rainfall and drought in equatorial east Africa during the past 1,100 years [J]. Nature, 403: 410 - 414.
Vieira L E A, Solanki S K, Krivova N A, et al. 2011. Evolution of the solar irradiance during the Holocene [J]. Astronomy and Astrophysics, 531, doi: 10.1051/0004-6361/201015843.
Voelker A H L. 2002. Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database [J]. Quaternary Science Reviews, 21: 1185 - 1212.
Voyeikov A I. 1879. Regional monsoon climate over East Asia: Amur region, Baikal, Manchuria, Eastern Mongolia, China, Japan, etc [J]. Proceedings of the Imperial Russian Geographic Society, 15: 321 - 410.
Wagner J D M, Cole J E, Beck J W, et al. 2010. Moisture variability in the southwestern United States linked to abrupt glacial climate change [J]. Nature Geoscience, 3: 110 - 113.
Wang B, Ding Q H. 2006. Changes in global monsoon precipitation over the past 56 years [J]. Geophysical Research Letters, 33, doi: 10.1029/2005GL025347.
Wang B, Ding Q H. 2008. Global monsoon: dominant mode of annual variation in the tropics [J]. Dynamics of Atmospheres and Oceans, 44: 165 - 183.
Wang B, Liu J, Kim H J, et al. 2012. Recent change of the GM precipitation (1979—2008) [J]. Climate Dynamics, 39: 1123 - 1135.
Wang B, Wu R, Lau K M. 2001a. Interannual variability of the Asian summer monsoon: contrasts between the Indian and the western North Pacific-East Asian monsoons [J]. Journal of Climate, 14: 4073 - 4090.
Wang B, Yang J, Zhou T J. 2008a. Interdecadal changes in the major modes of Asian-Australian monsoon variability: strengthening relationship with ENSO since the late 1970s [J]. Journal of Climate, 21: 1771 - 1789.
Wang C, Zhao X, Liu Z, et al. 2008b. Constraints on the early uplift history of the Tibetan Plateau [J]. Proceedings of National Academy of Sciences of the United States of America, 105: 4987 - 4992.
Wang L, Sarnthein M, Erlenkeuser H, et al. 1999a. East Asian monsoon climate during the late Pleistocene: highresolution sediment records from the South China Sea [J]. Marine Geology, 156: 245 - 284.
Wang L J, Sarnthein M, Grootes P M, et al. 1999b. Millennial reoccurrence of century-scale abrupt events of East Asian monsoon: a possible heat conveyor for the global deglaciation [J]. Paleoceanography, 14: 725 - 731.
Wang P X. 2009. Global monsoon in a geological perspective [J]. Chinese Science Bulletin, 54: 1113 - 1136.
Wang P X, Clemens S, Beaufort L, et al. 2005a. Evolution and variability of the Asian monsoon system: state of the art and outstanding issues [J]. Quaternary Science Reviews, 24: 595 - 629.
Wang P X, Jian Z M, Zhao Q H, et al. 2003. Evolution of the South China Sea and monsoon history revealed in deepsea records [J]. Chinese Science Bulletin, 48: 2549 - 2561.
Wang X, Auler A S, Edwards R L, et al. 2004. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies [J]. Nature, 432: 740 - 743.
Wang X, Auler A S, Edwards R L, et al. 2006. Interhemispheric anti-phasing of rainfall during the last glacial period [J]. Quaternary Science Reviews, 25: 3391 - 3403.
Wang Y J, Cheng H, Edwards R L, et al. 2001b. A highresolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China [J]. Science, 294: 2345 - 2348.
Wang Y J, Cheng H, Edwards R L, et al. 2005b. The Holocene Asian monsoon: links to solar changes and North Atlantic climate [J]. Science, 308: 854 - 857.
Wang Y J, Cheng H, Edwards R L, et al. 2008c. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years [J]. Nature, 28: 1090 - 1093.
Wang Z, Mysak L A. 2006. Glacial abrupt climate changes and Dansgaard-Oeschger oscillations in a coupled climate model [J]. Paleoceanography, 21, doi: 10.1029/2005PA001238.
Wasson R J, Bayliss P. 2010. River flow and climate in the“Top End” of Australia from the last 1000 years, and the Asian-Australian monsoon [C]// Winderlich S. Kakadu National Park Landscape Symposia Series 2007—2009. Symposium 4: Climate Change. Intern. Rep. 567. Darwin, Australia: Supervising Scientist: 15 - 36.
Webster P J, Fasullo J. 2003. Monsoon: dynamical theory [M]// Holton J, Curry J A. Encyclopedia of atmospheric sciences. San Diego, CA: Academic, 1370 - 1385.
Webster P J, Magaña V O, Palmer T N, et al. 1998. Monsoons: processes, predictability, and the prospects for prediction [J]. Journal of Geophysical Research, 103(C7): 14451 - 1510.
Wehausen R, Brumsack H J. 2000. Chemical cycles in Pliocene sapropel-bearing and sapropel-barren eastern Mediterranean sediments [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 158: 325 - 352.
Wehausen R, Brumsack H J. 2002. Astronomical forcing of the East Asian monsoon mirrored by the composition of Pliocene South China Sea sediments [J]. Earth and Planetary Science Letters, 201: 621 - 636.
Wei G, Li X H, Liu Y, et al. 2006. Geochemical record of chemical weathering and monsoon climate change since the early Miocene in the South China Sea [J]. Paleoceanography, 21, doi: 10.1029/2006PA001300.
Weldeab S, Lea D W, Schneider R R, et al. 2007a. 155,000 years of West African monsoon and ocean thermal evolution [J]. Science, 316: 1303 - 1307.
Weldeab S, Lea D W, Schneider R R, et al. 2007b. Centennial scale climate instabilities in a wet early Holocene West African monsoon [J]. Geophysical Research Letters, 34, doi: 10.1029/2007GL031898.
Wheeler M C, McBride J L. 2012. Australasian monsoon [M]// Lau W K, Waliser D E. Intraseasonal Variability in the Atmosphere-Ocean Climate System Berlin: Springer-Verlag, 147 - 197.
Wolff C, Haug G H, Timmermann A, et al. 2011. Reduced interannual rainfall variability in East Africa during the last ice age [J]. Science, 333: 743 - 747.
Wolff E W, Chappellaz J, Blunier T, et al. 2010. Millennial-scale variability during the last glacial: the ice core record [J]. Quaternary Science Reviews, 29: 2828 - 2838.
World Climate Research Programme (WCRP). 2009. The World Climate Research Programme Implementation Plan 2010 — 2015 [R]. Geneva: WCRP.
Wu G X, Li W, Guo H, et al. 1997. The sensible heat driven air pump over the Tibetan Plateau and the Asian summer monsoon [C]// Ye D. Collection in Memory of Dr. Zhao Jiuzhang. Beijing: Science Press, 116 - 126.
Wu G X, Liu Y, Dong B, et al. 2012a. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing. Ⅰ: Formation [J]. Climate Dynamics, 39: 1169 - 1181.
Wu G X, Liu Y, He B, et al. 2012b. Thermal controls on the Asian summer monsoon [J]. Scientific Reports, 2, doi: 10.1038/srep00404.
Wu G X, Liu Y, Liu X, et al. 2005. How the heating over the Tibetan Plateau affects the Asian climate in summer [J]. Chinese Journal of Atmospheric Sciences, 29: 47 - 56.
Wu G X, Liu Y, Wang T, et al. 2007. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate [J]. Journal of Hydrometeorology, 8: 770 - 789.
Wu G X, Pan B, Gao H, et al. 2006. Climatic signals in the Chinese loess record for the Last Glacial: the influence of northern high latitudes and the tropical Pacific [J]. Quaternary International, 154 - 155: 128 - 135.
Wu G X, Zhang Y. 1998. Tibetan Plateau forcing and the monsoon onset over South Asia and the South China Sea [J]. Monthly Weather Review, 126: 913 - 927.
Xiao J, An Z S. 1999. Three large shifts in East Asian monsoon circulation indicated by loess-paleosol sequences in China and late Cenozoic deposits in Japan [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 154: 179 - 189.
Xiao J, Porter S C, An Z S, et al. 1995. Grain size of quartz as an indicator of winter monsoon strength on the Loess Plateau of central China during the last 130,000 yr [J].Quaternary Research, 43: 22 - 29.
Yan H, Sun L, Oppo D W, et al. 2011. South China Sea hydrological changes and Pacific Walker circulation variations over the last millennium [J]. Nature Communications, 2: 293.
Yasunari T. 1991. The monsoon year—a new concept of the climate year in the tropics [J]. Bulletin of the American Meteorological Society, 72: 1331 - 1338.
Yu S Y, Colman S M, Lowell T V, et al. 2010. Freshwater outburst from Lake Superior as a trigger for the cold event 9300 years ago [J]. Science, 328: 1262 - 1266.
Yuan D X, Cheng H, Edwards R L, et al. 2004. Timing, duration, and transitions of the Last Interglacial Asian Monsoon [J]. Science, 304: 575 - 578.
Yuan D Y, Ge W P, Chen Z W, et al. 2013. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: a review of recent studies [J]. Tectonics, 32: 1358 - 1370.
Zachos J, Pagani M, Sloan L, et al. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present [J]. Science, 292: 686 - 693.
Zarriess M, Mackensen A. 2010. The tropical rainbelt and productivity changes off northwest Africa: a 31,000-year high-resolution record [J]. Marine Micropaleontology, 76: 76 - 91.
Zeng Q C, Li J P. 2002. Interactions between the Northern and Southern Hemispheric atmospheres and the essence of monsoon [J]. Chinese Journal of the Atmospheric Sciences, 26: 207 - 226.
Zeng Y, Chen J, Zhu Z, et al. 2011. The wet Little Ice Age recorded by sediments in Huguangyan Lake, tropical South China [J]. Quaternary International, 263: 55 - 62.
Zhang P, Cheng H, Edwards R, et al. 2008. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record [J]. Science, 322: 940 - 942.
Zhang R, Delworth T L. 2005. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation [J]. Journal of Climate, 18: 1853 - 1860.
Zhang R, Kang S M, Held I M. 2010. Sensitivity of climate change induced by the weakening of the Atlantic meridional overturning circulation to cloud feedback [J]. Journal of Climate, 23: 378 - 389.
Zhang R, Liu X D. 2010. The effects of tectonic uplift on the evolution of Asian summer monsoon climate since Pliocene [J]. Chinese Journal of Geophysics, 53: 2817 - 2828.
Zhang X Y, Arimoto R, An Z S. 1997. Dust emission from Chinese desert sources linked to variation in atmospheric circulation [J]. Journal of Geophysical Research, 102(D23): 28041 - 28047.
Zhao P, Zhou Z J, Liu J P. 2007a. Variability of Tibetan spring snow and its associations with the hemispheric extratropical circulation and East Asian summer monsoon rainfall: an observational investigation [J]. Journal of Climate, 20: 3942 - 3955.
Zhao P, Zhu Y, Zhang R. 2007b. An Asian-Pacific teleconnection in summer tropospheric temperature and associated Asian climate variability [J]. Climate Dynamics, 29: 293 - 303.
Zheng H B, Powell C M, An Z S, et al. 2000. Pliocene uplift of the northern Tibetan Plateau [J]. Geology, 28: 715 - 718.
Zhou J, Lau K M. 1998. Does a monsoon climate exist over South America? [J]. Journal of Climate, 11: 1020 - 1040.
Zhou J, Lau K M. 2001. Principal modes of interannual and decadal variability of summer rainfall over South America [J]. International Journal of Climatology, 21: 1623 - 1644.
Zhou T, Gong D, Li J, et al. 2009a. Detecting and understanding the multi-decadal variability of the East Asian summer monsoon—recent progress and state of affairs [J]. Meteorologische Zeitschrift, 18: 455 - 467.
Zhou T, Yu R, Zhang J, et al. 2009b. Why the Western Pacifi c subtropical high has extended westward since the late 1970s [J]. Journal of Climate, 22: 2199 - 2215.
Zhou W J, Head M J, An Z S, et al. 2001. Terrestrial evidence for a spatial structure of tropical-polar interconnections during the Younger Dryas episode [J]. Earth and Planetary Science Letters, 191: 231 - 239.
Ziegler M, Lourens L J, Tuenter E, et al. 2010a. Precession phasing offset between Indian summer monsoon and Arabian Sea productivity linked to changes in Atlantic overturning circulation [J]. Paleoceanography, 25, doi: 10.1029/2009PA001884.
Ziegler M, Tuenter E, Lourens L J. 2010b. The precession phase of the boreal summer monsoon as viewed from the eastern Mediterranean (ODP site 968) [J]. Quaternary Science Reviews, 29: 1481 - 1490.
Global monsoon dynamics and climate change
AN Zhi-sheng1,3, WU Guo-xiong2, LI Jian-ping2,4, SUN You-bin1, LIU Yi-min2, ZHOU Wei-jian1, CAI Yan-jun1, DUAN An-min2, LI Li1, MAO Jiang-yu2, CHENG Hai3,5, SHI Zheng-guo1, TAN Liang-cheng1, YAN Hong1, AO Hong1, CHANG Hong1, FENG Juan2
(1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China; 2. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; 3. Institute of Global Environment Change, Xi’an Jiaotong University, Xi’an 710049, China; 4. College of Global Change and Earth System Science, Beijing Normal University and Joint Center for Global Change Studies, Beijing 100875, China; 5. Department of Earth Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA)
This article provides a comprehensive review of the global monsoon that encompasses fi ndings from studies of both modern monsoons and paleomonsoons. We introduce a definition for the global monsoon that incorporates its three-dimensional distribution and ultimate causes, emphasizing the direct drive of seasonal pressure system changes on monsoon circulation and depicting the intensity in terms ofboth circulation and precipitation. We explore the global monsoon climate changes across a wide range of timescales from tectonic to intraseasonal. Common features of the global monsoon are global homogeneity, regional diversity, seasonality, quasi-periodicity, irregularity, instability, and asynchroneity. We emphasize the importance of solar insolation, Earth orbital parameters, underlying surface properties, and land-air-sea interactions for global monsoon dynamics. We discuss the primary driving force of monsoon variability on each timescale and the relationships among dynamics on multiple timescales. Natural processes and anthropogenic impacts are of great signifi cance to the understanding of future global monsoon behavior.
global monsoon; monsoon dynamics; climate change; multitimescale; paleomonsoon; Tibetan Plateau; Asian monsoon; monsoon variability; monsoon characteristics; land-air-sea interaction; insolation; surface boundary conditions; monsoon defi nition
P532
A
1674-9901(2015)06-0341-41
10.7515/JEE201506001
2015-10-31
国家自然科学基金重大项目(41290250);国家重大科学研究计划(2013CB955900);国家自然科学基金重点国际合作项目(41420104008);中国科学院重点国际合作项目(132B61KYSB20130003)
安芷生,E-mail: anzs@loess.llqg.ac.cn