允许赤字的MAP风险过程首达时
2015-03-26张超权刘晓辉
张超权 刘晓辉
摘要保险公司作为负债经营的特殊企业,其偿付能力受到监管部门的约束,本文以公司负债经营为前提研究其各种首次时.考虑MAP风险过程,即存在一随机背景Markov过程,索赔到达与索赔大小同时受这一背景过程影响,索赔到达为Markov到达点过程(MAP),索赔大小对于不同的背景状态具有不同的分布.本文给出首达时满足的积分微分方程,通过求解带边界条件的积分微分方程,给出了盈余过程从初始盈余水平到达某一给定盈余水平的首达时的Laplace变换的矩阵表示式,并由此推得了盈余过程到达指定水平的若干首达事件概率.
关键词风险过程;首达时;Laplace变换;积分微分方程
中图分类号0211.9 文献标识码A
AbstractAs a special enterprise allow deficit, an insurance company's solvency is constrained by the supervision department. In this paper, we studied the various First Passage Times (FPTs) of the insurance company allow deficit. We described a MAP risk model in stochastic environment, in which, the claims arrive according to a Markovian Arrival Process (MAP), and the distributions of the claim sizes are modulated by the background Markov process. A system of integro-differential equations with boundary conditions was derived and solved. We obtained the matrix expressions for the Laplace transforms of some first times that the surplus process reaches a given threshold from the initial level, and the expressions of the probabilities that the surplus process reaches a given threshold from the initial level were also derived.
Key wordsrisk process; first passage times; Laplace transform; integrodifferential equation
1引言
在风险理论研究中,学者多致力对各种风险过程的破产概率的研究1-4. 在实务中,即使有足够资金实力的保险公司对于偶尔大额索赔也会造成赤字.同时,对于保险公司的一些分公司,总公司从市场占有角度及发展规模前景而言,是允许公司在某一赤字底线上负债经营的.因此,在这种情况下,对于保险公司的最大赤字,赤字的恢复,公司的最大负债及最大盈余等的研究显得尤为重要.
对于外界随机环境,如周期性气候因素、相关政策法规的出台、经营环境的突变等,这些因素对保险业的运营及管理的影响日益突出,这一现象已引起众多学者的注意及研究,基于上述考虑,保险公司作为负债经营的特殊企业,其偿付能力受到监管部门的约束,本文研究以公司负债经营为前提,在风险过程中引入随机环境,即考虑一类索赔频率及大小同时受外界因素影响的风险过程.
盈余水平重新恢复为0,且此时环境状态为j,此过程最大盈余及的最大赤字的联合分布.
3结束语
本文分析了MAP风险过程的若干首达时,以公司负债经营为前提,研究这种情况下的若干首达时Laplace变换的表达式及相应首达事件的发生概率,这些量对保险公司的运营管理,风险规避以及建立相应的预警系统,评估公司运营环境、合理防范外界风险具有十分重要意义.
参考文献
1.唐胜达,杜文忠. 多项式风险的期望贴现惩罚函数J.. 统计与决策,2010(1):151-153.
2.唐胜达,秦永松.markov随机环境过程驱动的风险过程J.. 广西师范大学学报:自然科学版, 2012, 30(1): 35-39.
3.于莉,詹晓琳,傅瀚洋. 利率服从AR(m)离散时间风险模型的破产分布J.. 经济数学, 2013, 30(4): 90-93.
4.吕东东,赵明清,李发高. 一类推广的复合poissongeometric相依风险模型的破产概率J.. 经济数学,2013,30(4):71-75.
5.G LATOUCHE, V RAMASWAMI. Introduction to matrix analytic methods in stochastic modelingM.. Phladelphia:ASA SIAM,1999.
6.A L BADESCU, D LANDRIAULT. Applications of fluid flow matrix analytic methods in ruin theorya reviewJ.. RACSAMRevista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2009, 103(2): 353-372.endprint
7.S LI, J GARRIDO. On a general class of renewal risk process: analysis of the GerberShiu functionJ.. Advances in Applied Probability, 2005, 37(3): 836-856.
8.D DICKSON, S DREKIC. The joint distribution of the surplus prior to ruin and the deficit at ruin in some Sparre Andersen modelsJ.. Insurance: Mathematics and Economics, 2004, 34(1): 97-107.
9.H U GERBER, E S W SHIU. The time value of ruin in a Sparre Andersen modelJ.. North American Actuarial Journal, 2005, 9(2): 49-69.
10.L SUN, H Yang. On the joint distributions of surplus immediately before ruin and the deficit at ruin for Erlang (2) risk processesJ.. Insurance: Mathematics and Economics, 2004, 34(1): 121-125.
11.H U GERBER, E S W SHIU. On the time value of ruinJ.. North American Actuarial Journal, 1998, 2(1): 48-72.
12.H ALBRECHER, O J BOXMA. On the discounted penalty function in a Markov-dependent risk modelJ.. Insurance: Mathematics and Economics, 2005, 37(3): 650-672.
13.E C K CHEUNG, D LANDRIAULT. A generalized penalty function with the maximum surplus prior to ruin in a MAP risk modelJ.. Insurance: Mathematics and Economics, 2010, 46(1): 127-134.endprint