APP下载

华北克拉通南缘1600Ma 麻坪A 型花岗岩的成因及其地质意义*

2015-03-15邓小芹赵太平彭头平高昕宇包志伟

岩石学报 2015年6期
关键词:克拉通花岗锆石

邓小芹 赵太平 彭头平 高昕宇 包志伟

DENG XiaoQin1,2,ZHAO TaiPing1**,PENG TouPing3,GAO XinYu1 and BAO ZhiWei1

1. 中国科学院广州地球化学研究所矿物学与成矿学重点实验室,广州 510640

2. 中国科学院大学,北京 100049

3. 中国科学院广州地球化学研究所同位素地球化学国家重点实验室,广州 510640

1. Key Laboratory of Mineralogy and Metallogeny,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China

2. University of Chinese Academy of Sciences,Beijing 100049,China

3. State Key Laboratory of Isotope Geochemistry,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China

2014-09-20 收稿,2014-11-30 改回.

1 引言

A 型花岗岩最初由Loiselle and Wones(1979)提出,代表非造山、碱性和无水的花岗岩,此后其定义范围有所扩大(Collins et al.,1982;Pearce et al.,1984;Whalen et al.,1987;Bonin,2007)。目前普遍认为,该类花岗岩具有富碱,高Fe/(Fe+Mg)、Rb/Sr、HFSE,低Ca、Fe、Mg,强烈亏损Eu、Sr、Ba、P、Ti 的特点(Collins et al.,1982;King et al.,1997),且常与同时代的基性岩体共生(Haapala and Rämö,1992)。关于A 型花岗岩的成因焦点问题在于这类花岗岩是直接来自幔源玄武岩的分异,还是来自单一的地壳部分熔融、抑或是同时有地幔物质的加入(Wu et al.,2002;Yang et al.,2006;Bonin,2007)。A 型花岗岩的产生通常与伸展的构造背景有关,如造山后或者非造山环境(Frost et al.,2007;Zhao and Zhou,2009)。因此,A 型花岗岩的研究对于区域地壳的演化和壳幔相互作用以及大地构造演化具有非常重要的指示意义(Collins et al.,1982;Bonin,2007)。

图1 华北克拉通地质简图(a,据Peng et al.,2005)、研究区在华北南缘的位置(b 据Hu et al.,2014)及麻坪地区地质简图(c,据地矿部陕西地勘局,1998①地矿部陕西地勘局. 1998. 1∶5 万洛南县区域地质图和地质报告)Fig.1 Simplified geological map of the NCC (a,after Peng et al.,2005),the position of the study area in the southern margin of the NCC (b,modified after Hu et al.,2014)and simplified geological map of the Maping area (c)

华北克拉通是世界上最古老的克拉通之一(Zhai et al.,2011),其古元古代活动带的演化结束于1800Ma 前(翟明国等,2014),之后在1800 ~1600Ma 发育了一系列的岩浆岩,主要包括不整合覆盖在太古宙和古元古代变质基底上与裂谷有关的1.80 ~1.75Ga 熊耳群双峰式火山岩(Zhao et al.,2002;赵太平等,2004)和1.68 ~1.62Ga 长城系火山-沉积建造(李怀坤等,1995;Lu et al.,2008),以及与它们同期的基性岩墙群(彭澎等,2004,2011;Wang et al.,2004,2008;胡国辉等,2010)和1.72 ~1.60Ga 的斜长岩-环斑花岗岩、碱性岩-碱性花岗岩等非造山岩浆活动(杨进辉等,2005;Zhang et al.,2007,2013;包志伟等,2009;Zhao et al.,2009;Zhao and Zhou,2009;Jiang et al.,2011;Wang et al.,2013)。在这一时期的A 型花岗岩也陆续被报道,例如宁夏泾源花岗斑岩(1803 ±15Ma;高山林等,2013)、长哨营-古北口正长花岗岩(1753 ±23Ma 和1692 ±19Ma;Zhang et al.,2007)、密云环斑花岗岩(~1683Ma;Rämö et al.,1995;杨进辉等,2005;高维等,2008;李怀坤等,2011)、温泉花岗岩(~1697Ma;Jiang et al.,2011),以及~1.78Ga 嵩山地区的A 型花岗岩(Zhao and Zhou,2009;Zhang et al.,2013)和~1.60Ga 的龙王 花岗岩(陆松年等,2003;包志伟等,2009;Wang et al.,2012),它们主要沿着北缘的燕辽裂谷和南缘的熊耳裂谷分布。华北南缘的熊耳群和北缘的长城系都属于未变质火山-沉积地层,不整合覆盖在太古宇和古元古界变质基底上(Zhai and Liu,2003),表现出裂谷系中发育A 型花岗岩的特点(Zhai and Liu,2003;Zhai and Santosh,2011;Zhai et al.,2011;翟明国等,2014)。

2 岩体地质及岩相学特征

华北克拉通南缘分布一条碱性岩-碱性花岗岩带,该岩带西起陕西蓝田张家坪地区经洛南,河南卢氏、栾川,南召北部和方城等地,东到平顶山-舞阳地区,长度达400km(图1b)。龙王 花岗岩体是该带中规模最大的碱性花岗岩侵入体,而本文研究的麻坪花岗岩体则是与龙王 花岗岩体属于同一碱性花岗岩带上的产物。

麻坪岩体位于陕西省洛南县麻坪镇,属于华北克拉通南缘西南部(图1a)。研究区内出露的地层主要为中元古界官道口群的碳酸盐岩和碎屑岩,由老到新依次为:高山河组、龙家园组、巡检司组、杜关组和冯家湾组。

麻坪岩体主要沿着洛南县麻坪镇地区的四洼-师家沟分布,呈带状延展,走向北西西,与地层走向平行,带长约5km,宽500m(图1c)。岩石类型有花岗斑岩、正长斑岩、正长花岗岩和霓辉正长斑岩(地矿部陕西地勘局,1988;柳晓艳,2011),但是由于岩体多被第四系覆盖且受地形所限,本文仅发现花岗斑岩,出露宽度约50m,侵位于官道口群龙家园组碳酸盐岩中(图1c)。

麻坪岩体花岗斑岩具斑状结构,块状构造,斑晶主要为钾长石和石英(图2a-d)。钾长石斑晶多为肉红色,呈板状、长柱状,自形,颗粒较大(1 ~2cm),约占33%;石英斑晶多呈浑圆状,粒径0.25 ~2.2mm,约占10%。基质也主要由钾长石和石英组成,呈浅绿色,含量约52%。钾长石和石英斑晶通常被熔蚀呈蠕虫状、港湾状和浑圆状,在边部还可见窄的熔蚀反应边(图2d),熔蚀现象指示麻坪花岗斑岩形成于浅成环境。斑晶周围常可见钾长石和石英形成的显微文象结构,基质呈显微晶质结构和球粒结构(图2f),可能与近地表快速冷凝的条件下固结有关。此外,还有少量黑云母(2%)(图2e),其蚀变较为强烈,部分完全蚀变为绢云母。部分钾长石发生绢云母化(图2e,f)、碳酸盐化、泥化。副矿物有磁铁矿、锆石、电气石等,含量约3%。

3 测试方法

锆石用常规方法分选,双目镜下挑纯,选取晶形较好、具代表性的锆石粘贴在环氧树脂表面,抛光后将待测锆石进行阴极发光(CL)图像分析。锆石的制靶和CL 照相在中国科学院广州地球化学研究所同位素地球化学国家重点实验室完成。锆石U-Pb 测年分析在合肥工业大学资源与环境工程学院完成,采用的仪器型号为Agilent 7500a,激光剥蚀系统为Coherent Inc 公司生产的ComPex102 ArF 准分子激光剥蚀系统。分析时激光束斑直径为32μm,激光脉冲重复频率为6Hz。实验原理和详细的测试方法见闫峻等(2012)。

锆石U-Pb 年龄测定后,再在原位用LA-MC-ICP-MS 进行Lu-Hf 同位素分析,测试在中国科学院广州地球化学研究所同位素地球化学国家重点实验室完成。Lu-Hf 同位素测试使用Thermo 公司制造的Neptune 型多接收电感耦合等离子体质谱(LA-MC-ICP-MS),加载德国Lamda Physik 公司制造的Geolas 193nm 准分子激光取样系统。激光束直径为32μm,剥蚀频率为8Hz,能量密度为15 ~20J/cm2,剥蚀时间约60s。详细的分析程序见Wu et al.(2006)。

全岩的主微量元素分别在中国科学院广州地球化学研究所同位素地球化学国家重点实验室Rigaku ZSX 100e 型荧光光谱仪(XRF)、PE Elan 6000 型电感耦合等离子体-质谱仪(ICP-MS)上完成。详细分析见刘颖等(1996)。

4 测试结果

4.1 锆石U-Pb 年龄

图2 麻坪花岗斑岩手标本(a-c)及显微(d-f)照片Fig.2 Hand specimens (a-c)and micrographs (d-f)of the Maping granite porphyry

本文对麻坪岩体中的2 个花岗斑岩样品进行了LAICPMS 锆石U-Pb 定年,分别是13MP-6(N 34°09'22.77″,E 110°02'40.71″,图1c)和13MP-9(N 34°09'04.77″,E 110°02'01.55″)。锆石多为无色透明-半透明,呈长柱状或椭圆状,自形程度较好,粒径在70 ~200μm 之间,长宽比值范围为1∶1 ~2∶1,振荡环带结构明显(图3)。锆石的Th/U 比值为0.6 ~1.4,与典型的岩浆锆石特征相似(Belousova et al.,2002)。LA-ICPMS 锆石U-Pb 测年分析结果见表1。

其中,样品13MP-6 进行了28 个测点的分析,207Pb/206Pb年龄集中于1502 ~1702Ma,在谐和线图上(图4a),样品的28 个测点均分布在谐和线上或其附近,交点年龄为1607 ±32Ma(MSWD=0.28),加权平均年龄为1600 ±24Ma(MSWD=0.65)。样品13MP-9 进行了22 个测点的分析,207Pb/206Pb年龄变化于1461 ~1694Ma 之间,各点均位于谐和线上或者靠近谐和线,给出的交点年龄为1597 ± 67Ma(MSWD =0.46),与加权平均年龄1583 ±28Ma 一致(图4b)。两者在误差范围内一致,代表了岩体的形成时代(~1600Ma)。该年龄与柳晓艳(2011)获得的1598 ±9Ma(SHRIMP 锆石U-Pb年龄,样品号07-5-1)正长花岗岩的形成年龄也一致,明显不同于前人获得的容易受到后期热扰动的Rr-Sr 等时线年龄(约524Ma,地矿部陕西地勘局,1998)。

通过公式(8),(9)及全局最优控制参数C*=1,2,...,10)计算ID(i=1,2,...,10,j=80)与SD(DEy(0)D(0))(y=1,2,...,10)。计算结果表8所示。

4.2 全岩主-微量元素

麻坪花岗斑岩的主-微量元素含量列于表2。所有样品具有高硅(SiO2=70.51% ~75.69%)、富碱(K2O +Na2O =9.00% ~10.27%)、高K2O/Na2O 比值(>23)以及低MgO(0.24% ~0.58%)、CaO(0.06% ~0.12%)、P2O5(0.04% ~0.08%)和MnO(0.01%)的特征。在TAS 图解中落于花岗岩区域(图5a)。它们高的A/NK(>1.13)和A/CNK(>1.11)值,落在强过铝质花岗岩的区域(图5b)。在Harker 图解中,SiO2与Fe2O3T显示明显的负相关性,而与Al2O3、MgO 和TiO2呈现弱的负相关(图6)。

图3 麻坪岩体锆石阴极发光图像Fig.3 Zircon cathodoluminescence images from the Maping granite porphyry

图4 麻坪花岗斑岩锆石LA-ICP-MS U-Pb 谐和年龄图Fig.4 U-Pb concordia diagrams of zircons from the Maping granite porphyry

图5 麻坪花岗斑岩TAS 图(a,据Wilson,1989)和ACNK-ANK 图(b,据Maniar and Piccoli,1989)Fig.5 Classification plots of SiO2 vs. (Na2 O +K2 O)(a,after Wilson,1989)and A/CNK vs. A/NK (b,after Maniar and Piccoli,1989)for the Maping granite porphyry

花岗斑岩稀土元素总量(∑REE)较高,为465.3 ×10-6~848.7 ×10-6(表2)。在球粒陨石标准化稀土分布模式图上,所有样品显示出相似的平滑右倾型特征,轻重稀土分异明显((La/Yb)CN=13.2 ~17.68),具有弱的重稀土的亏损((Gd/Yb)CN=1.43 ~3.05)以及明显的Eu 负异常(δEu =0.33 ~0.55),与正长花岗岩的曲线特征一致(柳晓艳,2011),而整体位于龙王 花岗岩的稀土配分模式图下方(图7a)。在微量元素蛛网图上,所有花岗斑岩样品显示出明显的大离子亲石元素(LILE)的富集以及Ba、Sr、Ti、Nb、Ta、Zr和Hf 等元素的亏损(图7b)。

4.3 锆石Lu-Hf 同位素组成

锆石Lu-Hf 同位素组成列于表3。麻坪花岗斑岩的锆石显示变化范围较大的176Hf/177Hf 初始比值(0.281334 ~0.281615),平均值为0.281537;对应的εHf(t=1600Ma)值介于-16.7 ~-6.9,主要集中在-11.1 ~-6.9。二阶段模式年龄(tCDM)主要集中于2767 ~3381Ma。在εHf(t)-t 图中(图8),样品的原位Hf 同位素分析数据点均投影于球粒陨石Hf同位素演化线之下。

表1 麻坪岩体锆石LA-ICP-MS 分析结果Table 1 LA-ICP-MS zircon U-Pb results for the Maping granite porphyry

表2 麻坪岩体主量(wt%)和微量元素(×10 -6)分析结果Table 2 Major (wt%)and trace element concentrations (×10 -6)of the Maping pluton

表3 麻坪岩体锆石Hf 同位素组成Table 3 LA-MC-ICP-MS zircon Hf isotopic compositions of the Maping granite porphyry

5 讨论

5.1 岩石分类

图6 麻坪花岗斑岩Harker 图解Fig.6 Harker variation diagrams for the Maping granite porphyry

图7 麻坪花岗斑岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值得据Sun and McDonough,1989)Fig.7 Chondrite-normalized REE patterns (a)and primitive mantle-normalized spidergrams (b)of the Maping granite porphyry(normalized values after Sun and McDonough,1989)

在地球化学特征上,麻坪花岗斑岩具明显高的Ga/Al 比值和Zr+Nb+Ce+Y 含量(图9),与典型的A 型花岗岩的特征一致(Collins et al.,1982;Whalen et al.,1987;Frost and Frost,2011)。其较高的SiO2和K2O +Na2O、低CaO、MgO、P2O5、TiO2和MnO,以及富集K、Rb 等大离子亲石元素和亏损Nb、Ta、Zr 和Hf 等高场强元素和Eu、Sr、Ti 等元素的特征也与A 型花岗岩相似。然而,它们较高的A/CNK 值(>1.11),显示为强过铝质花岗岩的特征,类似S 型花岗岩(Martínez et al.,2014)。与典型的S 型花岗岩(一般具有高达14%的Al2O3和高含量的P2O5,还含镁铁质岩浆岩包体(MMEs),King et al.,2001;Bonin,2004;Chen et al.,2014)相比,麻坪花岗斑岩的Al2O3(12% ~13.5%)和P2O5(<0.08%)均相对较低,并且结合野外地质和岩相学观察,未发现镁铁质包体。更为重要的是,其高的锆石饱和温度(Watson and Harrison,1983)870 ~953℃(平均值为915℃),与A 型花岗岩形成温度非常相似(King et al.,1997;Huang et al.,2011),而明显高于S 型花岗岩的形成温度(Cai et al.,2011;Martínez et al.,2014)。因此,这些花岗斑岩可归结为过铝质A 型花岗岩。而事实上,该类A 型花岗岩在我国华北南缘的鲁山地区(Zhou et al.,2014)、塔里木克拉通北缘的库鲁克塔格地区(Long et al.,2012)以及华南地区(Huang et al.,2011;Zhao et al.,2008)均有报道,说明具有过铝质特征的A 型花岗岩并不少见。

5.2 岩石成因

目前关于A 型花岗岩的成因主要有以下四种模型:①幔源碱性玄武岩的分异(Frost and Frost,1997;Mushkin et al.,2003);②继I 型或者S 型岩浆分异抽取之后的富含F/Cl 的下地壳麻粒岩残留体的部分熔融(Collins et al.,1982;Whalen et al.,1987;King et al.,1997,2001);③壳-幔物质的混合作用(Kerr and Fryer,1993;Mingram et al.,2000;Yang et al.,2006);④结晶基底或者变质沉积岩的部分熔融,并可能伴随有基性岩浆的底侵作用(Rämö et al.,1995;Huang et al.,2011;Long et al.,2012;Zhou et al.,2014)。其争议的焦点在于这类花岗岩是直接来自地幔玄武岩的分异,还是仅仅来自地壳、或者同时有地幔物质的加入(Wu et al.,2002;Yang et al.,2006;Bonin,2007)。

图8 麻坪花岗斑岩εHf(t)-t 图解麻坪正长花岗岩数据引自柳晓艳(2011),龙王 花岗岩数据引自包志伟等(2009)、Wang et al. (2012),密云环斑花岗岩数据引自杨进辉等(2005),太华群数据引自Liu et al. (2009)、Huang et al. (2010,2012,2013)、Xu et al. (2009)、第五春荣等(2007,2010)、时毓等(2011)、Diwu et al. (2014)Fig. 8 εHf (t)versus t diagram of the Maping granite porphyryMaping syenogranite is from Liu (2011),Longwangzhuang granites are from Bao et al. (2009)and Wang et al. (2012),Miyun rapakivi granites are from Yang et al. (2005),Taihua group are form Liu et al. (2009),Huang et al. (2010,2012,2013),Xu et al. (2009),Shi et al. (2011)and Diwu et al. (2007,2010,2014)

麻坪A 型花岗岩具有明显低的εHf(t)值和较大的二阶段模式年龄(tCDM),表明这些A 型花岗岩来源于古老的地壳。考虑到麻坪A 型花岗岩具有高K、Si、K/Na 比值以及明显的Sr 负异常的特征,与继I 型或者S 型岩浆分异抽取之后的富含F/Cl 的下地壳麻粒岩残留体的部分熔融形成的岩浆具有低K、Si、K/Na 比值以及无Sr 的负异常明显不同(Creaser et al.,1991;Frost and Frost,1997),很显然,具有该特征的下地壳残留体的部分熔融很难形成麻坪A 型花岗岩。

在εHf(t)-t 图解中(图8),麻坪花岗斑岩有较低的εHf(t)值(-16.7 ~-6.9)=2767 ~3381Ma,说明源区物质可能形成于2767 ~3381Ma。与华北克拉通其他地区同时期富集地幔来源的A 型花岗岩相比,如北缘的密云环斑花岗岩(~1683Ma,εHf(t)= -7.7 ~-3.2,=2.4 ~2.6Ga;Rämö et al.,1995;杨进辉等,2005;高维等,2008)和南缘的龙王 花岗岩(~1602Ma,εHf(t)= -1.11 ~-5.26,=2.6 ~2.8Ga;包志伟等,2009;Wang et al.,2012),麻坪花岗斑岩具有明显低的εHf(t)值(图8)和大的tCDM值,说明麻坪花岗斑岩的源区与同期的密云环斑花岗岩和龙王 花岗岩的源区不完全相同。

根据已有的研究数据显示,华北克拉通基底岩浆锆石的年龄峰值主要集中于~2.5Ga 和2.8 ~2.7Ga,其中~2.5Ga岩浆活动广泛存在于整个华北克拉通,而大面积2.8 ~2.7Ga的岩石年龄记录主要发现在河南鲁山、山东西部和胶东地区,代表了新太古代新生地壳的形成和少量古老地壳物质的再造(Liu et al.,2009;第五春荣等,2010;Huang et al.,2010,2012;Zhang et al.,2013)。华北克拉通南缘鲁山地区发育2.8 ~2.7Ga 的TTG 质片麻岩和斜长角闪岩,且在斜长角闪岩中存在2.9Ga 甚至3.1Ga 的残留锆石(Liu et al.,2009;第五春荣等,2010),同时在熊耳山地区和蓝田-小秦岭地区分别发育有2.5 ~2.0Ga、2.5 ~1.9Ga 的太华群物质(图8;第五春荣等,2007;Xu et al.,2009;时毓等,2011;Huang et al.,2012,2013;Diwu et al.,2014),可能为麻坪花岗斑岩的形成提供了物质基础。此外,根据太华群变质岩中锆石Hf 同位素数据(Liu et al.,2009;Huang et al.,2010,2012,2013;Xu et al.,2009;第五春荣等,2007,2010;时毓等,2011;Diwu et al.,2014),其εHf(t =1600Ma)的变化范围为-30 ~-7.18,包含麻坪岩体的同位素数据范围,表明麻坪A 型花岗岩来自太华群的部分熔融(图8)。

麻坪岩体相对较高的形成温度(>870℃)表明其形成与玄武质岩浆的底侵或者地幔柱活动有关(Frost and Frost,1997;King et al.,1997)。此外,岩石中Al2O3、MgO、Fe2O3T和TiO2随着SiO2含量的增加而减小(图6),而K2O 随之而增大(图略),同时还有Eu、Sr 和Ti 负异常(图7a,b),表明这些强过铝质岩浆在演化过程中经历了钾长石、斜长石、铁钛氧化物等的分离结晶作用。因此,麻坪岩体是由太华群高温条件下部分熔融形成的,这与Eby (1992)的A2型花岗岩一致(图10),同时基性岩浆的底侵作用为之提供了相应的热源。

5.3 地质意义

目前多数学者认为,华北克拉通在~1.8Ga 完成了克拉通化,此后未再遭受大规模的变质变形(Zhai and Liu,2003;Zhai and Santosh,2011;Zhai et al.,2011;翟明国等,2014)。但是对于之后广泛发育的岩浆-沉积活动,包括多期次A 型花岗岩、碱性岩和基性岩墙(Rämö et al.,1995;赵太平等,2004;杨进辉等,2005;任康绪等,2006;Zhang et al.,2007;高维等,2008;包志伟等,2009;Jiang et al.,2011;李怀坤等,2011;Wang et al.,2012,2013),以及熊耳群和长城系火山-沉积建造(陆松年等,2003;李怀坤等,1995;Zhao et al.,2002;赵太平等,2004;Lu et al.,2008),其构造背景一直存在争议。其争议的焦点在于是否是地幔柱(Zhai and Liu,2003)、碰撞后(Wang et al.,2004;Zhao and Zhou,2009;Zhang et al.,2013)或者大陆裂谷(Lu et al.,2002;Hou et al.,2008)作用的产物。

图9 A 型花岗岩判别图解(据Whalen et al.,1987)Fig.9 Discrimination diagrams of A-type granite (after Whalen et al.,1987)

图10 麻坪岩体Rb/100-Y/(44 ×Tb)-Nb/(16 ×Ta)(a)和Y-Nb-3Ga(b)三角图解A1型代表来源于幔源熔体的分离结晶;A2 型代表来源于地壳部分熔融(据Eby,1992)Fig.10 Triangular plots of Rb/100-Y/(44 ×Tb)-Nb/(16 ×Ta)(a)and Y-Nb-3Ga (b)of the Maping A-type granitesThe A1-field is interpreted to indicate derivation via fractional crystallization of mantle-derived melts,whereas the A2-field is interpreted to indicate derivation through partial melting of pre-existing crust (after Eby,1992)

图11 麻坪花岗斑岩Ta-Yb(a,Pearce et al.,1984)和Rb-(Yb+Ta)(b,据Pearce,1986)构造图解龙王 花岗岩数据引自包志伟等(2009)和Wang et al.(2012).WPG-板内花岗岩;ORG-洋脊花岗岩;VAG-火山弧花岗岩;syn -COLG and post-COLG-同碰撞/碰撞后花岗岩Fig.11 Discrimination diagrams of Ta-Yb (a,after Pearce et al.,1984)and Rb-(Yb+Ta)(b,after Pearce,1986)for tectonic settings of the Maping granitic porphyryField for Longwangzhuang granites is from Bao et al. (2009)and Wang et al. (2012). WPG:Within-Plate Granites;ORG:Ocean-Ridge Granites;VAG:Volcanic Arc Granites;syn-COLG and post-COLG:syn-and post-collisional Granites

虽然如此,华北克拉通~1.68Ga 斜长岩-环斑花岗岩-正长岩等非造山岩浆组合的出现,表明此时的动力学背景是非造山伸展环境(Rämö et al.,1995;杨进辉等,2005;高维等,2008;包志伟等,2009)。此外,在华北克拉通南缘沿着陕西蓝田张家坪A 型花岗岩体(~1.52Ga,数据未发表)经洛南麻坪花岗斑岩(~1.6Ga,本文)到河南栾川龙王 花岗岩体(~1.6Ga;包志伟等,2009;Wang et al.,2012)分布着一条A 型花岗岩带(图1b),说明伸展背景下岩浆活动的发育。同时,构造环境判别图解也显示,~1.6Ga 龙王 A 型花岗岩都落在了板内的构造背景(图11)。虽然麻坪A 型花岗岩落入板内和碰撞后环境的重叠区域,但是结合上述的区域地质背景资料,我们认为麻坪岩体仍形成于非造山的板内伸展环境。由此看来,华北克拉通中元古代裂谷作用导致地幔减压熔融形成基性岩浆,而基性岩浆的底侵作用提供了热源致使地壳发生部分熔融从而形成麻坪A 型花岗质岩浆。

目前普遍认为Columbia 超大陆是由2.1 ~1.8Ga 全球性碰撞造山带拼合了各相关的克拉通板块而成的,最终的拼合时间为~1.8Ga(Wilde et al.,2002;Zhao et al.,2002,2009),其裂解发生在大约1.6Ga 或者稍微早一点,而所有克拉通板块中均发育的1.35 ~1.21Ga 基性岩墙群记录了其裂解的最终时间(Zhao et al.,2002,2009;Hou et al.,2008)。华北克拉通的拼合与古元古代末期的“吕梁运动”有关(赵宗溥,1993;白瑾等,1993),区域结晶基底变质年代学资料表明其时代上不晚于1.8Ga(Zhai and Liu,2003;Zhai and Santosh,2011;Zhai et al.,2011;翟明国等,2014),表明华北克拉通可能为Columbia 超大陆的一个组成部分。华北克拉通1.68 ~1.21Ga 发生裂解的岩浆活动产物也较为明显(Rämö et al.,1995;杨进辉等,2005;任康绪等,2006;高维等,2008;包志伟等,2009;Zhang et al.,2007,2012;Jiang et al.,2011;李怀坤等,2011;Wang et al.,2012,2013;Peng et al.,2013)。麻坪A 型花岗岩形成于1600Ma,与Columbia 超大陆开始发生裂解的时间一致,可能代表Columbia 超大陆在华北克拉通开始裂解的时间。同时,1600Ma A 型花岗岩与同期的基性岩墙群、双峰式火山岩和碱性岩组合一起较好地指示陆壳减薄和破裂的地质事件(Lu et al.,2002;陆松年等,2003),并为Columbia 超大陆的裂解提供新的证据(翟明国和彭澎,2007;Zhao and Zhou,2009)。

6 结论

(1)华北克拉通南缘麻坪岩体花岗斑岩为过铝质A 型花岗岩。

(2)麻坪岩体的形成时代为1600Ma。

(3)麻坪花岗斑岩的岩石地球化学特征和锆石Hf 同位素组成表明它们来自太华群高温条件下部分熔融,且与基性岩浆底侵作用有关。

(4)麻坪岩体形成于板内裂谷环境,其形成可能与Columbia 超大陆的裂解有关。

致谢 野外工作过程中得到了中国科学院地质与地球物理研究所周艳艳博士、中国科学院广州地球化学研究所孙乾迎硕士的帮助;审稿人张成立教授、赵新福教授提出许多宝贵意见。在此对他们表示衷心感谢!

Bai J,Huang GX,Dai FY and Wu CH. 1993. The Precambrian Crustal Evolution of China. Beijing:Geological Publishing House,199 -203 (in Chinese)

Bao ZW,Wang Q,Zi F,Tang GJ,Du FJ and Bai GD. 2009.Geochemistry of the Paleoproterozoic Longwangzhuang A-type granites on the southern margin of the North China Craton:Petrogenesis and tectonic implications. Geochimica,38(6):509 -522 (in Chinese with English abstract)

Belousova EA,Griffin WL,O’Reilly SY and Fisher NI. 2002. Igneous zircon:Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology,143(5):602-622

Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett.,148(1 -2):243 -258

Bonin B. 2004. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting,mantle and crustal,sources?A review. Lithos,78(1 -2):1 -24

Bonin B. 2007. A-type granites and related rocks:Evolution of a concept,problems and prospects. Lithos,97(1 -2):1 -29

Cai KD,Sun M,Yuan C,Zhao GC,Xiao WJ,Long XP and Wu FY.2011. Geochronology,petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai,NW China. Lithos,127(1 -2):261 -281

Chen YX,Song SG,Niu YL and Wei CJ. 2014. Melting of continental crust during subduction initiation:A case study from the Chaidanuo peraluminous granite in the North Qilian suture zone. Geochimica et Cosmochimica Acta,132:311 -336

Collins WJ,Beams SD,White AJR and Chappell BW. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Mineral. Petrol.,80(2):189 -200

Creaser RA,Price RC and Wormald RJ. 1991. A-type granites revisited:Assessment of a residual-source model. Geology,19(2):163 -166

Diwu CR,Sun Y,Lin CL,Liu XM and Wang HL. 2007. Zircon U-Pb ages and Hf isotopes and their geological significance of Yiyang TTG gneisses from Henan Province,China. Acta Petrologica Sinica,23(2):253 -262 (in Chinese with English abstract)

Diwu CR,Sun Y,Lin CL and Wang HL. 2010. LA-(MC)-ICPMS U-Pb zircon geochronology and Lu-Hf isotope compositions of the Taihua Complex on the southern margin of the North China Craton. Chinese Sci. Bull.,55(23):2557 -2571

Diwu CR,Sun Y,Zhao Y and Lai SC. 2014. Early Paleoproterozoic(2.45 ~2.20Ga)magmatic activity during the period of global magmatic shutdown:Implications for the crustal evolution of the southern North China Craton. Precambrian Research,255:627-640

Eby GN. 1992. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications. Geology,20(7):641 -644

Frost CD and Frost BR. 1997. Reduced rapakivi-type granites:The tholeiite connection. Geology,25(7):647 -650

Frost CD,Ramo OT and Dall’Agnol R. 2007. IGCP project 510:A-type granites and related rocks through time. Lithos,97(1 - 2):Vii-Xiii

Frost CD and Frost BR. 2011. On ferroan (A-type)granitoids:Their compositional variability and modes of origin. Journal of Petrology,52(1):39 -53

Gao SL,Lin JY and Lu YJ. 2013. Formation epoch and its geological implications of Paleoproterozoic A-type granite in Shizuizi of Jingyuan County,Ningxia Province. Acta Petrologica Sinica,29(8):2676 -2684 (in Chinese with English abstract)

Gao W,Zhang CH,Gao LZ,Shi XY,Liu YM and Song B. 2008. Zircon SHRIMP U-Pb age of rapakivi granite in Miyun,Beijing,China,and its tectono-stratigraphic implications. Geological Bulletin of China,27(6):793 -798 (in Chinese with English abstract)

Griffin WL,Pearson NJ,Belousova E,Jackson SE,O’Reilly SY,Van Achterberg E and Shee SR. 2000. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta,64(1):133 -147

Haapala I and Rämö OT. 1992. Tectonic setting and origin of the Proterozoic rapakivi granites of the southeastern Fennoscandia.Trans. Roy. Soc. Edinburgh. Earth Sci.,83(1 -2):165 -171

Hou GT,Santosh M,Qian XL,Lister GS and Li JH. 2008.Configuration of the Late Paleoproterozoic supercontinent Columbia:Insights from radiating mafic dyke swarms. Gondwana Research,14(3):395 -409

Hu GH,Hu JL,Chen W and Zhao TP. 2010. Geochemistry and tectonic setting of the 1. 78Ga mafic dykes in the Mt. Zhongtiao and Mt.Song areas,the southern margin of the North China Craton. Acta Petrologica Sinica,26(5):1563 -1576 (in Chinese with English abstract)

Hu GH,Zhao TP and Zhou YY. 2014. Depositional age,provenance and tectonic setting of the Proterozoic Ruyang Group,southern margin of the North China Craton. Precambrian Research,246:296 -318

Huang HQ,Li XH,Li WX and Li ZX. 2011. Formation of high δ18O fayalite-bearing A-type granite by high-temperature melting of granulitic metasedimentary rocks,southern China. Geology,39(10):903 -906

Huang XL,Niu YL,Xu YG,Yang QJ and Zhong JW. 2010.Geochemistry of TTG and TTG-like gneisses from Lushan-Taihua complex in the southern North China Craton:Implications for Late Archean crustal accretion. Precambrian Research,182(1 -2):43-56

Huang XL,Wilde SA,Yang QJ and Zhong JW. 2012. Geochronology and petrogenesis of gray gneisses from the Taihua Complex at Xiong’er in the southern segment of the Trans-North China Orogen:Implications for tectonic transformation in the Early Paleoproterozoic.Lithos,134 -135:236 -252

Huang XL,Wilde SA and Zhong JW. 2013. Episodic crustal growth in the southern segment of the Trans-North China Orogen across the Archean-Proterozoic boundary. Precambrian Research,233:337-357

Jiang N,Guo JH and Zhai MG. 2011. Nature and origin of the Wenquan granite:Implications for the provenance of Proterozoic A-type granites in the North China craton. Journal of Asian Earth Sciences,42(1 -2):76 -82

Kerr A and Fryer BJ. 1993. Nd isotopic evidence for crust-mantle interaction in the generation of A-type granitoid suites in Labrador,Canada. Chem. Geol.,104:39 -60

King PL, White AJR, Chappell BW and Allen CM. 1997.Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt,southeastern Australia. J. Petrol.,38(3):371-391

King PL,Chappell BW,Allen CM and White AJR. 2001. Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Australian Journal of Earth Sciences,48(4):501 -514

Li HK,Li HM and Lu SN. 1995. Grain zircon U-Pb ages for volcanic rocks from Tuanshanzi Formation of Changcheng system and their geological implications. Geochimica,24(1):43 -48 (in Chinese with English abstract)

Li HK,Su WB,Zhou HY,Geng JZ,Xiang ZQ,Cui YR,Liu WC and Lu SN. 2011. The base age of the Changchengian System at the northern North China Craton should be younger than 1670Ma:Constraints from zircon U-Pb LA-MC-ICPMS dating of a graniteporphyry dike in Miyun County,Beijing. Earth Science Frontiers,18(3):108 -120 (in Chinese with English abstract)

Liu DY,Wilde SA,Wan YS,Wang SY,Valley JW,Kita N,Dong CY,Xie HQ,Yang CX,Zhang YX and Gao LZ. 2009. Combined U-Pb,hafnium and oxygen isotope analysis of zircons from meta-igneous rocks in the southern North China Craton reveal multiple events in the Late Mesoarchean-Early Neoarchean. Chemical Geology,261(1-2):140 -154

Liu XY. 2011. Chronological, petrological and geochemical characteristics of the Paleo-Mesoproterozoic alkali-rich intrusive rocks along the southern part of the North China Craton. Master Degree Thesis. Beijing:Chinese Academy of Geological Sciences (in Chinese with English summary)

Liu Y, Liu HC and Li XH. 1996. Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS.Geochimica,25(6):552 -558 (in Chinese with English abstract)

Loiselle MC and Wones DR. 1979. Characteristics and origin of anorogenic granites. Geological Society of America Abstracts with Programs,11(7):468

Long XP,Sun M,Yuan C,Kröner A and Hu AQ. 2012. Zircon REE patterns and geochemical characteristics of Paleoproterozoic anatectic granite in the northern Tarim Craton,NW China:Implications for the reconstruction of the Columbia supercontinent. Precambrian Research,222 -223:474 -487

Lu SN,Yang CL,Li HK and Li HM. 2002. A group of rifting events in the terminal Paleoproterozoic in the North China Craton. Gondwana Research,5(1):123 -131

Lu SN,Li HK,Li HM,Song B,Wang SY,Zhou HY and Chen ZH.2003. U-Pb isotopic ages and their significance of alkaline granite in the southern margin of the North China Craton. Geological Bulletin of China,22(10):762 -768 (in Chinese with English abstract)

Lu SN,Zhao GC,Wang HC and Hao GJ. 2008. Precambrian metamorphic basement and sedimentary cover of the North China Craton:A review. Precambrian Research,160(1 -2):77 -93

Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids.Geological Society of America Bulletin,101:635 - 643

Martínez EM,Villaseca C,Orejana D,Pérez-Soba C,Belousova E and Andersen T. 2014. Tracing magma sources of three different S-type peraluminous granitoid series by in situ U-Pb geochronology and Hf isotope zircon composition:The Variscan Montes de Toledo batholith(central Spain). Lithos,200 -201:273 -298

Miller CF,McDowell SM and Mapes RW. 2003. Hot and cold granites?Implications of zircon saturation temperatures and preservation of inheritance. Geology,31(6):529 -532

Mingram B,Trumbull RB,Littman S and Gerstenberger H. 2000. A petrogenetic study of anorogenic felsic magmatism in the Cretaceous Paresis ring complex,Namibia:Evidence for mixing of crust and mantle-derived components. Lithos,54(1 -2):1 -22

Montel JM and Vielzeuf D. 1997. Partial melting of metagreywackes,PartⅡ. Compositions of minerals and melts. Contributions to Mineralogy and Petrology,128(2 -3):176 -196

Mushkin A,Navon O,Halicz L,Hartmann G and Stein M. 2003. The petrogenesis of A-type magmas from the Amram Massif,southern Israel. J. Petrol.,44(5):815 -832

Patiño Douce AE and Harris N. 1998. Experimental constraints on Himalayan anatexis. Journal of Petrology,39(4):689 -710

Pearce JA, Harris NBW and Tindle AG. 1984. Trace-element discrimination diagrams for the tectonic interpretation of graniticrocks. Journal of Petrology,25(4):956 -983

Pearce JA. 1996. Sources and settings of granitic rocks. Episodes,19(4):120 -125

Peng P,Zhai MG,Zhang HF,Zhao TP and Ni ZY. 2004. Geochemistry and geological significance of the 1.8Ga mafic dyke swarms in the North China Craton:An example from the juncture of Shanxi,Hebei and Inner Mongolia. Acta Petrologica Sinica,20(3):439 -456 (in Chinese with English abstract)

Peng P,Zhai MG,Zhang HF and Guo JH. 2005. Geochronological constraints on the Paleoproterozoic evolution of the North China craton:SHRIMP zircon ages of different types of mafic dikes.International Geology Review,47(5):492 -508

Peng P,Liu F,Zhai MG and Guo JH. 2012. Age of the Miyun dyke swarm:Constraints on the maximum depositional age of the Changcheng System. Chinese Sci. Bull.,57(1):105 -110

Peng TP,Wilde SA,Fan WM,Peng BX and Mao YS. 2013.Mesoproterozoic high Fe-Ti mafic magmatism in western Shandong,North China Craton:Petrogenesis and implications for the final breakup of the Columbia supercontinent. Precambrian Research,235:190 -207

Rämö OT,Haapala I,Vaasjoki M,Yu JH and Fu HQ. 1995. 1700Ma Shachang complex,Northeast China:Proterozoic rapakivi granite not associated with Paleoproterozoic orogenic crust. Geology,23(9):815 -818

Ren KX,Yan GH,Cai JH,Mu BL,Li FT,Wang YB and Chu ZY.2006. Chronology and geological implication of the Paleo-Mesoproterozoic alkaline-rich intrusions belt from the northern part in the North China Craton. Acta Petrologica Sinica,22(2):377 -386(in Chinese with English abstract)

Shi Y,Yu JH,Xu XS,Tang HF,Qiu JS and Chen LH. 2011. U-Pb ages and Hf isotope compositions of zircons of Taihua Group in Xiaoqinling area,Shaanxi Province. Acta Petrologica Sinica,27(10):3095 -3108 (in Chinese with English abstract)

Söderlund U,Patchett PJ,Vervoort JD and Lsachsen CE. 2004. The176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci.Lett.,219(3 -4):311 -324

Sun SS and McDonough WF. 1989. Chemical and isotopic systematic of oceanic basalts:Implications for mantle composition and process.In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society,London,Special Publication,42(1):313 -345

Sylvester PJ. 1998. Post-collisional strongly peraluminous granites.Lithos,45(1 -4):29 -44

Vervoort JD, Patchett PJ, Gehrels GE and Nutman AP. 1996.Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature,379(6566):624 -627

Wang XL,Jiang SY,Dai BZ and Kern J. 2012. Lithospheric thinning and reworking of Late Archean juvenile crust on the southern margin of the North China Craton:Evidence from the Longwangzhuang Paleoproterozoic A-type granites and their surrounding Cretaceous adakite-like granites. Geological Journal,48(5):498 -515

Wang YJ,Fan WM,Zhang YH,Guo F,Zhang HF and Peng TP. 2004.Geochemical,40Ar/39Ar geochronological and Sr-Nd isotopic constraints on the origin of Paleoproterozoic mafic dikes from the southern Taihang Mountains and implications for the ca. 1800Ma event of the North China Craton. Precambrian Research,135(1 -2):55 -77

Wang YJ,Zhao GC,Cawood PA,Fan WM,Peng TP and Sun LH.2008. Geochemistry of Paleoproterozoic (1770Ma)mafic dikes from the Trans-North China Orogen and tectonic implications. Journal of Asian Earth Sciences,33(1 -2):61 -77

Wang W,Liu SW,Bai X,Li QG,Yang PT,Zhao Y,Zhang SH and Guo RR. 2013. Geochemistry and zircon U-Pb-Hf isotopes of the Late Paleoproterozoic Jianping diorite-monzonite-syenite suite of the North China Craton:Implications for petrogenesis and geodynamic setting. Lithos,162 -163:175 -194

Watson EB and Harrison TM. 1983. Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma type. Earth Planet. Sci. Lett.,64(2):295 -304

Whalen JB,Currie KL and Chappell BW. 1987. A-type granites:Geochemical characteristics, discrimination and petrogenesis.Contrib. Miner. Petrol.,95(4):407 -419

Wilde SA,Zhao GC and Sun M. 2002. Development of the North China Craton during the Late Archaean and its final amalgamation at 1.8Ga: Some speculations on its position within a global Palaeoproterozoic supercontinent. Gondwana Research,5(1):85 -94

Wilson M. 1989. Igneous Petrogenesis:A Global Tectonic Approach.Chapman & Hall,London,13 -34

Wu FY,Sun DY,Li H,Jahn BM and Wilde S. 2002. A-type granites in northeastern China:Age and geochemical constraints on their petrogenesis. Chemical Geology,187(1 -2):143 -173

Wu FY,Yang YH,Xie LW,Yang JH and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology,234(1 -2):105 -126

Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on the interpretation of U-Pb age. Chinese Science Bulletin,49(15):1554-1569

Xu XS,Griffin WL,Ma X,O’Reilly SY,He ZY and Zhang CL. 2009.The Taihua group on the southern margin of the North China craton:Further insights from U-Pb ages and Hf isotope compositions of zircons. Mineralogy and Petrology,97(1 -2):43 -59

Yan J,Peng G,Liu JM,Li QZ,Chen ZH,Shi L,Liu XQ and Jiang ZZ.2012. Petrogenesis of granites from Fanchang district,the Lower Yangtze:Zircon geochronology and Hf-O isotopes constrains. Acta Petrologica Sinica,28(10):3209 -3227 (in Chinese with English abstract)

Yang CX,Wang SY,Liu ZH, Lei ZH and Yang CQ. 2008.Mesoarchean-Neoarchean grey gneiss in the Lushan area,Henan Province. Geological Review,54(3):327 -334 (in Chinese with English abstract)

Yang JH,Wu FY,Liu XM and Xie LW. 2005. Zircon U-Pb ages and Hf isotopes and their geological significance of the Miyun rapakivi granites from Beijing,China. Acta Petrologica Sinica,21(6):1633-1644 (in Chinese with English abstract)

Yang JH,Wu FY,Chung SL,Wilde SA and Chu MF. 2006. A hybrid origin for the Qianshan A-type granite, Northeast China:Geochemical and Sr-Nd-Hf isotopic evidence. Lithos,89(1 -2):89 -106

Zhai MG and Liu WJ. 2003. Palaeoproterozoic tectonic history of the North China craton:A review. Precambrian Research,122(1 -4):183 -199

Zhai MG and Peng P. 2007. Paleoproterozoic event in the North China Craton. Acta Petrologica Sinica,23(11):2665 -2682 (in Chinese with English abstract)

Zhai MG and Santosh M. 2011. The Early Precambrian odyssey of the North China Craton:A synoptic overview. Gondwana Research,20(1):6 -25

Zhai MG,Santosh M and Zhang LC. 2011. Precambrian geology and tectonic evolution of the North China Craton. Gondwana Research,20(1):1 -5

Zhai MG,Hu B and Peng P. 2014. Meso-Neoproterozoic magmatic events and multi-stage rifting in the NCC. Earth Science Frontiers,21(1):100 -119 (in Chinese with English abstract)

Zhang J,Zhang HF and Lu XX. 2013. Zircon U-Pb age and Lu-Hf isotope constraints on Precambrian evolution of continental crust in the Songshan area, the south-central North China Craton.Precambrian Research,226:1 -20

Zhang SH,Liu SW,Zhao Y,Yang JH,Song B and Liu XM. 2007. The 1.75 ~1.68Ga anorthosite-mangerite-alkali granitoid-rapakivi granite suite from the northern North China Craton:Magmatism related to a Paleoproterozoic orogen. Precambrian Research,155(3 -4):287 -312

Zhang SH,Zhao Y and Santosh M. 2012. Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China Craton:Implications for magmatism related to breakup of the Columbia supercontinent.Precambrian Research,222 -223:339 -367

Zhao GC,Cawood PA,Wilde SA and Sun M. 2002. Review of global 2.1 ~1.8Ga orogens:Implications for a pre-Rodinia supercontinent.Earth-Science Reviews,59(1 -4):125 -162

Zhao GC,He YH and Sun M. 2009. The Xiong’er volcanic belt at the southern margin of the North China Craton:Petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent. Gondwana Research,16(2):170 -181

Zhao TP,Zhou MF,Zhai MG and Xia B. 2002. Paleoproterozoic riftrelated volcanism of the Xiong’er Group,North China Craton:Implications for the breakup of Columbia. International Geology Review,44(4):336 -351

Zhao TP,Chen FK,Zhai MG and Xia B. 2004. Single zircon U-Pb ages and their geological significance of the Damiao anorthosite complex,Hebei Province,China. Acta Petrologica Sinica,20(3):685 -690(in Chinese with English abstract)

Zhao TP and Zhou MF. 2009. Geochemical constraints on the tectonic setting of Paleoproterozoic A-type granites in the southern margin of the North China Craton. Journal of Asian Earth Sciences,36(2 -3):183 -195

Zhao XF,Zhou MF,Li JW and Wu FY. 2008. Association of Neoproterozoic A-and I-type granites in South China:Implications for generation of A-type granites in a subduction-related environment. Chemical Geology,257(1 -2):1 -15

Zhao ZP. 1993. Precambrian Crustal Evolution of the Sino-Korean Paraplatform. Beijing:Science Press (in Chinese)

Zhou YY,Zhai MG,Zhao TP,Lan ZW and Sun QY. 2014.Geochronological and geochemical constraints on the petrogenesis of the Early Paleoproterozoic potassic granite in the Lushan area,southern margin of the North China Craton. Journal of Asian Earth Sciences,94:190 -204

附中文参考文献

白瑾,黄学光,戴风岩,吴昌华. 1993. 中国前寒武纪地壳演化. 北京:地质出版社,199 -203

包志伟,王强,资锋,唐功建,杜凤军,白国典. 2009. 龙王 A 型花岗岩地球化学特征及其地球动力学意义. 地球化学,38(6):509 -522

第五春荣,孙勇,林慈銮,柳小明,王洪亮. 2007. 豫西宜阳地区TTG 质片麻岩锆石U-Pb 定年和Hf 同位素地质学. 岩石学报,23(2):253 -262

第五春荣,孙勇,林慈銮,王洪亮. 2010. 河南鲁山地区太华杂岩LA-(MC)-ICPMS 锆石U-Pb 年代学及Hf 同位素组成. 科学通报,55(21):2112 -2123

高山林,林晋炎,陆彦俊. 2013. 宁夏泾源石咀子古元古代A 型花岗岩的形成时代及其地质意义. 岩石学报,29(8):2676 -2684

高维,张传恒,高林志,史晓颖,刘耀明,宋彪. 2008. 北京密云环斑花岗岩的锆石SHRIMP U-Pb 年龄及其构造意义. 地质通报,27(6):793 -798

胡国辉,胡俊良,陈伟,赵太平. 2010. 华北克拉通南缘中条山-嵩山地区1.78Ga 基性岩墙群的地球化学特征及构造环境. 岩石学报,26(5):1563 -1576

李怀坤,李惠民,陆松年. 1995. 长城系团山子组火山岩颗粒锆石U-Pb 年龄及其地质意义. 地球化学,24(1):43 -48

李怀坤,苏文博,周红英,耿建珍,相振群,崔玉荣,刘文灿,陆松年. 2011. 华北克拉通北部长城系底界年龄小于1670Ma:来自北京密云花岗斑岩岩脉锆石LA-MC-ICPMS U-Pb 年龄的约束.地学前缘,18(3):108 -120

柳晓艳. 2011. 华北克拉通南缘古-中元古代碱性岩岩石地球化学与年代学研究及其地质意义. 硕士学位论文. 北京:中国地质科学院

刘颖,刘海臣,李献华. 1996. 用ICP-MS 准确测定岩石样品中40 余种微量元素. 地球化学,25(6):552 -558

陆松年,李怀坤,李惠民,宋彪,王世炎,周红英,陈志宏. 2003. 华北克拉通南缘龙王 碱性花岗岩U-Pb 年龄及其地质意义. 地质通报,22(10):762 -768

彭澎,翟明国,张华峰,赵太平,倪志耀. 2004. 华北克拉通1.8Ga镁铁质岩墙群的地球化学特征及其地质意义:以晋冀蒙交界地区为例. 岩石学报,20(3):439 -456

彭澎,刘富,翟明国,郭敬辉. 2011. 密云岩墙群的时代及其对长城系底界年龄的制约. 科学通报,56(35):2975 -2980

任康绪,阎国翰,蔡剑辉,牟保磊,李凤棠,王彦斌,储著银. 2006.华北克拉通北部地区古-中元古代富碱侵入岩年代学及意义. 岩石学报,22(2):377 -386

时毓,于津海,徐夕生,唐红峰,邱检生,陈立辉. 2011. 陕西小秦岭地区太华群的锆石U-Pb 年龄和Hf 同位素组成. 岩石学报,27(10):3095 -3108

闫峻,彭戈,刘建敏,李全忠,陈志洪,史磊,刘晓强,姜子朝.2012. 下扬子繁昌地区花岗岩成因:锆石年代学和Hf-O 同位素制约. 岩石学报,28(10):3209 -3227

杨长秀,王世炎,刘振宏,雷正化,杨长青. 2008. 河南鲁山地区中-新太古代灰色片麻岩. 地质论评,54(3):327 -334

杨进辉,吴福元,柳小明,谢烈文. 2005. 北京密云环斑花岗岩锆石U-Pb 年龄和Hf 同位素及其地质意义. 岩石学报,21(6):1633-1644

翟明国,彭澎. 2007. 华北克拉通古元古代构造事件. 岩石学报,23(11):2665 -2682

翟明国,胡波,彭澎,赵太平. 2014. 华北中-新元古代的岩浆作用与多期裂谷事件. 地学前缘,21(1):100 -119

赵太平,陈福坤,翟明国,夏斌. 2004. 河北大庙斜长岩杂岩体锆石U-Pb 年龄及其地质意义. 岩石学报,20(3):685 -690

赵宗溥. 1993. 中朝准地台前寒武纪地壳演化. 北京:科学出版社

猜你喜欢

克拉通花岗锆石
安山玢岩-花岗斑岩混合矿石的磨矿产品粒度特性研究
地球第一块陆地比原来认为的早7亿年
锆石的成因类型及其地质应用
万众一心战疫情
克拉通岩石圈地幔的形成与破坏:大洋板块俯冲的贡献
准苏吉花斑岩型钼铜矿床岩体特征及成矿机制研究
金盆金矿矿床地质特征及找矿方向探讨
俄成功试射“锆石”高超音速巡航导弹
有关克拉通破坏及其成因的综述
锆石 谁说我是假宝石