新型数据中心的节能减排技术研究
2015-03-23王晶林湧双朱坤元林恩华
王晶++林湧双++朱坤元++林恩华
摘 要:随着数据中心规模的迅速增大,服务器设备和制冷设备等消耗的电能急剧攀升,造成数据中心的运营成本增加。针对目前普遍存在的数据中心高能耗问题,该文分别从服务器设备节能、空调设备节能、电源设备节能和模块化数据中心建设等方面进行了研究,并提出了基于服务器散热系统定制化的空调节能技术和绿色休眠在线UPS技术方案。实测结果表明,服务器、空调系统和电源系统节能技术方案均能达到良好的节能效果。
关键词:数据中心 节能减排 热管散热 ECO模式 模块化数据中心
中图分类号:TN915 文献标识码:A 文章编号:1672-3791(2014)12(b)-0125-02
互联网数据中心(Internet Data Center,IDC)是一种拥有完善的设备(包括高速IP接入、超强的网络安全、安全可靠的机房环境等)、专业化的管理和应用级服务的互联网数据平台。与传统电信机房相比,其主要特点是服务器、存储和网络设备众多且集中,需要大量的集中供电。数据显示,2009年我国通信行业年电耗量已达290亿kWh 以上,而空调耗电则达100亿kWh以上,通信行业成为未来节能减排的重要行业。
数据中心能耗主要集中在服务器设备、制冷设备方面,空调用电占机房总用电量的30~50%。数据中心的高能耗不仅带来运营成本的急剧攀升,而且产生沉重的碳排量负担[1-2]。如何利用各种管理、技术措施降低数据中心的能耗,已经成为当务之急。
该文针对目前普遍存在的数据中心高密度机房能耗过高问题,结合数据中心节能减排技术,分别从服务器设备节能、空调设备节能、电源设备节能等方面进行研究[3],以达到机房建设绿色环保、节能减排的目的,同时提高运营商的IT运维水平,以支撑网络业务的快速增长。
1 服务器节能技术
目前,服务器节能技术方案包括服务器芯片及配件节能、基础架构级节能和系统级节能。服务器芯片级节能技术主要包括CPU功耗控制、CPU频率调整、芯片级冷却技术和专用低功耗部件等。基础架构级节能主要包括存储制冷、高效率电源、水冷及液态金属制冷机柜和智能温控风扇等。在系统级节能的技术中,可以基于负载情况动态调整系统状态、实施部分节点或者部件的休眠,根据各进程能耗的不同对CPU任务队列进行调整,根据能耗进行进程及作业级迁移等。
Performance Level和PowerCap(功耗封顶)是服务器节能方案经常采用的节能技术,其中Performance Level通过设置系统的性能级别,控制CPU的工作状态,从而实现服务器节能,该技术无需布置BMC网,实施相对简单,技术适用性极高,能够有效对所有x86服务器进行节电。PowerCap是服务器BMC(Baseboard Management Controller,基板管理控制器)卡提供的一个功能,通过设置该服务器最高的能耗值来限定整机的功耗,该技术可控制度高且灵活,控制程度更精细,数据精准度达到100%。在实际应用中,服务器节电采用何种控制方式,取决于服务器本身条件。
通过在不同操作系统下针对不同厂家、不同类型的服务器进行实际节能测试,采用Performance Level节能技术,服务器平均可节约功耗87W/h,平均节电比例为16.17%。采用PowerCap节能技术,服务器平均可节约功耗64W/h;平均可节电比例14%。
2 空调系统节能技术
传统的机房空调节能主要包括采用变频技术、提高冷水机组运行效率、采用节能环保型制冷剂、充分利用自然冷源(室外新风)等方式[6]。如前所述,服务器是空调或新风系统最终服务的对象,其发热量降低能够减少空调及新风的能耗需求。基于此,该文提出一种基于服务器散热系统定制化的空调节能技术[7],通过有效减少服务器散发到数据中心的发热量,达到提升数据中心环境温度和空调系统节能减排的目的。
(1)热管水冷散热系统。
该方案将热管技术应用在服务器散热系统,充分利用热管的高效导热性能,将服务器内部器件产生的热量传递到冷水板,在冷水板中与流动的冷水进行换热,最后由冷水板中的冷水将热量排出数据中心。本方案可以有效消除服务器的热岛效应,降低数据中心空调系统的制冷压力。同时,通过与冷却塔免费供冷、室外新风量冷却等技术有机结合,能够充分利用室外自然冷源,从而到达到空调系统节能的目的。
热管水冷散热系统应用方案如图1所示,整套系统包括热管固定板、热管、水冷板和管道等。其中,水冷板装配在服务器机架外,这样既可以利用冷却水高效的冷却性能,又可以使冷却水不进入服务器机架,保证服务器运行的安全性。
经过实际测试,当数据环境温度为25℃、水冷板进水温度为25℃、水冷板进水流量为0.5L/min时,与采用风扇散热的服务器相比,两个CPU温度最高分别降低38℃和31℃。当水温从25℃提高至30℃时,CPU温度分别提高了5℃和4℃,但仍比传统风扇散热系统的服务器CPU温度要低很多。
服务器工作温度降低,能够有效消除热岛效应,数据中心空调制冷的压力也大大降低,按照空调机组蒸发温度每提高 1℃,机组节能2%计算,空调系统能够达到不错的节能效果。
(2)冷却塔免费供冷。
冷却塔免费供冷技术是室外自然冷源的一种利用方式。在高温季节时,冷却塔可以用来制备冷水机组的冷却水;当室外空气温度降低、满足免费供冷要求的时,可以关闭冷水机组,通过阀门调节让冷却塔直接制备冷水送入服务器水冷板,对热管蒸发端进行制冷。一般地,按照冷却塔工艺与冷却效果,冷却塔的出水温度比室外空气的湿球温度高3℃,即还存在比室外空气的干球温度更低的可能,同时考虑水冷空调系统的制冷效果优于风冷空调系统,因此,冷却塔免费供冷技术有较高的节能效果。
(3)新风冷却系统。endprint
服务器散热系统中热管主要偏重于将服务器CPU产生的热量以及少部分其他部件产生的热量带走,因此,在高温季节,数据中心仍需开启机房空调来保持较低的环境温度。而在冷季或者过渡季节,当室外温度低于室内机房温度时,理论上即可将室外较低温度的新风送至室内,带走室内负荷后再由排风机排出机房。此时,可以考虑将机房空调直接关闭,尽最大量地利用自然免费冷源,从而达到节能的目的。新风的直接引入会对机房环境造成影响,在做新风直接引入系统的同时需要考虑机房温度、湿度、洁净度等问题。
3 服务器电源系统节能技术
传统数据中心中供电系统构架一般是由市电、变配电系统、柴油发电机组系统、楼层配电系统、交流不间断电源系统、交流列头柜和设备机架电源组成[8]。该文在不改变传统供电系统结构的基础上,对数据中心的UPS主机运行模式进行调整,将传统UPS的双变换在线工作模式更改为ECO经济运行模式。绿色休眠在线UPS技术(ECO模式)是在市电正常情况下通过静态旁路给负载供电,只有在市电断电情况下才切换到电池逆变模式,通过减少UPS主机整流滤波和逆变环节来实现电源系统的节能减排,其技术应用方案如图2所示,与传统双变换在线式UPS系统相比,绿色休眠在线UPS系统节能效果突出。
运行效率高:现有UPS主机采用ECO运行模式,UPS主机效率在98%以上,且UPS主机的运行效率与UPS主机负载率无关。
可靠性高:市电停电时,由蓄电池组通过逆变器为IT设备提供电源,逆变器切换时间小于10ms。
电源质量:静态旁路正常供电时UPS输入、输出电源质量包括:电流、电压、频率等均满足服务器电源模块输入要求。
目前,UPS主机ECO运行模式能够在市电正常时,由UPS主机旁路为IT设备提供交流电。但是,为了保证市电断电时转换开关切换时间满足IT设备需求,UPS主机整流滤波电路和逆变器电路需要时刻处于待机状态,因此存在电能损耗问题。
4 单元模块化建设方案
数据中心基础设施的模块化建设是近年来一个非常热门的话题。在新型绿色数据中心建设方面,可以采用单元模块化建设方案。按照最初的定义,模块化数据中心(Modular Data Center,MDC)把整个数据中心场地分为若干独立区域,各区域的规模、功率负载、配置等均按照统一标准进行设计,数据中心的扩展随着业务需求的不断增加由一个模块扩展到另一个模块[9]。随着集装箱数据中心的出现,MDC也用来描述集装箱数据中心。然而,目前国内的地理环境不具备部署集装箱的条件,因此,越来越多的客户开始尝试采用开放式机架构成模块化模组,将送风单元、配电单元与机柜整合后构成标准的模块化数据中心模组,按照业务需求进行分阶段部署。
数据中心采用模块化建设,可以大大提高数据中心的可用性、灵活性以及降低成本,其中降低成本方面包括降低初始投资成本、降低非能源的运营成本和降低能源成本。就节能减排而言,数据中心采用模块化建设方案,可以按照现有的IT需求规划基础设施,并根据IT需求的增长添加新的组件,这种方式使用户只需为所需的设备提供配电和制冷,因此节约的电力成本非常可观。此外,模块化UPS设计使得UPS的容量与负载需求更为匹配,从而提高了UPS的工作效率并减少了实现冗余所需的UPS模块的容量。
在该文提出的空调节能方案中,由于热管散热系统集成在服务器机架上,制冷模块里主要包含冷却水系统。为保证水冷系统的长期有效安全运行,在数据中心建设中,冷却水可以采用二级换热冷却技术,即水冷板中的冷却水采用闭式水循环系统,以保证循环水的水质来保证水冷板的换热效果。在冷却水的另一端通过加设板式换热器,来与冷却塔中的冷却水进行“水-水”换热。
5 结语
该文针对数据中心能耗过高的问题,分别从服务器设备、空调设备、电源设备和模块化数据中心建设等方面进行了节能性方案研究,并综合考虑服务器与空调系统和电源系统的联动效果,提出一种基于服务器散热系统定制化的空调节能技术和绿色休眠在线UPS技术,通过实测表明,提出的技术方案能够实现良好的节能效果。随着数据中心数量的迅速增长和规模的急剧扩大,节能减排仍是未来数据中心的主要研究方向。
参考文献
[1] 黄森,潘毅群,Peng XU.数据中心节能研究现状与发展[A].全国暖通空调制冷2010年学术年会,2010.
[2] 曹茂春,齐雄.基于能效模型的数据中心节能研究及其应用[J].技术与工程,2012(6):101-105.
[3] 王铁楠.数据中心节能方案分析[J].智能建筑与城市信息,2012(3):15-20.
[4] 吴甜,刘利祥,虎嵩林.绿色数据中心的服务器节能机制与策略[J].微电子学与计算机,2011,28(8):108-111.
[5] 毛兴江.服务器性能测试与能效研究[D].北京:北京邮电大学,2012.
[6] 钱晓栋,李震.数据中心空调系统节能研究[J].暖通空调,2012,42(3):91-96.
[7] 周峰,田昕,马国远.IDC机房用热管换热器节能特性试验研究[J].土木建筑与环境工程,2011,33(1):111-117.
[8] 姚波.数据中心电源管理系统方案设计[J].现代建筑电气,2013(S1):198-201.
[9] 余宏智,李建栋,席益钢,等.模块化数据中心架构与应用[J].智能建筑与城市信息,2013(11):14-17.endprint