热应激环境下蛋鸡肠道微生物菌群多样性
2015-03-15李永洙张宁波陈常秀CUIYongquan
李永洙, 李 进, 张宁波, 陈常秀, CUI Yongquan
1 临沂大学生命科学学院, 临沂 276000 2 山东龙盛农牧集团, 临沂 276000 3 国立冈山大学自然科学研究科, 日本冈山 700- 8530
热应激环境下蛋鸡肠道微生物菌群多样性
李永洙1,*, 李 进2, 张宁波1, 陈常秀1, CUI Yongquan3
1 临沂大学生命科学学院, 临沂 276000 2 山东龙盛农牧集团, 临沂 276000 3 国立冈山大学自然科学研究科, 日本冈山 700- 8530
通过分析热应激环境下蛋鸡肠道菌群结构的变化,旨在揭示热应激对肠道微生态环境的影响机理,为探索炎热环境下家禽肠道菌群定植规律提供理论依据。试验选择16周龄济宁百日鸡96只,随机分成对照组[(24±1) ℃,Ⅰ]和热应激[(38±1) ℃]组,分别在2个人工环境气候舱中饲养,各组设6个重复,每个重复8只,试验持续14 d。采用16S rDNA的变性梯度凝胶电泳(Denatured gradient gel electrophoresis, PCR-DGGE)技术和实时荧光定量(Real-time quantitative RT-PCR) 以及多变量统计(Principal Components Analysis,PCA)分析等手段,分析热应激2d(Ⅱ)、7d(Ⅲ)和14 d(Ⅳ)时,对十二指肠、空肠及回肠内容物菌群多样性以及菌群数量变化。PCA分析结果显示,热应激暴露过程中十二指肠部位菌群组成与对照组保持相似的趋势,但热应激2 d时空肠部位菌群组成有分开趋势;到7 d时空肠与回肠部位菌群组成分开明显,而14 d时菌群组成具有明显差异;热应激7、14 d时空肠和回肠部位末检测到敏感乳杆菌(Lactobacillusagilis),回肠部位也末检测到约氏乳杆菌(Lactobacillusjohnsonii)、不可培养细菌(Unculturedbacterium)等芽孢杆菌纲,而热应激不同时间段空肠和回肠部位可检测到不可培养细菌(UnculturedEscherichiasp)、溃疡拟杆菌(Bacteroideshelcogenes)、卵形拟杆菌(Bacteroidesovatus)和索氏志贺氏菌(Shigellasonnei) 等拟杆菌纲和γ-变形菌纲;其中约氏乳杆菌、敏感乳杆菌数量变化在空肠部位减少最明显(P<0.05),空肠和回肠卵形拟杆菌、不可培养的拟杆菌数量明显上升(P<0.05)。热应激环境下蛋鸡空肠、回肠部位菌群多样性较为丰富,其抑制乳杆菌属、不可培养细菌的增殖,促进卵形拟杆菌的繁殖,而促进卵形拟杆菌的繁殖,导致消化道菌群平衡的破坏。
热应激; 蛋鸡; 肠道菌群; 多样性
正常菌群作为机体的重要组成部分,参与了家禽的生长、发育、消化、吸收、营养、免疫、生物拮抗及其各种功能和结构的发生、发展及衰退的全过程[1- 2]。环境温度是影响家禽生产性能的重要因素,在高温时机体热平衡失调引起热应激。此时,宿主与菌群动态的微生态平衡遭到破坏,正常菌群会发生变化,导致生产性能下降,严重时甚至因抵抗力下降而大批死亡,造成巨大的经济损失。当环境温度超过28 ℃时,可导致鸡十二指肠、空肠、回肠绒毛顶端轻微破裂、肠绒毛局部区域水肿、断裂和成片绒毛严重缺失[3];应激会降低家畜的肠道绒毛高度,增加隐窝深度,而肠绒毛高度降低及表面积的减少会导致肠道吸收功能的减弱,肠道微生物区系的稳态失衡[4]。近几年,关于肠道菌群研究颇受关注,并证实肠道菌群与宿主免疫[5]、物质代谢[6]紧密相关,但是对于热应激环境下宿主肠道优势菌以及导致疾病或与疾病相关的微生物如何变化的了解还远远不足。另外,采用传统和基于16S rRNA的变性梯度凝胶电泳(PCR-DGGE)技术等方法研究家禽肠道微生物菌群多样性的报道较多[7- 8],但由于PCR-DGGE方法的局限性[9],必须结合其它方法来弥补只能菌群定性的缺陷。已有报道实时荧光定量PCR可以检测肠道内容物以及粪便中低至101—102拷贝数的细菌的16S rRNA[10- 11],为菌落多样性的进一步分析提供技术支撑。热应激对家禽肠道微生态环境的影响非常复杂,本研究通过对热应激环境下肠道微生物群落结构以及菌株数量差异的分析,阐明肠道微生物多样性特征,探讨热应激造成的蛋鸡小肠不同部位对微生物群落分布的影响,为探索热应激对肠道菌群定植规律和构建丰富菌种资源提供理论依据。
1 材料与方法
1.1 实验动物的处理
选择体质健康、体重相近的16周龄济宁百日鸡96只,随机分配在2个人工环境气候舱,每个气候舱设6个重复,每个重复8只。其中对照组[(24±1) ℃]采样时间为0 d,记为Ⅰ组;高温组[(38±1) ℃]采样时间为2、7和14 d,分别记为Ⅱ、Ⅲ、Ⅳ组,试验持续14 d。试验期间自由饮水,舱内除温度外,其他各环境因素(饲料原料组成、饲养条件)保持一致,相对湿度55%,光照16 h,强度10 lx,舱内持续均匀通风。研究期间所有试验鸡饲喂相同玉米-豆粕型日粮,日粮参照中国鸡饲养标准(NY/T33—2004)配制,并在饲喂前进行灭菌处理。
1.2 样品的收集与处理
在随机从各处理组的每重复中取5只鸡进行剖杀,分别在无菌状态下采集十二指肠、空肠及回肠的内容物为样本,并将该5只鸡肠内容物均匀混合,然后按0.2 g/管分装到2 mL离心管,置-20 ℃保存,用于分析肠道菌群多样性。
1.3 肠道微生物菌群多样性分析
1.3.1 细菌总DNA的提取
参照文献[12],采用QIAamp© DNA Stool MiniKit,按照操作手册提取细菌总DNA。用核酸浓度测定仪测定总DNA浓度,-20 ℃保存备用。
1.3.2 基因组总DNA 16S rDNA V3区特异性扩增片段
参照文献[13],PCR反应体系(50 μL): 10×缓冲液5 μL (含15 mmol/L MgCl2),dNTP(10 mmol/μL) 4 μL,引物(357f-GC、517r; 10 μmol/μL) 1 μL,模板DNA1.0 μL,TaqDNA聚合酶(5 U/μL) 0.5 μL,用ddH2O补足50 μL。同时设置不添加模板的阴性对照。PCR扩增条件为94 ℃预变性4 min;94 ℃变性30 s,58 ℃退火30 s,72 ℃延伸2 min,30个循环,最后72 ℃延伸10 min。PCR产物用1.0%(质量分数)琼脂糖凝胶电泳检测片段大小和浓度。根据大肠杆菌16S rDNA V3区片段设计合成,上游引物为:357f-GC(5′-CGCCCGCCGCGCGCGGCGG-GCGGGGCGGG GGCACGGGGGGCCTACGGGAGGCAGCAG- 3′)、357f (5′-CCTACGGGAGGCAGCAG- 3′)和下游引物517r(5′-ATTACCGCGGCTGCTGG- 3′)。
1.3.3 DGGE多态性分析
利用已获得DNA 16S rDNA V3区扩增片段产物,用相应的微卫星引物和PCR扩增条件进行PCR扩增。PCR产物用1.0%琼脂糖凝胶电泳检测片段大小和浓度。参照文献[14],使用Bio-Rad Dcode进行DGGE凝胶电泳。用8%(质量分数)的聚丙烯酰胺胶进行分离,变性剂梯度范围为20%—60%(100%的变性剂包含7 mol/L尿素和40%去离子甲酰胺)。电泳在恒温60 ℃下1×TAE缓冲液中进行,电压150 V,时间12 h。电泳结束后进行SYBR green I(100×稀释倍)染色,用UVI成像系统检测照相。电泳得到的图谱照片用Quantity One软件(Bio-Rad, USA)进行条带识别,使用分析软件BioNumerics 3.0(Applied Maths, Sint-Martens-Latem, Belgium)对PCR-DGGE指纹图谱进行条带计数,应用主成分分析(PCA)法对数字化的PCR-DGGE图谱进行分析,用UPGMA(unweighted pair group mean average)进行聚类分析。
1.3.4 割胶回收差异条带和共性条带、纯化与载体的连接、测序
将DGGE图谱上的差异条带和共性条带分别回收,从凝胶上小心切下DGGE条带,放入1.5 mL灭菌离心管中,加入10 μL灭菌蒸馏水,在暗处4 ℃中放置12 h。用相应的微卫星引物(357f和517r)进行二次PCR扩增。PCR产物用1.0%琼脂糖凝胶电泳检测片段大小和浓度。用无菌手术刀将琼脂糖凝胶电泳割胶回收。回收产物用Wizard PCR Prep DNA Purification System进行纯化,纯化产物采用DynaExpressTA PCR Cloning Kit(TaKaRa)构建克隆文库,用QIAamp© DNA Stool MiniKit抽提质粒,经PCR和电泳验证克隆片段的正确性。将筛选后的细菌DNA应用PCR的ByeDye25法全域增幅。PCR产物经处理后在310型DNA测序仪测序。所得结果利用GenBank (http://www.ncbi.nlm.nih.gov)数据库进行序列同源性比对,并将所得序列提交RDP 数据库鉴定种属,计算各类群所占的比例[15]。
1.4 实时荧光定量PCR(RT-PCR)反应
1.4.1 乳酸杆菌、双歧杆菌、拟杆菌和大肠杆菌的特异性引物
分别参照Denman[16- 19]等方法,其上、下游序列见表1,引物对由上海生工生物工程技术服务有限公司合成。参照Taverniers[20- 21]等方法制备RT-PCR所检测菌的标准模板,采用能作为特异性引物模板的DNA序列与克隆载体相连,获得重组质粒,以重组质粒模拟菌群基因组DNA作为标准品。RT-PCR反应体系为20 μL: SYBR Green QPCR Mix(TOYOBO)10 μL,上、下游引物各0.4 μL,DNA 模板5 μL,加水至20 μL。所有荧光定量PCR反应在ABI 7500real-time PCR system-(ABI)上进行,其PCR反应程序见表2。
表1 乳酸杆菌、双歧杆菌、拟杆菌和大肠杆菌特异性引物Table 1 The specific primer for Lactobacillus, Bifidbacterium and E.coil
表2 PCR反应程序Table 2 PCR reaction program
1.4.2 实时荧光定量PCR
提取阳性克隆质粒,利用紫外分光光度仪测定质粒浓度,将此定量模板倍比稀释得到7个不同浓度的标准模板,采用优化好的PCR条件进行荧光定量PCR,以Ct值为纵坐标,以稀释倍数的对数为横坐标,建立相对定量标准曲线。
1.5 数据统计分析
RT-PCR检测数据采用SPSS13.0中的单因素方差分析(ONE-WAY ANOVA)进行统计分析,数据以平均值±标准差(Mean ± SD)表示,n=5,均值采用Duncan法进行多重比较。
2 结果
2.1 热应激对蛋鸡肠道内容物中特定菌群的影响
从图1指纹图谱中可以看出,尽管高温暴露时间不同,但还存在一些共性条带;肠道同一部位内指纹图谱的平均条带数差异不显著(P>0.05),但肠道不同部位间指纹图谱的平均条带数差异显著(P<0.05)。空肠内容物中细菌种类最丰富,条带数最多,分别为15、16、12和14;其次是十二指肠,条带数分别为12、10、12和13;而回肠细菌种类比较少,条带数分别为9、11、12和13(图1-A),对于PCR-DGGE方法而言,不同细菌的条带分得越明显,条带数越多,越能够反映细菌菌群的多样性。以凝胶图谱中相应位置是否出现条带作为依据,对各肠段的微生物多样性进行聚类分析的结果见图1-B)。热应激2、7和14 d时,空肠部位细菌间相似性最小,相似度分别为46.30%、36.52%和32.64%;其次是对回肠细菌的影响,相似度分别为57.34%、34.63%和39.34%;对十二指肠部位细菌间相似性最高,相似度分别为84.17%、68.52%和72.38%。各肠段间分析结果表明,空肠与回肠部位相似度23.17%,空肠与十二指肠部位相似度28.59%,热应激2 d比7、14 d时各肠段间相似度较小,说明热应激7、14 d时对肠道各部位细菌组成的影响较为明显。
图1 不同肠段微生物细菌16S rDNA V3区基因共性、特异性PCR-DGGE指纹图谱(A)与聚类分析(B)Fig.1 Common character and Specificity PCR-DGGE DNA fingerprint of the V3 region of 16S rDNA gene (A) of bacteria in microbial different bowel (B)
图2 热应激第2天、7天与14天时不同肠段微生物细菌16S rDNA基因 V3区PCR-DGGE 指纹图谱的PCA分析Fig.2 Heat stress when the V3 region of 16S rRNA gene PCR-DGGE fingerprin of different intestinal segments microbial bacterial at the 2 day,7 day and 14 day of analysis of the PCA score plots
对照组与热应激组16S rDNA V3 区PCR-DGGE图谱的PCA分析结果见图2。PCA分析结果显示,热应激2 d时,十二指肠部位菌群组成与对照组相似,而空肠部位菌群组成有分开趋势;热应激7 d时,十二指肠部位菌群组成与对照组略有相似,空肠与回肠部位菌群组成分开明显;至热应激14 d时,十二指肠部位菌群组成继续保持与对照组相似的趋势,但是空肠与回肠部位菌群组成具有明显差异(图2)。
2.2 蛋鸡肠道内容物中各细菌菌群的物种多样性分析
图1中箭头所指的指纹图谱中分别割胶回收测序结果见表3。13个共性、特异性条带均成功回收、克隆和测序。测序结果可见,热应激7、14 d时空肠和回肠部位末检测到敏感乳杆菌(Lactobacillusagilis、9条带),回肠部位也末检测到约氏乳杆菌(Lactobacillusjohnsonii、1条带)、不可培养细菌(Unculturedbacterium、10条带)和不可培养的拟杆菌属(UnculturedBacteroidalesbacterium、12条带);另外,热应激不同时间段与对照组比较可检测到不可培养细菌(UnculturedEscherichiasp、4条带)、溃疡拟杆菌(Bacteroideshelcogenes、5条带)、卵形拟杆菌(Bacteroidesovatus、7条带)、索氏志贺氏菌(Shigellasonnei、8条带)。在13个测序结果中,与GenBank数据库中微生物的同源性绝大多数都大于98%,有的同源性甚至达到100%。但条带5、7、11和12与数据库中与之亲缘关系最近的已鉴定的微生物的同源性仅为92、90、94、90%。13条序列分布于厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)、变形菌门(Proteobacteria)以及没有注册的菌(Unclassified-bacteria),其中4条序列与未培养细菌的DNA序列具有高度相似性,说明热应激环境下肠道微生物菌株丰富,且存在未被认知的类群。DGGE图谱中热应激环境下末检测到菌属主要集中于芽孢杆菌纲的乳酸杆菌属,而繁衍微生物主要集中于拟杆菌纲拟杆菌属、γ-变形菌纲索氏志贺氏菌属。
表3 PCR-DGGE共性条带和特异性条带的基因片段序列的比对结果Table 3 Comparison of genomic sequences in common bands and special bands by sequencing and BLAST analysis
2.3 热应激对蛋鸡不同肠道部位各菌株数量的影响
用RT-PCR方法检测热应激环境下十二指肠、空肠和回肠的微生物菌群结果见表4。从表4可以看出,十二指肠和空肠部位的约氏乳杆菌、不可培养细菌(条带13)在不同热应激时段与对照组比较均显著下降。其中,热应激14 d时下降最为明显(P<0.05);约氏乳杆菌在十二指肠部位与空肠部位比较下降幅度较为明显,而不可培养细菌在空肠部位与十二指肠部位比较显著下降(P<0.05)。卵形拟杆菌在各肠段部位不同热应激时段与对照组比较均显著上升(P<0.05);其中回肠部位热应激2 d时上升最为明显,其次为空肠、十二指肠。另外,不可培养的拟杆菌(条带12)和不可培养细菌(条带13)分别在空肠和回肠部位不同热应激时段与对照组比较均显著上升(P<0.05),其中回肠部位热应激2 d时上升幅度明显 (P<0.05)。本试验中每1 g肠道内容物中各菌株的对数值均在1.76—6.58 lg CFU/g之间。
3 讨论
3.1 热应激对肠道菌群定植规律的影响
动物处于健康状态时,肠道微生物种类和数量相对平衡,但是此平衡失调会导致一系列负面后果。已有报道,饲粮、日龄和环境因素均可影响肠道菌群[22- 24]。日龄因素在早期对肠道菌群影响较大,到成熟期菌群趋向稳定,而成熟后饲料和饲养环境成为主要的影响因素[25]。家禽小肠微生物菌群大概是在2周内建立起来的,40 d内其微生物主要是粪链球菌和大肠杆菌类,随后乳酸杆菌成为优势菌。盲肠微生物菌群的构建要滞后于小肠,大概在6—7周[22]。本试验选择性成熟期的16周龄鸡群,其肠道拥有相对稳定的微生物菌群。肠道微生物菌群组成还受到饲料原料、饲粮营养水平(脂肪、蛋白质和碳水化合物)、饲粮物理结构(颗粒大小和加工技术)、外源饲用酶类以及饲用抗生素和抗球虫药用的影响[26]。14 d试验期内为避免饲料因素影响肠道菌群结构,饲喂原料组成相同并经过灭菌的饲料,通过饲料微生物与肠道菌群基因组总DNA 16S rDNA V3区扩增片段变性梯度凝胶电泳比较分析结果表明,不同肠段、不同日龄鸡群小肠微生物菌群,并末受到空腹前饲喂灭菌饲粮因素的影响。
表4 Real time-PCR方法检测蛋鸡不同肠道部位各菌数量变化(lg CFU/g)Table 4 The bacteria number quantity change different intestinal parts detection of layers hen by real time-PCR
同行数据不同字母表示差异显著(P<0.05),相同字母表示差异不显著(P>0.05);n=5
V.B.Ahir等[27]报道,在温热而潮湿的环境中,用分子生物学技术分析肉鸡部分肠道微生物区系变化,随着鸡的热应激处理时间的推移,微生物菌群由简单变为复杂。环境条件发生变化(热应激、免疫应激等)[28- 29],可引起动物肠道内菌群结构的变化,从而引起消化道菌群紊乱。菌群相似度是测量群落间或样方间相似程度的指标,其相似度的高低间接地说明共性菌群以外的菌群情况[7]。本试验肠道内容物细菌菌群相似度分析表明,空肠部位细菌间相似性最小,而十二指肠部位相似性最高,并且热应激2 d比7、14 d时各肠段间相似度小。说明热应激7、14 d时空肠、回肠部位共性菌群以外的菌群较为丰富。
热应激7、14 d时空肠和回肠部位末检测到两种乳杆菌属和两种不可培养菌属,其中两种乳杆菌属于优势菌,作为一种有益菌是厚壁菌门中最大的菌属,能调节肠道黏膜细胞因子的产生数量,在肠道中可附着于肠道上皮细胞形成稳定的菌落,并能抑制病原菌的滋生,产生抗菌物质等;乳杆菌可以改善鸡肠道微生物区系,提高有益菌数量,与肠道病原菌竞争定植位点,平衡肠道微生态区系[30- 31]。而本研究结果表明,热应激7 d时肠道中优势菌的丢失,可影响优势菌与致病菌的平衡,促进有害微生物对肠道的刺激作用。
热应激不同时间段在十二指肠和空肠部位检测到四种致病菌,主要集中在γ-变形菌纲和拟杆菌纲。γ-变形菌纲是变形菌门中的优势亚群,本研究测序比对结果表明,γ-变形菌纲主要包括志贺氏菌属(Shigella)、卵形拟杆菌(Bacteroidesovatus)和不可培养埃希氏菌属(Escherichia)三类细菌。志贺氏菌是常见的病原菌,能够引发家禽的细菌性痢疾,主要表现为肠道黏膜结构的水肿、溃疡及炎症[32];而卵形拟杆菌在热应激环境下局部组织供血障碍造成局部厌氧微环境,有助于厌氧菌生长繁殖,导致肠道感染。大肠埃希氏菌可引起不同类型的原发性或继发性鸡大肠埃希氏菌病,该病发病率高,死亡率也高,目前该病已成为危害我国养鸡业发展的最重要的细菌性传染病之一[33]。由此可见,热应激环境对肠道菌群的结构变化,易成为其它疾病的并发症或继发病的主要根源。而不可培养菌属是否属于优势菌需要进一步验证。
3.2 热应激对蛋鸡不同肠道部位各菌株数量的影响
Deng等[34]的研究结果表明,热应激会导致家禽肠道黏膜结构的变化,降低肠道黏膜免疫水平,在每千克饲粮中添加1×107活菌单位的地衣芽孢杆菌可以明显改善热应激条件下肠道的黏膜结构,这就间接说明热应激环境下肠道有益菌的平衡遭到破坏,而补充外源有益菌可改善热应激导致的肠道微生态环境;动物肠道内存在大量细菌,它们与机体紧密结合形成肠内生态平衡,肠道菌群自身及肠道菌群与机体之间始终存在着动态平衡,这种平衡的维持对于机体健康是必需的。正常菌通过竞争性排斥和提高机体免疫力减少病原微生物在机体内的定植,但是同一个体的不同阶段甚至在同一阶段不同的环境中,肠道菌群结构会有变化[35]。本试验用RT-PCR技术检测蛋鸡不同肠道部位在热应激环境下各种菌株数量,结果表明,热应激环境下十二指肠和空肠的约氏乳杆菌数量明显下降,而空肠的敏感乳杆菌也下降较为明显。Jin[36]等发现,分离得到的乳酸杆菌仅仅26%能够中等强度或者比较强地黏附在肉鸡上皮细胞,而随着热应激时间的延长,消化道的黏膜结构变化,有益菌的定植受到影响,尤其是致病菌会大量繁殖,而造成营养物质消化率显著下降[37]。本研究中空肠和回肠卵形拟杆菌数量明显上升;另外,不可培养细菌(条带13)数量在十二指肠和空肠部位均减少,而回肠部位明显上升,也证实了持续的热应激环境为致病性细菌繁殖提供有利条件,但是,这些菌种平衡变化是否与肠道黏膜结构变化直接有关,需要进一步研究。
4 结论
(1) 空肠部位热应激对空肠的微生物菌群影响最为明显,对回肠和十二指肠微生物菌群的影响次之。
(2) 部位的热应激环境下肠道微生物菌株丰富,且抑制了空肠部位乳杆菌属、不可培养细菌的增殖,促进了空肠和回肠部位卵形拟杆菌、不可培养细菌的繁殖,这些致病菌导致蛋鸡消化道菌群平衡的破坏。
[1] Liu F, Yin J, Du M, Yan P, Xu J, Zhu X, Yu J. Heat-stress-induced damage to porcine small intestinal epithelium associated with downregulation of epithelial growth factor signaling. Journal of Animal Science, 2009, 87(6): 1941- 1949.
[2] Quinteiro-Filho W M, Rodrigues M V, Ribeiro A, Ferraz-de-Paula V, Pinheiro M L, Sá L R M, Ferreira A J P, Palermo-Neto J. Acute heat stress impairs performance parameters and induces mild intestinal enteritis in broiler chickens: role of acute hypothalamic-pituitary-adrenal axis activation. Journal of Animal Science, 2012, 90(6): 1986- 1994.
[3] Quinteiro-Filho W M, Ribeiro A, Ferraz-de-Paula V, Pinheiro M L, Sakai M, Sá L R M, Ferreira A J P, Palermo-Neto J. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poultry Science, 2010, 89(9): 1905- 1914.
[4] Burkholder K M, Thompson K L, Einstein M E, Applegate T J, Patterson J A. Influence of stressors on normal intestinal microbiota, intestinal morphology, and susceptibility toSalmonellaenteritidis colonization in broilers. Poultry Science, 2008, 87(9): 1734- 1741.
[5] Hansen J, Gulati A, Balfour S R. The role of mucosal immunity and host genetics in defining intestinal commensal bacteria. Current Opinion in Gastroenterology, 2010, 26(6): 564- 571.
[6] Suliaman R H O, Malik H E E, Yousif I A. Effect of dietary protein level and strain on growth performance of heat stressed broiler chicks. International Journal of Poultry Science, 2012, 11(10): 649- 653.
[7] 李永洙, Cui Y Q. 利用PCR-DGGE方法分析不同鸡群的盲肠微生物菌群结构变化. 生态学报, 2011, 31(21): 6513- 6521.
[8] 倪学勤, Gong J S, Yu H, 曾东, Sharir S, 周小秋. 采用PCR-DGGE技术分析蛋鸡肠道细菌种群结构及多样性. 畜牧兽医学报, 2008, 39(7): 955- 961.
[9] 马俊孝, 季明杰, 孔健. PCR-DGGE技术在微生物物种多样性研究中的局限性及其解决措施. 食品科学, 2008, 29(5): 493- 497.
[11] Md Selim A S, Boonkumklao P, Sone T, Assavanig A, Wada M, Yokota A. Development and assessment of a real-time PCR assay for rapid and sensitive detection of a novel thermotolerant bacterium,Lactobacillusthermotolerans, in chicken feces. Applied and Environmental Microbiology, 2005, 71(8): 4214- 4219.
[12] Sakai M, Matsuka A, Komura T, Kanazawa S. Application of a new PCR primer for terminal restriction fragment length polymorphism analysis of the bacterial communities in plant root. Microbiology Methods, 2004, 59(1): 81-89.
[13] Matsuka A, Sakai M, Kanazawa S. Application of T-RFLP analysis for bacterial community structure of colonies grown on agar plates. Journal of the Faculty of Agriculture, Kyushu University, 2003, 48(1/2): 107- 112.
[14] Sakai J S, Kleckner N, Yang X, Guhathakurta A. Tn10 transpososome assembly involves a folded intermediate that must be unfolded for target capture and strand transfer. The EMBO Journal, 2000, 19(4): 776- 785.
[15] 白洁, 李海艳, 赵阳国. 黄海北部不同站位海洋细菌群落分布特征. 微生物学报, 2009, 49(3): 343- 350.
[16] Denman S E, Mcsweeney C S. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiology Ecology, 2006, 58(3): 572- 582.
[17] Walter J, Hertel C, Tannock G W, Lis C M, Munro K, Hammes W P. Detection ofLactobacillus,Pediococcus,Leuconostoc, andWeissellaspecies in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 2001, 67(6): 2578- 2585.
[18] Satokari R M, Vaughan E E, Akkermans A D L, Saarela M, de Vos W M. Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 2001, 67(2): 504- 513.
[19] Huijsdens X W, Linskens R K, Mak M, Meuwissen S G M, Vandenbroucke-Grauls C M J E, Savelkoul P H M. Quantification of bacteria adherent to gastrointestinal mucosa by real-time PCR. Journal of Clinical Microbiology, 2002, 40(12): 4423- 4427.
[20] Taverniers I, van Bockstaele E, De Loose M. Cloned plasmid DNA fragments as calibrators for controlling GMOs: different real-time duplex quantitative PCR methods. Analytical and Bioanalytical Chemistry, 2004, 378(5): 1198- 1207.
[21] Taverniers I, Windels P, Vaïtilingom M, Milcamps A, Van Bockstaele E, Van den Eede G, De Loose M. Event-specific plasmid standards and real-time PCR methods for transgenic Bt11, Bt176, and GA21 maize and transgenic GT73 canola. Journal of Agricultural and Food Chemistry, 2005, 53(8): 3041- 3052.
[22] Zhu X Y, Zhong T Y, Pandya Y, Joerger R D. 16s rRNA-based analysis of microbiota from the cecum of broiler chickens. Applied and Environmental Microbiology, 2002, 68(1): 124- 137.
[23] Torok V A, Ophel-Keller K, Loo M, Hughes R J. Application of methods for identifying broiler chicken gut bacterial species linked with increased energy metabolism. Applied and Environmental Microbiology, 2008, 74(3): 783- 791.
[24] Kretzschmar-McCluskey V, Curtis P A, Anderson K E, Kerth L K, Berry W D. Influence of hen age and molting treatments on shell egg exterior, interior, and contents microflora and Salmonella prevalence during a second production cycle. Poultry Science, 2008, 87(10): 2146- 2151.
[25] 尹业师, 王欣. 影响实验小鼠肠道菌群的多因素比较研究. 实验动物科学, 2012, 29(4): 12- 18.
[26] Rehman H U, Vahjen W, Awad W A, Zentek J. Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens.ArchivesofAnimalNutrition, 2007, 61(5): 319- 335.
[27] Ahir V B, Singh K M, Tripathi A K, Mathakiya R A, Jakhesara S J, Koringa P G, Rank D N, Jhala M K, Joshi C G. Study of bacterial diversity in poultry gut using denaturing gradient gel electrophoresis. Iranian Journal of Applied Animal Science, 2012, 2(3): 227- 232.
[28] Kim G B, Seo Y M, Kim C H, Paik I K. Effect of dietary prebiotic supplementation on the performance, intestinal microflora, and immune response of broilers. Poultry Science, 2011, 90(1): 75-82.
[29] 冯焱, 杨小军, 胡雄兵, 刘烨, 尹瑞卿, 覃定奎, 姚军虎. 免疫应激对肉鸡肠道微生物区系的影响. 农业生物技术学报, 2012, 20(7): 807-814.
[30] Mountzouris K C, Tsirtsikos P, Kalamara E, Nitsch S, Schatzmayr G, Fegeros K. Evaluation of the efficacy of a probiotic containingLactobacillus,Bifidobacterium,Enterococcus, andpediococcusstrains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poultry Science, 2007, 86(2): 309- 317.
[31] Bai S P, Wu A M, Ding X M, Lei Y, Bai J, Zhang K Y, Chio J S. Effects of probiotic-supplemented diets on growth performance and intestinal immune characteristics of broiler chickens. Poultry Science, 2013, 92(3): 663- 670.
[32] Mathan M M, Mathan V I. Morphology of rectal mucosa of patients with shigellosis. Reviews of Infectious Diseases, 1991, 13(S4): S314-S318.
[33] 刁有祥, 李久芹, 陈庆普. 山东省鸡大肠杆菌的分离鉴定. 中国预防兽医学报, 2002, 24(1): 21- 23.
[34] Deng W, Dong X F, Tong J M, Zhang Q. The probioticBacilluslicheniformisameliorates heat stress-induced impairment of egg production, gut morphology, and intestinal mucosal immunity in laying hens. Poultry Science, 2012, 91(3): 575- 582.
[35] Chambers J R, Gong J. The intestinal microbiota and its modulation forSalmonellacontrol in chickens. Food Research International, 2011, 44(10): 3149- 3159.
[36] Jin L Z, Ho Y W, Ali M A, Abdullah N, Jalaludin S. Effect of adherentLactobacillusspp. oninvitroadherence of Salmonellae to the intestinal epithelial cells of chicken. Journal of Applied Bacteriology, 1996, 81(2): 201- 206.
[37] Swennen Q, Delezie E, Collin A, Decuypere E, Buyse J. Further investigations on the role of diet-induced thermogenesis in the regulation of feed intake in chickens: comparison of age-matched broiler versus layer cockerels. Poultry Science, 2007, 86(5): 895- 903.
Diversity analysis of the intestinal microbial flora of laying hens under heat stress
LI Yongzhu1,*, LI Jin2, ZHANG Ningbo1, CHEN Changxiu1, CUI Yongquan3
1CollegeofLifeScience,LinyiUniversity,Linyi276000,China2LongshenggroupShandong,Linyi276000,China3GraduateSchoolofNaturalScienceandTechnologyOkayamaUniversity,Okayama,700- 8530,Japan
Structural changes in the intestinal microbial flora of laying hens were analyzed to determine the influence of heat stress on the intestinal microbial environment and explore microbial colonization of the poultry intestinal tract in the hot environment. Ninety-six 16-week-old Jining Bairi chickens were randomly allotted into control group Ⅰ (24±1)℃ or the heat stress (38±1)℃ group. Each group was divided into six replicate subgroups, each consisting of eight individuals. The duration of the experiment was 14 days. Denaturing gradient gel electrophoresis combined with multivariate statistical analysis and real-time quantitative analysis of the 16S rDNA were used to analyze the diversity of the microflora in the duodenum, jejunum, and ileum. Changes in the abundance of the microflora were also studied. The effect was examined at 2 days (group Ⅱ), 7 days (group Ⅲ), and 14 days (group Ⅳ) of heat exposure. PCA was carried out and the results showed that the composition of the microflora in parts of the duodenum remained similar between the heat-stressed and control groups, but that the microbial composition of the jejunum area varied between the heat-stressed and control animals after 2 days. At 7 days, significant differences were found in the composition of the microflora in the jejunum and ileum compared with that at 2 days and at 14 days. The influence of heat stress on the bacterial composition in each part of the intestinal tract was most pronounced at the 7-day time point. Bacilli,Lactobacillusagilisin the jejunum and ileum, andLactobacillusjohnsoniiand other uncultured bacteria in the ileum, were not detected at the 7- or 14-day time points, while Bacteroidetes andγ-Proteobacteria, unculturedEscherichiasp,Bacteroideshelcogenes,Bacteroidesovatus, andShigellasonnei, were detected in the jejunum and ileum at different time points. Decreases in the overall abundance ofL.johnsoniiandL.agiliswere most obvious in the jejunum (P<0.05), while the abundance ofB.ovatusand unculturedEscherichiasp. in the jejunum and ileum was obviously increased (P<0.05). The number of bacterial cells of each of the various strains ranged between 1.76—6.58 lg CFU/g. The results indicated that the proliferation of lactobacilli and uncultured bacteria in the jejunum and ileum of laying hens was inhibited under heat stress, while the growth ofB.ovatusin the jejunum and ileum was promoted, resulting in disruption of the digestive tract microflora balance. The intestinal microflora of laying hens under heat stress is relatively abundant, and the diversity of the flora in the jejunum and ileum showed distinct patterns with increasing heat stress exposure time. The effect of heat stress on jejunal microbial flora was most pronounced, followed by the ileum and the duodenum. The types of lactobacilli in the jejunum and ileum were significantly different at the different time points. The effects of thermal stress were detected in the duodenum and jejunum, particularly in reference to four kinds of pathogenic bacteria. The results suggest that heat stress can inhibitLactobacillusspecies and promote the proliferation of oval Bacteroidetes, thereby disrupting the balance of the digestive tract microflora.
heat stress; laying hens; intestinal flora; diversity
国家高技术研究发展计划 (2013AA102501); 山东省优秀青年科学基金项目(BS2012NY001); 日本学生支援机构归国外国留学生短期研究制度基金(JP22GR037)
2013- 05- 05;
日期:2014- 04- 17
10.5846/stxb201305050933
*通讯作者Corresponding author.E-mail: liyongzhu@lyu.edu.cn
李永洙, 李进, 张宁波, 陈常秀, CUI Yongquan.热应激环境下蛋鸡肠道微生物菌群多样性.生态学报,2015,35(5):1601- 1609.
Li Y Z, Li J, Zhang N B, Chen C X, Cui Yongquan3.Diversity analysis of the intestinal microbial flora of laying hens under heat stress.Acta Ecologica Sinica,2015,35(5):1601- 1609.