APP下载

内蒙古中部达来地区晚侏罗世A 型花岗岩:地球化学特征、岩石成因与地质意义*

2015-03-15薛富红张晓晖邓江夏袁玲玲

岩石学报 2015年6期
关键词:锆石岩浆同位素

薛富红 张晓晖 邓江夏 袁玲玲

XUE FuHong1,2,3,ZHANG XiaoHui1**,DENG JiangXia1,2 and YUAN LingLing1,2

1. 中国科学院地质与地球物理研究所,岩石圈演化国家重点实验室,北京 100029

2. 中国科学院大学,北京 100049

3. 内蒙古有色地质矿业有限责任公司,呼和浩特 010010

1. State Key Laboratory of Lithospheric Evolution,Institute of Geology and Geophysics,CAS,Beijing 100029,China

2. University of Chinese Academy of Sciences,Beijing 100049,China

3. Inner Mongolia Nonferrous Geological Mining Limited Liability Company,Hohhot 010010,China

2014-03-28 收稿,2014-12-12 改回.

自Loiselle and Wones(1979)以碱性(alkaline)、缺水(anhydrous)、非造山环境(anorogenic)的三A 属性为依据提出A 型花岗岩的概念以来,A 型花岗岩一直是花岗岩领域最重要的研究主题之一(吴福元等,2007)。世界各地大量研究案例表明,A 型花岗岩构成地球上晚太古代以来几乎所有大陆地体中体量虽少但构造意义至关重要的侵入岩组成。基于这些研究实践,不同学者进一步提出了许多表征A 型花岗岩多样性的岩石地球化学指标和分类方案(Whalen et al.,1987;Eby,1990,1992;King et al.,1997;Frost et al.,2001;Frost and Frost,2011),例如衍生自A 型花岗岩但内涵又较其丰富的铁质花岗岩系列(Frost and Frost,2011)。一方面,A 型花岗岩繁杂多样的岩石地球化学特征体现了其在潜在壳幔源区、岩浆形成条件和不同地壳层次演化过程等方面的迥异差别,代表性成因模式包括:多种地壳物质重熔(Clemens et al.,1986;Whalen et al.,1987;Creaser et al.,1991;Patiño Douce,1997;Landenberger and Collins,1996;Frost and Frost,1997;King et al.,1997;Dall’Agonl and de Oliveira,2007);幔源玄武质岩浆结晶分异(Turner et al.,1992;Mushkin et al.,2003;Dall’Agonl et al.,2012)以及壳源和幔源岩浆的混合作用(Kemp et al.,2005;Yang et al.,2006;Zhang et al.,2012a)。另一方面,A 型花岗岩通常形成于俯冲后伸展或非造山板内伸展环境,这种亲合性使其可以作为伸展构造背景指示器之用。因此,A 型花岗岩的成因涵盖了重要的壳幔相互作用和独特的地球动力学过程信息,传统的地球化学手段和新型矿物原位同位素示踪技术的综合运用是揭示A 型花岗岩复杂成因的必要手段(Kemp et al.,2007;Collins et al.,2011;Zhang et al.,2012a)。

作为中亚造山带的东部单元,内蒙古中部是显生宙A 型花岗质岩浆活动发育最广泛的地区之一,构成中亚造山带多条显生宙碱性岩浆岩带的重要组成部分(Wu et al.,2002;Jahn et al.,2009)。但截至目前,这些A 型岩浆活动在时代上以晚古生代为主(Hong et al.,1994,1996;Shi et al.,2004;Zhang et al.,2014a),东北和华北克拉通北缘地区发育的中生代A 型花岗岩在本区鲜见报道。鉴于此,本研究拟以高精度SIMS 锆石U-Pb 测年手段确定内蒙古中部达来地区钾长花岗岩的形成时代,依据元素地球化学、全岩Sr-Nd 同位素和锆石Hf-O 同位素示踪其A 型岩浆属性和岩石成因,进而讨论晚侏罗世A 型岩浆活动发育的构造背景和地球动力学意义。

1 地质背景与岩石学特征

内蒙古中部西与蒙古国南戈壁省接壤,东与中国东北地区毗邻,夹持于华北板块与西伯利亚板块之间(图1a)。有关本区的大地构造属性,板块构造理论的早期倡导者就提出了其是由不同时代、不同性质的地块沿多个缝合带拼合而成的复合造山带(李春昱和汤耀庆,1983;Tang,1990;邵济安,1991),构成中亚巨型增生造山带的东段(Şengör et al.,1993)。Xiao et al. (2003)自北向南将内蒙古中部划分为乌梁雅斯太活动大陆边缘、贺根山蛇绿-岛弧增生杂岩、宝力道岛弧增生杂岩、索伦克尔缝合带、温都尔庙俯冲-增生杂岩带和白乃庙岛弧杂岩带(图1b)。Jian et al. (2010)则将其分为乌梁雅斯太活动大陆边缘带、二连-贺根山蛇绿混杂带、北造山带(早古生代)、索伦缝合带(晚古生代)和南造山带(早古生代)五个主要构造单元。它们记录了古生代古亚洲洋构造域多岛洋体制下的多块体拼合和大陆地壳生长过程(Windley et al.,2007;张晓晖和翟明国,2010)。虽然有关其闭合的最后时限和位置尚无定论,存在中泥盆世(Tang,1990;Xu et al.,2013)、晚石炭世-早二叠世(邵济安,1991;Hong et al.,1996)和晚二叠世-早三叠世(Şengör et al.,1993;Chen et al.,2000;Xiao et al.,2003;Windley et al.,2007;Wu et al.,2011;Cocks and Torsvik,2013;Zhou and Wilde,2013)等诸多观点,但内蒙中部-蒙古国早二叠世碱性岩浆岩带与华北克拉通北缘早中三叠世碱性岩浆岩带的发育暗示古亚洲洋的闭合可能自北而南进行,北部块体的拼合在晚石炭世-早二叠世完成(Zhang et al.,2008a,2011,2014a;Blight et al.,2010),南部块体的拼合则在晚二叠世末结束(Wu et al.,2011;Zhang et al.,2010,2012a,b)。之后华北-蒙古联合板块进入陆内演化阶段,经历中亚造山带造山后伸展、蒙古-鄂霍茨克构造域与古太平洋构造域等多种构造体系的强烈叠加和转换影响,断裂构造发育,岩浆活动频繁。代表性的事件包括三叠纪的碱性岩浆岩带(Li et al.,2013)和交其尔变质核杂岩(Davis et al.,2004),侏罗纪-白垩纪巨型火山岩带(Fan et al.,2003;Wang et al.,2006),早白垩世的一系列变质核杂岩(Wang et al.,2011)和断陷盆地群(Meng et al.,2003)。

白音乌拉-达来地区位于苏尼特左旗西北约50km(图1b),构造上位于乌梁雅斯太地体边缘。地体基底主要由新元古代片麻岩、片岩和石英岩以及寒武纪灰岩和硅质岩组成(Xu and Chen,1997;Xu et al.,2013)。依据区域地质资料(内蒙古自治区地质矿产局,1980①内蒙古自治区地质矿产局. 1980. 白音乌拉和白音吉日嘎啦1∶200000 区域地质调查报告,2007②内蒙古自治区地质矿产局. 2007. 白音乌拉1∶250000 地质矿产图),区内火山沉积建造包括:(1)奥陶系变质粉砂岩、砂岩和灰岩;(2)泥盆系变质粉砂岩、泥岩夹凝灰岩和少量安山岩;(3)上石炭统-二叠系地层。上石炭统-二叠系地层可以划分为两个组(内蒙古自治区地质矿产局,1980),下部由火山沉积岩组成的宝力道组和上部以沉积岩为主的哲斯组。宝力道组可分为三个岩段,近期锆石U-Pb 定年指示中段双峰式火山岩喷发时间为早二叠世(Zhang et al.,2011);(4)上侏罗统火山沉积建造,自下而上包括查干诺尔组粗面岩-安山岩、道特诺尔组玄武岩和布拉根哈达组流纹质凝灰岩;(5)下白垩统砂岩-细砂岩和上白垩统气孔状玄武岩。

图1 研究区所在位置与岩体地质图(a)中亚地区构造简图;(b)华北北部区域构造地质图(据Xiao et al. ,2003,修改);(c)内蒙古达来庙钾长花岗岩岩体地质图(据内蒙古自治区地质矿产局,2007 修改)Fig.1 The tectonic location of the study area and the sketch pluton map(a)tectonic framework of Central Asia;(b)tectonic map of the northern North China tract (modified after Xiao et al. ,2003);(c)sketch geological map for the Dalaimiao K-feldspar granite from the central Inner Mongolia

该区还发育多期晚古生代-中生代侵入岩。依据岩体侵入关系和岩石学特征,结合早期的Rb-Sr 年龄和近期开展的一系列锆石U-Pb 测年研究,大致分为四个期次:(1)石炭纪辉长岩-闪长岩-花岗岩(330 ~310Ma,内蒙古自治区地质矿产局,2007);(2)早二叠世碱性花岗岩(Hong et al.,1994;Zhang et al.,2014a);(3)晚二叠世花岗岩和(4)晚中生代黑云母花岗岩和钾长花岗岩。

图2 内蒙古达来地区达来庙钾长花岗岩矿物组成显微照片和锆石U-Pb 年龄图(a)似斑状结构,条纹长石和钾长石斑晶;(b)基质中的斜长石和黑云母,斜长石发育聚片双晶;(c)钾长花岗岩中锆石的阴极发光照片;(d)SIMS 锆石U-Pb 谐和年龄图Fig.2 Representative thin-section photographs of mineral constituents and zircon U-Pb diagram for the Dalaimiao K-feldspar granite from the Dalai region of Inner Mongolia(a)porphyritic texture with perthite and k-feldspar phenocrysts;(b)biotite and plagioclase with polysynthetic twinning in matrix;(c)cathodoluminescence (CL)images for the dated zircons;(d)concordia diagrams of SIMS zircon U-Pb dating

达来庙钾长花岗岩大致呈北东-南西向展布于中蒙边境一带(图1c),岩体呈不规则近椭圆形岩株状产出,大部分被第三系覆盖,出露部分也遭受强烈风化剥蚀。岩石具似斑状结构(图2a),斑晶主要为钾长石、条纹长石、石英和少量斜长石。钾长石粒径约3 ~7mm,主要为自形-半自形结构,发育卡斯巴双晶,矿物表面发生粘土化;条纹长石为正条纹长石,粒径多为5 ~8mm 左右(图2a);石英斑晶呈他形,粒度稍小于钾长石,粒径3 ~4mm,斜长斑晶被钾长石交代。基质为细粒结构,主要矿物为石英,占基质的60%,粒度0.05 ~0.5mm;其次为钾长石,含量15% ~20%,粒度0.075 ~1mm;黑云母呈片状,含量为2% ~5%,大小为0.05 ~0.5mm(图2b);斜长石约1% ~2%,呈自形-半自形结构,聚片双晶发育(图2b)。副矿物包括锆石、钛铁矿和磷灰石。

2 分析方法

2.1 锆石U-Pb 年龄测试

采用磁选和重液分选出锆石晶体,选择晶型完整的锆石样品贴到环氧树脂上,然后进行锆石透射光、反射光及阴极发光图像(CL)分析。锆石单矿物挑选在河北省廊坊市矿产资源研究中心完成,制靶工作、反射光、透射光和CL 阴极发光照片采集分别在中国科学院地质与地球物理研究所离子探针实验室和扫描电镜实验室完成。

锆石SIMS U-Pb 定年在中国科学院地质与地球物理研究所离子探针实验室Cameca IMS-1280 二次离子质谱仪上完成,U-Th-Pb 同位素比值采用标准锆石Plésovice(337Ma)校正,标准样品Qinghu(Li et al.,2009)作为未知样品检测数据精确度,实测204Pb 值用于普通Pb 校正,采用Isoplot 软件进行数据处理(Ludwig,2001)。

2.2 全岩主量和微量元素分析

全岩主量和微量元素分别在中国科学院地质与地球物理研究所岩矿制样与分析实验室和成矿年代学实验室进行测试。主量元素采用X-荧光光谱法(XRF)方法,其精度为0.01%;微量元素采用电感耦合等离子质谱法(ICP-MS),将岩石粉末在高温条件下用HF+HNO3混合酸进行溶解,然后用稀硝酸进行稀释以备分析,测试分析采用ICP-MS ELEMENT 仪器。

表1 内蒙古中部达来庙钾长花岗岩(DL10-8)的锆石U-Pb 年龄Table 1 SIMS zircon U-Pb data for the Dalaimiao K-feldspar granite (DL10-8)from central Inner Mongolia

2.3 全岩Rb-Sr 和Sm-Nd 同位素测试

全岩Sm-Nd 同位素分析在中国科学院地质与地球物理研究所稳定同位素实验室完成,具体试验分析流程见Li et al. (2012)。样品中加入混合的87Rb-84Sr 和149Sm-150Nd 示踪剂,并用HF +HNO3+HClO4混合酸在高温条件下对样品进行溶解,采用两阶段离子交换层析法分离样品中Rb、Sr、Sm、Nd 元素,样品测试使用仪器为Finnigan MAT262 多接收热电离质谱仪。

2.4 锆石原位Lu-Hf 和O 同位素分析

锆石Lu-Hf 在中国科学院地质与地球物理研究所多接收等离子质谱实验室Thermo-Finnigan Nepturne MC-ICP-MS上测试完成,采用193nm ArF EXcimer Laster-ablation 系统对锆石进行原位Lu-Hf 同位素分析,标样MUD(176Hf/177Hf =0.282833 ±25,2σ)和GJ-1(176Hf/177Hf = 0.282020 ± 25,2σ)监测实验过程中的仪器稳定性。

锆石氧同位素亦在中国科学院地质与地球物理研究所离子探针实验室CAMECA IMS-1280 上测试完成,采用Cs+作为离子源,Penglai 标准锆石(δ18O =5.31 ±0.10‰)(Li et al.,2010)作为锆石氧同位素测试标样,Vienna-标准大洋水(V-SMOW,18O/16O = 0.0020052)对样品18O/16O 进行标准化。

3 分析结果

3.1 锆石U-Pb 定年结果

达来庙花岗岩中的锆石为自形到半自形结构,30 ~150μm,长宽比值约为1.0 ~2.5,阴极发光图像显示锆石具有典型的岩浆振荡环带(图2c),指示其属于岩浆结晶的产物。我们选择了16 颗锆石进行U-Pb 测试,SIMS 锆石U-Pb分析结果见表1。单个锆石Th、U 含量变化较大,其中U 为39 ×10-6~879 ×10-6,Th 介于26 ×10-6~737 ×10-6,Th/U值变化于0.50 ~0.99 之间,与典型的岩浆成因锆石一致(Williams,1998)。206Pb/238U 年 龄 值 介 于153.4Ma 和164.6Ma 之间,在一致曲线图上,16 颗锆石点分布集中,得到的谐和年龄为160.1 ±1.8Ma(MSWD =0.45)(图2d),代表了岩体的结晶年龄。

3.2 元素地球化学特征

4 个比较新鲜花岗岩样品的全岩主量与微量元素分析结果列于表2。花岗岩的SiO2含量变化于69.8% ~73.9%,具有较高的Al2O3(13.7% ~15.2%)和K2O(4.59% ~4.88%)含量,贫CaO(0.82% ~1.36%)和MgO(0.33% ~0.67%)。在QAP 分类图(Streckesen,1976)中,4 个样品均落在钾长花岗岩区域(图3a);FeOT/(FeOT+MgO)值变化于

0.78 ~0.85 之间,在Frost et al. (2001)的SiO2-FeOT/(FeOT+MgO)图中落在铁质花岗岩区(图3b);在(K2O + Na2OCaO)-SiO2图中落入钙碱性-碱性区域(图3c);铝饱和指数ASI(A/CNK)介于1.02 ~1.1 之间,在A/CNK-A/NK 图上落入弱过铝质区(图3d)。

花岗岩具有相对较高的稀土元素含量(ΣREE =199.5 ×10-6~304.2 ×10-6),在稀土元素球粒陨石标准化配分图上(图4a),岩石呈现LREE 中等富集、重稀土元素分布平坦的配分模式((La/Yb)N=12.7 ~17.7),并具有明显的负Eu 异常,Eu/Eu*介于0.20 ~0.68。

微量元素方面,花岗岩富集Rb(114 × 10-6~308 ×10-6)、Zr(281×10-6~328×10-6)、Hf(8.2×10-6~12.13×10-6)、Nb(28.6 ×10-6~52.1 ×10-6)、Ta(1.80 ×10-6~6.58 ×10-6)等。在微量元素原始地幔标准化蛛网图(图4b)上;岩石呈现富集大离子亲石元素、REE 和高场强元素的特征,其中Rb、Th、U 的富集明显,Ba、Sr、P、Ti 则显示明显的负异常。

表2 内蒙古中部达来庙钾长花岗岩全岩元素地球化学成分(主量元素:wt%;稀土和微量元素:×10 -6)Table 2 Major and trace element composition for Dalaimiao K-feldspar granite from central Inner Mongolia (major elements:wt%;trace elements:×10 -6)

图3 内蒙古达来地区达来庙钾长花岗岩分类图(a)QAP 岩石分类图(据Streckesen,1976);(b)SiO2-FeOT/(FeOT +MgO)图(据Frost et al. ,2001);(c)SiO2-(K2 O +Na2 O-CaO)图(据Frost et al. ,2001);(d)A/NK-A/CNK 图(据Peccerillo et al. ,1976). 图(a)中的区域分别为:3a-钾长花岗岩;3b-二长花岗岩;4-花岗闪长岩Fig.3 Classification diagrams for the Dalaimiao K-feldspar granites from the Dalai region of Inner Mongolia(a)QAP ternary diagram (Streckesen,1976);(b)plot of SiO2-FeOT/(FeOT +MgO);(c)plot of (Na2 O +K2 O-CaO)vs. SiO2(Frost et al. ,2001);(d)plot of A/NK vs. A/CNK (Peccerillo and Taylor,1976). In Fig.3a,3a-syenogranite;3b-monzogranite;4-granodiorite

图4 内蒙古达来地区达来庙钾长花岗岩球粒陨石标准化稀土元素配分曲线(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough,1989)Fig.4 Chondrite-normalized REE pattern (a)and PM-normalized trace element spiderdiagram (b)for the Dalaimiao K-feldspar granite from the Dalai region of Inner Mongolia (normalization values after Sun and McDonough,1989)

表3 内蒙古中部达来庙钾长花岗岩全岩Rb-Sr 和Sm-Nd 同位素Table 3 Whole rock Sm-Nd and Rb-Sr isotopic data for Dalaimiao K-feldspar granite from central Inner Mongolia

3.3 全岩Sr-Nd 同位素特征

2 个样品的Rb-Sr 和Sm-Nd 同位素分析结果见表3。如图所示,初始87Sr/86Sr 值为0.70504 ~0.70523;中度亏损的Nd 同位素(εNd(t)= +2.1 ~+2.3)(图5a,b),两阶段模式年龄为795 ~761Ma,fSm/Nd变化于-0.41 ~-0.36,其值介于-0.60 ~0.20 之间,表明其模式年龄具地质意义(Jahn et al.,2000)。

3.4 锆石Hf-O 同位素特征

DL10-8 中锆石的Hf 及O 同位素分析结果见表4。锆石分析点的176Yb/177Hf 和176Lu/177Hf 比值变化范围分别为0.014935 ~0.073478 和0.000555 ~0.002534,初始176Hf/177Hf 比值介于0.282871 ~0.282997,εHf(t)值变化于+7.0~+11.5(图5c),锆石Hf 亏损地幔模式年龄(tHfDM)为359 ~537Ma,地壳模式年龄(tCDM)介于475 ~760Ma 之间。

锆石δ18O 介于6.70 ±0.33‰~7.63 ±0.28‰,大于地幔锆石氧δ18O 组成(地幔锆石δ18O =5.3 ±0.3‰)(Valley et al.,1998)。依据全岩(WR)与锆石(Zro)之间的分馏关系Δ(WR-Zro)= 0.0612 × SiO2(%)- 2.5‰(Lackey et al.,2008),计算得到全岩δ18O 的估计值为8.61‰~9.53‰。

4 讨论

4.1 岩浆属性与岩石成因

在过去三十年间不同学者先后从不同角度提出的二十多种花岗岩成因分类方案之中,学界接受程度最高的莫过于基于岩浆源区性质而区分的MISA(即M、I、S 和A 型)花岗岩成因分类方案(Pitcher,1993;吴福元等,2007)。然而,由于不同源岩的部分熔融或不同的成岩过程可以形成成分相似的花岗岩,因此不同类型之间的区分在有些情况下并不十分显豁(Frost et al.,2001),例如,A 型花岗岩和高分异I 型花岗岩的情形尤其如此。澳大利亚拉克兰褶皱带(Whalen et al.,1987;King et al.,1997)、中国东北(Jahn et al.,2000;Wu et al.,2002,2003)和华北克拉通(Zhang et al.,2008b;Jiang et al.,2009)等地的大量实例表明,判别A 型花岗岩的两个重要地球化学标志即高Ga/Al 和高Zr+Nb+Y+Ce 值,一些高分异I 型和S 型花岗岩也可以满足。另一个通常用来区分A 型和I 型花岗岩的高FeOT/MgO 比值,实际应用时也只有在SiO2<70%时才比较明显(Frost et al.,2001)。显然,许多地球化学判别图并不能有效地区分A 型和高分异I型花岗岩(Jiang et al.,2009)。因此,在缺乏特征性碱性暗色矿物的情形下,A 型花岗岩的判别最好是选择岩浆岩套中基本未分异的岩石单元来进行(King et al.,1997;Jiang et al.,2009)。

表4 内蒙古中部达来庙晚侏罗世钾长花岗岩锆石Lu-Hf 和O 同位素Table 4 In-situ zircon Lu-Hf and O isotopic data for Dalaimiao K-feldspar granite from central Inner Mongolia

对于达来庙钾长花岗岩而言,其相对中等的SiO2含量(69.8% ~73.9%)、较高的Sr 丰度(82 ×10-6~136 ×10-6)以及中等Eu 负异常(Eu/Eu*=0.2 ~0.68)均与一些典型A型花岗岩套中的未分异岩石端元相当(Landenberger and Collins,1996;King et al.,1997);比如,东澳大利亚新英格兰褶皱带三叠纪A 型花岗岩套中未分异样品的SiO2含量为66.5% ~71.5%、Sr 丰度为181 ×10-6~277 ×10-6、Eu/Eu*介于0.45 ~0.60(Landenberger and Collins,1996)。同时达来庙花岗岩的一些其他元素比值也与典型A 型原始酸性熔体的元素比值相当(Landenberger and Collins,1996;Liu et al.,2005),如Ca/Sr(48 ~71),Rb/Sr(0.91 ~1.87)和Rb/Ba(0.23 ~0.66),表明它们没有经历明显的分异过程。

此外,达来庙花岗岩较高的Zr 丰度(281 ×10-6~328 ×10-6)也是其有别于I 型花岗岩的重要特征。鉴于锆石在岩浆演化过程中一般较早结晶且其Zr 元素的分配系数对温度极为敏感,我们可以通过锆石饱和温度来估算花岗岩形成的温度条件。根据Watson and Harrison (1983)基于锆石溶解度模拟提出的计算公式TZr(℃)=[12900/(lnDZr(496000/熔体)+0.85M+2.96)]-273.15,计算得到的锆石饱和温度为833 ~847℃。由于达来庙花岗岩中没有发现古老继承锆石,表明岩浆结晶前熔体中的Zr 不完全饱和,这种情况下的TZr代表源区原始岩浆的最低温度(Miller et al.,2003),因此达来庙钾长花岗岩属于热花岗岩。

因此,达来庙花岗岩具备接近于原始A 型花岗质岩浆的元素地球化学行为和高温特征。其10000(Ga/Al 值的变化范围为2.87 ~3.68,与中亚造山带铝质A 型花岗岩的值相当,在Whalen et al.(1987)分类图(图6a,b)上,样品均落在A 型花岗岩范围;在Y-Nb 图中(Pearce et al.,1984),样品落入板内花岗岩区(图6c)。在Eby(1992)提出的Nb-Y-Ce 图(图6d)上,样品落入A2型花岗岩区,指示一种造山后的构造环境。

如前所述,A 型酸性岩浆可以源于多种成因过程,主要包括:(1)幔源拉斑玄武质岩浆或碱性岩浆的分离结晶与同化混染(Turner et al.,1992;Mushkin et al.,2003);(2)多种壳源物质的部分熔融(Clemens et al.,1986;Creaser et al.,1991;Patiño Douce and Beard,1995;Patiño Douce,1997;Landenberger and Collins,1996;Frost and Frost,1997;King et al.,1997;Dall’Agonl and de Oliveira,2007);(3)壳源酸性岩浆与幔源基性岩浆的混合作用(Kemp et al.,2005;Yang et al.,2006;Zhang et al.,2012a)。

达来庙钾长花岗岩不大可能由幔源基性岩浆的分离结晶与同化混染过程而形成。首先,基性岩浆分异结晶形成的A 型花岗岩通常与大面积同期基性-超基性岩呈双峰式产出(Turner et al.,1992),例如美国黄石公园A 型流纹岩(Hildreth et al.,1991),与地幔柱相关的峨眉山A 型花岗岩(钟玉婷和徐义刚,2009),以色列Amram 地块上出露的A型花岗岩(Mushkin et al.,2003),而达来庙花岗岩缺少与之伴生的同期中基性岩石。其次,实验岩石学研究表明幔源基性母岩浆只有在极端情况下,才能分异形成具低硅流纹质组成(≤68% SiO2)的钾质残留熔体,其间伴有大量中间产物出现(Whitaker et al.,2008;Frost and Frost,2011),达来庙花岗岩相对单一的岩性组成明显有悖于简单的岩浆分异模型。再次,热模拟实验证明,即使在最适宜的条件下,同化程度最高几乎不可能超过~25%,许多同化作用过程(包括机械混合与化学反应)都需要克服严峻的能量障碍(Glazner,2007)。

图5 内蒙古达来地区达来庙钾长花岗岩的元素地球化学图解(a)εNd(t)-87Sr/86Sri;(b)εNd(t)-tDM;(c)锆石εHf(t)-锆石U-Pb 年龄;(d)锆石εHf(t)-δ18Ozircon. (a)内蒙古中部地区中泥盆世拉斑质辉长岩、石炭纪岛弧岩浆岩、早二叠世基性-酸性火山岩和早二叠世碱性花岗岩同位素数据分别来自Zhang et al. (2009);Chen et al. (2000);Zhang et al. (2011)和Zhang et al. (2014a);图(c)中的石炭纪岛弧岩浆岩和早二叠世碱性花岗岩锆石Hf 同位素数据分别来自Chen et al.(2009)和Zhang et al. (2014a)Fig.5 Isotopic plots for the Dalaimiao K-feldspar granite from the Dalai region of Inner Mongolia(a)εNd(t)vs. 87Sr/86Sri;(b)εNd(t)vs. tDM;(c)zircon εHf(t)vs. zircon U-Pb age;(d)zircon εHf(t)vs. δ18Ozircon. In Fig.5a,samples for Devonian tholeiitic gabbros,Carboniferous arc intrusions,Early Permian mafic and felsic volcanic rocks,Early Permian alkali granites from central Inner Mongolia are from Zhang et al. (2009);Chen et al. (2000),Zhang et al. (2011)and Zhang et al. (2014a),respectively. In Fig.5c,fields for Carboniferous arc intrusions and Early Permian alkali granites are from Chen et al. (2009)and Zhang et al. (2014a),respectively

岩浆混合作用形成的A 型花岗岩通常具有发育许多暗色基性显微包体的野外地质特征和变化范围较大的锆石Hf-O 同位素组成(Yang et al.,2006;Kemp et al.,2007;Zhang et al.,2012a)。野外观察表明,达来庙花岗岩缺少与之相关的暗色基性包体,其锆石Hf-O 同位素组成变化范围很小(图5c,d)。因此,岩浆混合作用也无法解释达来庙花岗岩的成因。

在诸多可能衍生A 型花岗质岩浆的壳源物质中,早期学者提出的长英质岩浆出熔之后的残余麻粒岩质下地壳物质(Collins et al.,1982)已被后来的实验岩石学证明其部分熔融不可能析出A 型花岗质岩浆(Creaser et al.,1991;Patiño Douce and James,1995)。进一步的实验岩石学研究(Skjerlie and Johnston,1993;Patiño Douce,1997)指示,英云闪长质-花岗闪长质岩石在不同地壳深度的脱水熔融可以产生A 型花岗质熔体,即低压时形成准铝质岩浆,高压时形成过铝质岩浆(Frost and Frost,2011)。世界各地大量实例也陆续确证,中基性壳源岩石在高压条件下的部分熔融是形成钙碱性-碱性铝质A 型花岗岩的重要机制(Frost and Frost,2011;Dall’Agonl et al.,2012)。例如,澳大利亚拉克兰褶皱带的泥盆纪铝质A 型花岗岩(King et al.,1997)和巴西亚马逊克拉通古元古代A 型花岗岩(Dall’Agonl and de Oliveira,2007)。另外,与英云闪长岩相当的紫苏花岗质中下地壳岩石也是可能析出A 型花岗质岩浆的重要源岩,例如,东澳大利亚新英格兰褶皱带三叠纪Chaelundi 杂岩中的A 型花岗岩(Landenberger and Collins,1996)和华南扬子克拉通新元古代复合岩套中的A 型花岗岩(Zhao et al.,2008)。

图6 内蒙古达来地区达来庙钾长花岗岩的元素地球化学属性与环境判别图(a)(FeOT/MgO)-10000Ga/Al 判别图(Whalen et al. ,1987);(b)(K2O+Na2O)/CaO-(Zr+Nb+Ce+Y)图(Whalen et al. ,1987);(c)Nb-Y 构造环境判别图(Pearce et al. ,1984),VAG-火山岛弧花岗岩,WPG-板内花岗岩,COLG-碰撞花岗岩,ORG-大洋中脊花岗岩;(d)Nb-Y-Ce判别图(Eby,1992)Fig.6 The elemental affinity classification and tectonic discrimination plots for the Dalaimiao K-feldspar granite from the Dalai region of Inner Mongolia(a)FeOT/MgO vs. 10000Ga/Al discrimination diagram (Whalen et al. ,1987);(b)(K2O+Na2O)/CaO vs. (Zr+Nb+Ce+Y)discrimination diagram (Whalen et al. ,1987);(c)Y vs. Nb tectonic discrimination diagram (Pearce et al. ,1984),VAG=volcanic arc granites,WPG=within plate granites,COLG=collisional granites,ORG=oceanic ridge granites;(d)Nb-Y-Ce discrimination diagram (Eby,1992)

达来庙花岗岩的形成可能契合这一成因模式。其一,研究区在古生代经历了与古亚洲洋俯冲相关的多阶段地壳增生过程,包括形成新生地壳的初始岛弧岩浆作用(Jian et al.,2008;Zhang et al.,2009),导致地壳持续生长的成熟大洋岛弧和大陆岛弧岩浆作用(Chen et al.,2000)以及俯冲后伸展背景下幔源岩浆底侵引起的垂向增生(Zhang et al.,2008a,2011,2014a)。这些以中基性浆源岩石为主体的年轻增生物质是研究区中下地壳的基本组成要素,从而也构成可以析出低初始87Sr/86Sr、高εNd(t)和εHf(t)以及年轻模式年龄的A型酸性岩浆的可能源区,达来庙花岗岩与研究区大量古生代岛弧岩浆岩在Sr-Nd-Hf 同位素组成方面的类似性可以确证这种关联性(图5)。其二,支持这种关联性的另一个证据是达来庙花岗岩中锆石具有明显高于地幔锆石的氧同位素组成。一方面,该值与研究区石炭纪岛弧岩浆建造中辉长岩-辉长闪长岩锆石的δ18O 值大体一致(图5d);另一方面,该特征也契合全球主要大陆古汇聚大陆边缘基性下地壳普遍高δ18O 的趋势(Valley et al.,1994;Peck and Valley,2000;Lackey et al.,2005)。由于氧在锆石中的低扩散速率及高封闭温度,后期的变质作用与热液蚀变很难改变锆石的氧同位素组成,因此锆石保留了岩浆结晶时的氧同位素信息(Cherniak and Watson,2003)。对于曾经见证过洋壳俯冲的古活动大陆边缘而言,其中下地壳岩石的锆石高氧同位素组成特征指示其岩浆源区经历过高δ18O 流体或含水硅酸盐熔体的加入,这种高δ18O 流体或熔体通常来自遭受过低温热液蚀变的上部洋壳及其上覆沉积物的脱水熔融(King et al.,1998;Lackey et al.,2005)。例如,美国加州早白垩世Sierra Nevada 岩基中辉长岩和英云闪长岩中锆石普遍呈现高δ18O(7.8 ±0.7‰)特征,质量平衡计算表明其由至少18‰的蚀变洋壳物质加入到原始岩浆源区所致(Lackey et al.,2005)。

因此,综合考虑研究区年轻增生物质主导的地壳属性和达来庙花岗岩独特的地球化学特征,我们认为达来庙A 型花岗岩形成于中下地壳中基性浆源物质在高压下的部分熔融及其后的分异作用。

4.2 地质意义

东北亚显生宙大陆演化研究近年来取得的最重要进展是,识别出一个西迄蒙古-鄂霍茨克缝合带、东抵太平洋之滨、跨越2500km、覆盖面积逾三百万平方千米的早白垩世巨型地壳伸展省(Wang et al.,2011,2012)。其地质表征包括一系列早白垩世变质核杂岩(Wang et al.,2011;Mazukabzov et al.,2006;Donskaya et al.,2008;Davis et al.,1996;Webb et al.,1999;Darby et al.,2004;Zorin,1999)、断陷盆地群(Meng et al.,2003;Ritts et al.,2001;Graham et al.,2001)以及大规模的火山喷发活动(Fan et al.,2003;Wang et al.,2006)。

相对于早白垩世大规模的上地壳伸展,蒙古-华北北部地块中晚侏罗世一直被认为总体上处于地壳缩短和推覆加厚时期(Davis et al.,2001;Meng et al.,2003)。但最近针对一些典型变质核杂岩核部侵入岩的研究表明,这些地区中下地壳层次的伸展可能在中晚侏罗世就已经启动(Wang et al.,2012)。例如,南蒙古Zagan 变质核杂岩中碱性花岗岩的锆石U-Pb 年龄介于161 ~152Ma(Donskaya et al.,2008);东蒙古Nartyn 地体中碱性岩的年龄为152 ~138Ma(Daoudene et al.,2011,2012);呼和浩特变质核杂岩中花岗岩的锆石U-Pb 年龄介于148 ~140Ma(Guo et al.,2012);云蒙山变质核杂岩中核部岩浆岩的锆石U-Pb 年龄大约为150~145Ma(Davis et al.,2001;Wang et al.,2012);辽西医巫闾山变质核杂岩核部岩基大约在170 ~150Ma 侵位(吴福元等,2006;Zhang et al.,2008b,2012c,2014b);胶东玲珑变质核杂岩核部岩浆岩的锆石U-Pb 年龄大约为160 ~150Ma(Charles et al.,2011)。这些指示中下地壳流动的伸展岩浆穹隆,结合近年来在华北克拉通陆续厘定的一系列晚侏罗世A 型花岗岩,例如西拉木伦碾子沟二长花岗岩(陈志广等,2008),白乃庙地区道郎呼都格钾长花岗岩(解洪晶等,2012),表明蒙古-华北北部陆块的中下地壳在中晚侏罗世普遍处于伸展流动状态。内蒙古中部晚侏罗世A 型花岗岩的厘定进一步提供了中下地壳弥散状区域伸展的岩石学证据。

事实上,南蒙古和华北北部典型盆地的沉积建造分析和控盆断裂系统的构造解析表明,这种弥散状中下地壳伸展与流动是形成独立状分布的中晚侏罗世夭折裂陷(failed rift)盆地的重要背景(Graham et al.,2001;Meng et al.,2003)。例如,南蒙古东戈壁盆地中火山岩夹层的40Ar/39Ar 年龄为155 ±1Ma(Graham et al.,2001);二连地区NE-SW 向展布的中晚侏罗世小型裂谷盆地群(肖安成等,2001;Meng et al.,2003),指示其裂陷作用的底部碱质中基性火山岩的40Ar/39Ar 年龄为156 ~148Ma(陈义贤和陈文寄,1997);Davis and Darby(2010)基于辽西地区控盆断裂系统的研究识别出了可能影响整个燕山造山带的中晚侏罗世伸展事件。

中晚侏罗世和早白垩世两期迥异伸展事件的确定,为进一步探究蒙古-华北地块晚中生代大陆地球动力学过程提供了全新视角。长期以来,有关这一东亚大陆演化驱动机制问题总体上表现为(1)古太平洋板块的俯冲作用(Traynor and Sladen,1995;郑亚东等,2000;Davis et al.,2001)和(2)蒙古-鄂霍茨克洋的闭合(Zorin,1999;Graham et al.,2001;Meng,2003;Wang et al.,2011)之争。不同学者先后提出的具体动力学过程包括俯冲洋壳板片断离(Van der Voo et al.,1999;Meng,2003)、弧后伸展与板片回退(Traynor and Sladen,1995;Chen et al.,2013)、岩石圈地幔拆沉(Wu et al.,2005)和重力垮塌(Zorin,1999;Graham et al.,2001;Meng et al.,2003)。

近年来的一系列研究表明,古太平洋板块俯冲引起的远程效应是引起华北克拉通早白垩世巨量岩浆作用和克拉通破坏高潮的主要机制(Wu et al.,2005;Chen et al.,2013;Zhu et al.,2012;Zhang et al.,2014c)。而对于中晚侏罗世局域性的岩浆作用和克拉通破坏事件,则可能受控于多重构造体制(Wang et al.,2011;Zhang et al.,2014c)。

从空间上看,研究区位于华北克拉通破坏焦点之外的内蒙古中北部,距离古太平洋俯冲带上千千米之遥,而与蒙古-鄂霍茨克缝合带仅距百余千米;从时间上来说,近期的一系列古地磁和古地理重建工作一致认为,蒙古-鄂霍茨克洋的最终闭合发生在中-晚侏罗世(Zorin,1999;Metelkin et al.,2010;Cocks and Torsvik,2013)。基于这种空间契合和时间关联,蒙古-华北北部陆块中晚侏罗世的岩浆活动可能主要受控于蒙古-鄂霍茨克构造域的地球动力学过程。

由于随下落岩石圈焦点位移而转移的缘故,俯冲岩石圈回退和岩石圈拆沉一般形成在时间上并不统一的区域伸展格局(Platt et al.,2003),板片断离模式则一般造成线状分布的伸展廊带(von Blanckenburg and Davies,1995)。显然,蒙古-华北地块晚中生代经历的间隔明确的两段式、各自比较统一的区域伸展格局有悖于上述模式,而与岩石圈地幔对流减薄通常预测的地壳增厚与减薄启动之间经历的30 ~40Ma的时间间隔相一致(Platt et al.,2003),同时也契合造山后重力垮塌诱发的典型岩石圈和地壳响应(Rey et al.,2001,2011)。实际上,作为板块聚合后造山带在自身重力作用下向周缘的伸展流动行为,重力垮塌大多由岩石圈地幔对流减薄所诱发(Vanderhaeghe and Teyssier,2001),新生代造山带因岩石圈地幔对流减薄诱发重力垮塌而引起两段式地壳伸展的实例包括青藏高原(England and Houseman,1989;Houseman and Molnar,1997)和地中海Alboran 构造域(Platt et al.,2003),前者两期伸展的时间间隔为20 ~30Myr(Rey et al.,2001;Vanderhaeghe and Teyssier,2001),后者早期岩浆穹隆与晚期变质核杂岩高应变伸展构造之间的间隔为30~40Myr (Vanderhaeghe and Teyssier,2001;Platt et al.,2003)。

综合以上分析,我们认为,蒙古-华北北部地块晚中生代两段式的地壳伸展轨迹可能记录了蒙古-鄂霍茨克构造域造山后的重力垮塌过程。

5 结论

(1)内蒙古达来庙钾长花岗岩形成时代为晚侏罗世(锆石U-Pb 年龄为160Ma)。

(2)达来庙钾长花岗岩呈似斑状结构,斑晶主要为钾长石、石英和少量斜长石,基质主要组成为石英、斜长石和少量黑云母;副矿物主要为锆石、钛铁矿和磷灰石。

(3)达来庙钾长花岗岩具有铝质A 型花岗岩的元素地球化学属性,并呈现低初始87Sr/86Sr、高εNd(t)、高的锆石εHf(t)和δ18O 值。这些元素与同位素地球化学特征指示其可能形成于中基性中下地壳物质的部分熔融和其后的结晶分异作用。

(4)达来庙A 型花岗岩见证了华北陆块中晚侏罗世启动的弥散状中下地壳伸展过程;蒙古-华北板块晚中生代两段式地壳伸展轨迹契合于蒙古-鄂霍茨克构造域造山后的重力垮塌过程。

致谢 感谢中国科学院地质与地球物理研究所凌潇潇、李文君、王红月和李倩楠分别在SIMS 锆石U-Pb 测年、微量元素、主量元素和全岩同位素测试过程中给予的热心帮助。两位审稿人提出的建设性意见使文章臻于完善,在此谨致衷心谢忱。

Blight JHS,Crowley QG,Petterson MG and Cunningham D. 2010.Granites of the southern Mongolia Carboniferous arc: New geochronological and geochemical constraints. Lithos,116(1 -2):35 -52

Charles N,Gumiaux C,Augier R,Chen Y,Zhu RX and Lin W. 2011.Metamorphic Core Complexes vs. synkinematic plutons in continental extension setting:Insights from key structures (Shandong Province,eastern China). Journal of Asian Earth Sciences,40(1):261 -278 Cherniak DJ and Watson EB. 2003. Diffusion in zircon. Reviews on Mineralogy and Geochemistry,53(1):113 -143

Chen B,Jahn BM,Wilde S and Xu B. 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia,China:Petrogenesis and tectonic implications. Tectonophysics,328(1 -2):157 -182

Chen B,Jahn BM and Tian W. 2009. Evolution of the Solonker suture zone:Constraints from zircon U-Pb ages,Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction and collisionrelated magmas and forearc sediments. Journal of Asian Earth Science,34(3):245 -257

Chen B,Jahn BM and Suzuki K. 2013. Petrological and Nd-Sr-Os isotopic constraints on the origin of high-Mg adakitic rocks from the North China Craton:Tectonic implications. Geology,41(1):91-94

Chen YX and Chen WJ. 1997. Mesozoic Volcanic Rocks:Chronology,Geochemistry,and Tectonic Background. Beijing:Seismological Press,1 -279 (in Chinese)

Chen ZG,Zhang LC,Wu YH,Wan B and Zeng QD. 2008.Geochemistry study and tectonic background of A-style host granite in Nianzigou molybdenum deposit in Xilamulun molybdenum metallogenic belt,Inner Mongolia. Acta Petrologica Sinica,24(4):879 -889 (in Chinese with English abstract)

Cocks LRM and Torsvik TH. 2013. The dynamic evolution of the Palaeozoic geography of eastern Asia. Earth-Science Reviews,117:40 -79

Collins WJ,Beams SD,White AJR and Chappell BW. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology,80(2):189 -200

Collins WJ,Belousova EA,Kemp AIS and Murphy B. 2011. Two contrasting Phanerozoic orogenic systems revealed by hafnium isotope data. Nature Geosciences,4:333 -337

Clemens JD,Holloway JR and White AJR. 1986. Origin of an A-type granites:Experimental constraints. American Mineralogist,71:317-324

Creaser RA,Price RC and Wormald RJ. 1991. A-type granites revisited:Assessment of a residual-source model. Geology,19(2):163 -166 Dall’Agonl R and de Oliveira DC. 2007. Oxidized,magnetite-series,rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites. Lithos,93(3 -4):215 -233

Dall’Agonl R,Frost CD and Rämö OT. 2012. IGCP Project 510“A-type Granites and Related Rocks through Time”:Project vita,results,and contribution to granite research. Lithos,151:1 -16

Davis GA,Qian X,Zheng YD,Tong H,Yu H,Gehrels G,Shafiqullah M and Fryxell J. 1996. Mesozoic deformation and plutonism in the Yunmeng Shan:A metamorphic core complex north of Beijing,China,In:The Tectonic Evolution of Asia. Cambridge,UK:Cambridge Univ. Press,253 -28

Davis GA,Zheng YD,Wang C,Darby BJ,Zhang CH and Gehrels GE.2001. Mesozoic tectonic evolution of the Yanshan fold and thrust belt,with emphasis on Hebei and Liaoning provinces,northern China. In:Hendrix MS and Davis GA (eds.). Paleozoic and Mesozoic Tectonic Evolution of Central Asia:From Continental Assembly to Intracontinental Deformation. Geol. Soc. American Memoir,194:171 -198

Davis GA,Xu B,Zheng YD and Zhang WJ. 2004. Indonesian extension in the Solonker suture zone:The Sonid Zuoqi core complex,Inner Mongolia,China. Earth Science Frontiers,11:135 -144

Davis GA and Darby BJ. 2010. Early Cretaceous overprinting of the Mesozoic Daqing Shan fold-and-thrust belt by the Hohhot metamorphic core complex,Inner Mongolia,China. Geoscience Frontiers,1(1):1 -20

Daoudene Y,Ruffet G,Cocherie A,Ledru P and Gapais D. 2011.Timing of exhumation of the Ereendavaa metamorphic core complex(north-eastern Mongolia)U-Pb and40Ar/39Ar constraints. Journal of Asian Earth Sciences,62:98 -116

Daoudene Y,Gapais D,Ruffet G,Gloaguen E,Cocherie A and Ledru P. 2012. Syn-thinning pluton emplacement during Mesozoic extension in eastern Mongolia. Tectonics,31(3):TC3001,doi:10.1029/2011TC002926

Darby BJ,Davis GA and Zhang XH. 2004. The newly discovered Waziyu metamorphic core complex,Yiwulushan,western Liaoning Province,Northeast China. Earth Sci. Frontiers,11:145 -155

Donskaya V,Windley BF,Mazukabzov AM,Kroner A,Sklyarov E,Gladkochub DP,Ponomarchuk VA,Badarch G,Reichow MK and Hegner E. 2008. Age and evolution of Late Mesozoic metamorphic core complexes in southern Siberia and northern Mongolia. Journal of the Geological Society (London),165(1):405 -421

Eby GN. 1990. The A-type granitoids:A review of their occurrence and chemical characteristics and speculations of their petrogenesis.Lithos,26(1 -2):115 -134

Eby GN. 1992. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications. Geology,20(7):641 -644

England PC and Houseman GA. 1989. Extension during continental convergence,with application to the Tibetan Plateau. Journal of Geophysical Research,94(B12):17561 -17579

Fan WM,Guo F,Wang YJ and Lin G. 2003. Late Mesozoic calcalkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains,northeastern China. Journal of Volcanology and Geothermal Research,121(1 -2):115 -135

Frost BR,Barnes CG,Collins WJ,Arculus RJ,Ellis DJ and Frost CD.2001. A geochemical classification for granitic rocks. Journal of Petrology,42(11):2033 -2048

Frost CD and Frost BR. 1997. Reduced rapakivi-type granites:The tholeiite connection. Geology,25(7):647 -650

Frost CD and Frost BR. 2011. On ferroan (A-type)granitoids:Their compositional variability and modes of origin. Journal of Petrology,52(1):39 -53

Glazner AF. 2007. Thermal limitations on incorporation of wall rock into magma. Geology,35(4):319 -322

Goldstein SL,O’Nions RK and Hamiton PJ. 1984. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems.Earth and Planetary Science Letters,70(2):221 -236

Graham SA,Hendrix MS,Johnson CL,Badamgarav D,Badarch G,Amory J,Porte M,Barsbold R,Webb LE and Hacker BR. 2001.Sedimentary record and tectonic implications of Mesozoic rifting in southern Mongolia. Geological Society of American Bulletin,113(12):1560 -1579

Guo L,Wang T,Castro A,Zhang JJ,Liu J and Li JB. 2012.Petrogenesis and evolution of late Mesozoic granitic magmatism in the Hohhot metamorphic core complex,Daqing Shan,North China.International Geology Review,54(16):1885 -1905

Hildreth W,Hallidaya N and Christiansen RL. 1991. Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the Yellowstone Plateau volcanic field. Journal of Petrology,32(1):63 -138

Hong DW,Chang WJ,Huang HZ,Xiao YJ,Xu HM and Jin MY. 1994.The Permian alkaline granites in Central Inner Mongolia and their geodynamic significance. Journal of SE Asian Earth Sciences,10(3-4):169 -176

Hong DW,Wang SG,Han BF and Jin MY. 1996. Post-orogenic alkaline granites from China and comparisons with anorogenic alkaline granites elsewhere. Journal of SE Asian Earth Sciences,13(1):13-27

Houseman GA and Molnar P. 1997. Gravitational (Rayleigh-Taylor)instability of a layer with non-linear viscosity and convective thinning of continental lithosphere. Geophysical Journal International,128(1):125 -150

Jahn BM,Wu FY and Cheng B. 2000. Massive granitoid generation in Central Asia:Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes,23(2):82 -92

Jahn BM,Litvinovsky BA,Zanvilevich AN and Reicho M. 2009.Peralkaline granitoid magmatism in the Mongolian-Transbaikalian Belt:Evolution,petrogenesis and tectonic significance. Lithos,113(3 -4):521 -539

Jian P,Liu DY,Kröner A,Windley BF,Shi YR,Zhang FQ,Shi GH,Miao LC,Zhang W,Zhang Q,Zhang LQ and Ren JS. 2008. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic belt,Inner Mongolia of China:Implications for continental growth. Lithos,101(3 -4):233 -259

Jian P,Liu DY,Kröner A,Windley BF,Shi YR,Zhang W,Zhang FQ,Miao LC,Zhang LQ and Tomurhuu D. 2010. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone,Central Asian Orogenic belt,China and Mongolia. Lithos,118(1 -2):169-190

Jiang N,Zhang S,Zhou W and Liu Y. 2009. Origin of a Mesozoic granite with A-type characteristics from the North China craton:Highly fractionated from I-type magmas?Contributions to Mineralogy and Petrology 158:113 -130

Kemp AIS,Wormald RJ,Whitehouse MJ and Price RC. 2005. Hf isotopes in zircon reveal contrasting sources and crystallization histories for alkaline to peralkaline granites of Temora,southeastern Australia. Geology,33(10):797 -800

Kemp AIS,Hawkesworth CJ,Foste GL,Paterson BA,Woodhead JD,Hergt JM,Gray CM and Whitehouse MJ. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science,315(5814):980 -983

King EM,Valley JW,Davis DW and Edwards GR. 1998. Oxygen isotope ratios of Archean plutonic zircons from granite-greenstone belts of the Superior Province:Indicator of magmatic source. Precambrian Research,92(4):365 -387

King PL, White AJR, Chappell BW and Allen CM. 1997.Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt,Southeastern Australian. Journal of Petrology,38(3):371 -391

Lackey JD,Valley JW and Saleeby JB. 2005. Supracrustal input to magmas in the deep crust of Sierra Nevada batholith:Evidence from high δ18O zircon. Earth and Planetary Science Letters,235(1 -2):315 -330

Lackey JS,Valley JW,Chen JH and Stockli DF. 2008. Dynamic magma systems,crustal recycling,and alteration in the central Sierra Nevada batholith:The oxygen isotope record. Journal of Petrology,49(7):1397 -1426

Landenberger B and Collins WJ. 1996. Derivation of A-type granites from a dehydrated charnockitic lower crust:Evidence from the Chaelundi complex,Eastern Australia. Journal of Petrology,37(1):145 -170

Li CY and Tang YQ. 1983. Some problems on subdividion of Palaeoplates in Asia. Acta Geologica Sinica,57(1):1 -10 (in Chinese with English abstract)

Li S,Wang T,Wilde SA and Tong Y. 2013. Evolution,source and tectonic significance of Early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt (central segment). Earth Science Reviews,126:206 -234

Li XH,Liu Y,Li QL,Guo CH and Chamberlain KR. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochemistry,Geophysics,Geosystems,10(4):Q04010,doi:10.1029/2009GC002400

Li XH,Long WG,Li QL,Liu Y,Zheng F,Yang YH,Chamberlain KR,Wan DF,Guo CH,Wang XC and Tao H. 2010. Penglai zircon megacryst:A potential new working reference for microbeam analysis of Hf-O isotopes and U-Pb age. Geostandards and Geoanalytical Research,34(2):117 -134

Liu W,Siebel W,Li X and Pan X. 2005. Petrogenesis of the Linxi granitoids,northern Inner Mongolia of China:Constraints on basaltic underplating. Chemical Geology 219:3 -35

Loiselle MC and Wones DR. 1979. Characteristics and origin of anorogenic granites. Geological Society of America Abstracts with Programs,11(7):468

Ludwig K. 2001. Users manual for Isoplot/Ex (rev. 2. 49):A geochronological toolkit for Microsoft Excel Berkeley. Berkeley Geochronology Center,Special Publication:No.1a

Mazukabzov AM, Donskaya TV, Gladkochub DP, Sklyarov EV,Ponomarchuk VA and Sal’nikova EB. 2006. Structure and age of the metamorphic core complex of the Burgutui Ridge (southwestern Transbaikal region). Doklady Earth Sciences,407(1):179 -183

Meng QR. 2003. What drove Late Mesozoic extension of the northern China-Mongolia tract?Tectonophysics,389(3 -4):155 -174

Meng QR,Hu JM,Jin JQ,Zhang Y and Xu DF. 2003. Tectonics of the Late Mesozoic wide extensional basin system in the China-Mongolia border region. Basin Research,15(3):397 -415

Metelkin DV,Vernikovsky VA,Kazansky AY and Wingate MTD. 2010.Late Mesozoic tectonics of Central Asia based on paleomagnetic evidence. Gondwana Research,18(2 -3):400 -419

Miller FM,McDowell SM and Mapes RW. 2003. Hot and cold granite?Implication of zircon saturation temperatures and preservation of inheritance. Geology,31(6):529 -532

Mushkin A,Navon O,Halicz L,Hartmann G and Stein M. 2003. The petrogenesis of A-type magmas from the Amram Massif,southern Israel. Journal of Petrology,44(5):815 -832

Nelson BK and Depaolo DJ. 1985. Rapid production of continental crust 1.7 to 1.9 by ago:Nd isotopic evidence from the basement of the North American mid-continent. Geological Society of America Bulletin,96(6):746 -754

Patiño Douce AE and James BS. 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15kbar. Journal of Petrology,36(3):707 -738

Patiño Douce AE. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology,25(8):743 -746

Pearce RR,Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology,25(4):956 -983

Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamou area, Northern Turkey.Contributions to Mineralogy and Petrology,58(1):63 -81

Peck WH and Valley JW. 2000. Large crustal input to high δ18O anorthosite massifs of the southern Grenville Province:New evidence from the Morin Complex,Quebec. Contributions to Mineralogy and Petrology,139(4):402 -417

Pitcher WS. 1993. The Nature and origin of Granite. Blackie Academic and Professional,London,1 -321

Platt JP,Whitehouse MJ,Kelley SP,Carter A and Hollick L. 2003.Simultaneous extensional exhumation across the Alboran basin:Implications for the causes of late orogenic extension. Geology,31(3):251 -254

Rey PF,Vanderhaeghe O and Teyssier C. 2001. Gravitational collapse of continental crust:Definition,regimes,and modes. Tectonophysics,342(3 -4):435 -449

Rey PF,Teyssier C,Kruckenberg SC and Whitney DL. 2011. Viscous collision in channel explains double domes in metamorphic core complexes. Geology,39(4):387 -390

Ritts BD,Darby BJ and Cope T. 2001. Early Jurassic extensional basin formation in the Daqing Shan segment of the Yinshan belt,northern North China,Inner Mongolia. Tectonophysics,339(3 - 4):239-258

Şengör AMC,Natal’in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia.Nature,364(6435):299 -307

Shao JA. 1991. Crustal Evolution in the Middle Part of Northern Margin of Sino-Korean Plate. Beijing:Peking University Press,1 -134 (in Chinese with English abstract)

Shi GH,Miao LC,Zhang FQ,Jian P,Fan WM and Liu DY. 2004. The age and its regional tectonic implications of the Xilinhaote A-type granites,Inner Mongolia. Chinese Science Bulletin,49:384 -389

Skjerlie KP and Johnston AD. 1993. Fluid-absent melting behavior of an F-rich tonalitic gneiss at mid-crustal pressures:Implications for the generation of anorogenic granites. Journal of Petrology,34(4):785-815

Streckesen A. 1976. To each plutonic rock its proper name. Earth Science Reviews,12(1):1 -33

Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins:Geological Society of London Special Publication,42(1):312 -345

Tang KD. 1990. Tectonic development of Paleozoic fold belts at the north margin of the Sino-Korean craton. Tectonics,9(2):249 -260

Traynor JJ and Sladen C. 1995. Tectonic and stratigraphic evolution of the Mongolian People’s Republic and its influence on hydrocarbon geology and potential. Marine and Petroleum Geology,12(1):35 -52

Turner SP,Foden JD and Morrison RS. 1992. Derivation of some A-type magmas by fractionation of basaltic magma:An example from the Padthaway ridge,South Australia. Lithos,28(2):151 -179

Valley JW,Chiarenzelli JR and McLelland JM. 1994. Oxygen isotope geochemistry of zircon. Earth and Planetary Science Letters,126(4):187 -206

Valley JW,Kinny PD,Schulze DJ and Spicuzza MJ. 1998. Zircon megacrysts from kimberlite:Oxygen isotope variability among mantle melts. Contributions to Mineralogy and Petrology,133(1 -2):1-11

Vanderhaeghe O and Teyssier C. 2001. Partial melting and flow of orogens. Tectonophysics,342(3 -4):451 -472

von Blanckenburg F and Davies JH. 1995. Slab breakoff:A model for syncollisional magmatism and tectonics in the Alps. Tectonics,14(1):120 -131

Wang F,Zhou XH,Zhang LC,Ying JF,Zhang YT,Wu FY and Zhu RX. 2006. Late Mesozoic volcanism in the Great Xing’an Range(NE China):Timing and implications for the dynamic setting of NE Asia. Earth and Planetary Science Letters,251(1 -2):179 -198 Wang T,Zheng YD,Zhang JJ,Zeng LS,Donskaya TV,Guo L and Li JB. 2011. Pattern and kinematic polarity of Late Mesozoic extension in continental NE Asia: Perspectives from metamorphic core complexes. Tectonics,30(6),doi:10.1029/2011TC002896

Wang T,Guo L,Zheng YD,Donskaya T,Gladkochub G,Zeng LS,Li J,Wang YB and Mazukabzov A. 2012. Timing and processes of Late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton: Mainly constrained by zircon U-Pb ages from metamorphic core complexes. Lithos,154:315 -345

Watson EB and Harrison TM. 1983. Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters,64(2):295 -304

Whalen JB,Currie KL and Chappell BW. 1987. A-type granites:Geochemical characteristics, discrimination and petrogenesis.Contributions to Mineralogy and Petrology,95(4):407 -419

Windley BF,Alexeiev D,Xiao WJ,Kroner A and Badarch G. 2007.Tectonic models for accretion of the Central Asian Orogenic belt.Journal of the Geological Society (London),164(1):31 -47

Webb LE,Graham SA,Johnson CL,Badarch G and Hendrix MS. 1999.Occurrence,age,and implications of the Yagan-Onch Hayrhan metamorphic core complex,southern Mongolia. Geology,27(2):143 -146

Whitaker ML,Nekvasil H,Lindsley DH and McCurry M. 2008. Can crystallization of olivine tholeiite give rise to potassic rhyolites?An experimental investigation. Bulletin of Volcanology,70(3):417-434

Williams IS. 1998. U-Th-Pb geochronology by ion microprobe. Reviews in Economic Geology,7:1 -35

Wu FY,Sun DY,Li HM,Jahn BM and Wilde SA. 2002. A-type granites in northeastern China:Age and geochemical constraints on their petrogenesis. Chemical Geology,187(1 -2):143 -173

Wu FY,Jahn BM,Wilde SA,Lo CH,Yui TF,Lin Q,Ge WC and Sun DY. 2003. Highly fractionated I-type granites in NE China (Ⅱ):Isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos 67:191 -204

Wu FY,Lin JQ,Wilde SA,Zhang XO and Yang JH. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters,233(1 -2):103 -119

Wu FY,Yang JH,Zhang YB and Liu XM. 2006. Emplacement ages of the Mesozoic granites in southeastern part of the western Liaoning Province. Acta Petrologica Sinica,22(2):315 -325 (in Chinese with English abstract)

Wu FY,Li XH,Yang JH and Zheng YF. 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica,23(6):1217 -1238 (in Chinese with English abstract)

Wu FY,Sun DY,Ge WC,Zhang YB,Grant ML,Wilde SA and Jahn BM. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences 41:1 -30

Xiao AC,Yang SF and Chen HL. 2001. Geodynamic background on formation of Erlian Basin. Oil and Gas Geology,22(2):137 -145(in Chinese with English abstract)

Xiao WJ,Windley BF,Hao J and Zhai MG. 2003. Accretion leading to collision and the Permian Solonker suture,Inner Mongolia,China:Termination of the central Asian orogenic belt. Tectonics,22(6):1069,doi:10.1029 /2002TC001484

Xie HJ,Wu G,Zhu MT,Liu J and Zhang LC. 2012. Geochronology and geochemistry of the Daolanghuduge A-type granite in Inner Mongolia,and its geological significance. Acta Petrologica Sinica,28(2):483-494 (in Chinese with English abstract)

Xu B and Chen B. 1997. Framework and evolution of the Middle Paleozoic orogenic belt between Siberian and North China plate in northern Inner Mongolia. Science in China (Series D),40(5):463-469

Xu B,Charvet J,Chen Y,Zhao P and Shi GZ. 2013. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China):Framework,kinematics,geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt. Gondwana Research,23(4):1342 -1364

Yang JH,Wu FY,Chung SL,Wilde SA and Chu MF. 2006. A hybrid origin for the Qianshan A-type granite, Northeast China:Geochemical and Sr-Nd-Hf isotopic evidence. Lithos,89(1 -2):89 -106

Zhang BL,Zhu G,Jiang DZ,Li CC and Chen Y. 2012c. Evolution of the Yiwulushan metamorphic core complex from distributed to localized deformation and its tectonic implications. Tectonics,31(4):TC4018,doi:10.1029/2012TC003104

Zhang SH,Zhao Y,Davis GA,Ye H and Wu F. 2014c. Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton:Implications for lithospheric thinning and decratonization. Earth-Science Reviews,131:49 -87

Zhang XH,Zhang HF,Tang YJ,Wilde SA and Hu ZC. 2008a.Geochemistry of Permian bimodal volcanic rocks from Central Inner Mongolia,North China: Implication for Tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt.Chemical Geology,249(3 -4):261 -281

Zhang XH,Mao Q,Zhang HF and Wilde SA. 2008b. A Jurassic peraluminous leucogranite from Yiwulüshan, western Liaoning,North China Craton: Age, origin and tectonic significance.Geological Magazine,145(3):305 -320

Zhang XH,Wilde SA,Zhang HF,Tang YJ and Zhai MG. 2009.Geochemistry of hornblende gabbros from Sonidzuoqi, Inner Mongolia,North China:Implication for magmatism during the final stage of suprasubduction zone ophiolite formation. International Geology Review,51(4):345 -373

Zhang XH and Zhai MG. 2010. Magmatism and its metallogenetic effects during the Paleozoic continental crustal construction in northern North China:An overview. Acta Petrologica Sinica,26(5):1329 -1341 (in Chinese with English abstract)

Zhang XH,Zhang HF,Wilde SA,Yang YH and Chen HH. 2010. Late Permian to Early Triassic mafic to felsic intrusive rocks from North Liaoning,North China:Petrogenesis and implication for Phanerozoic continental growth. Lithos,117(1 -4):283 -306

Zhang XH,Wilde SA,Zhang HF and Zhai MG. 2011. Early Permian high-K calc-alkaline volcanic rocks from Northwest Inner Mongolia,North China: Geochemistry, origin and tectonic implications.Journal of the Geological Society (London),168(2):525 -543

Zhang XH,Yuan LL,Xue FH and Zhang YB. 2012a. Contrasting Triassic ferroan granitoids from northwestern Liaoning,North China:Magmatic monitor of Mesozoic decratonization and craton-orogen.Lithos,144 -145:12 -23

Zhang XH,Xue FH,Yuan LL,Ma YG and Wilde SA. 2012b. Late Permian appinite-granite complex from northwestern Liaoning,North China craton:Petrogenesis and tectonic implications. Lithos,155:201 -217

Zhang XH,Yuan LL,Xue FH,Yan X and Qian M. 2014a. Early Permian A-type granites from central Inner Mongolia,North China:Magmatic tracer of post-collisional tectonics and oceanic crustal recycling. Gondwana Research,doi:10.1016/j.gr.2014.02.011

Zhang XH,Yuan LL and Wilde SA. 2014b. Crust/mantle interaction during the construction of an extensional magmatic dome:Middle to Late Jurassic plutonic complex from western Liaoning,North China Craton. Lithos,205:185 -207

Zhao XF,Zhou MF,Li JW and Wu FY. 2008. Association of Neoproterozoic A-and I-type granites in South China:Implications for generation of A-type granites in a subduction-related environment. Chemical Geology,257(1 -2):1 -15

Zheng YD,Davis GA,Wang C,Darby BJ and Zhang CH. 2000. Major Mesozoic tectonic events in the Yanshan Belt and the plate tectonic setting. Acta Geologica Sinica,74(4):289 -302 (in Chinese with English abstract)

Zhong YT and Xu YG. 2009. Characteristics of plume-related A-type granites:An example from the Emeishan Large Igneous Province.Journal of Jilin University (Earth Science Edition),39(5):828 -838 (in Chinese with English abstract)

Zhou JB and Wilde SA. 2013. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Research,23(4):1365 -1377

Zhu RX,Yang JH and Wu FY. 2012. Timing of destruction of the North China craton. Lithos 149:51 -60

Zorin YA. 1999. Geodynamics of the western part of the Mongolo-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics,306(1):33 -56

附中文参考文献

陈义贤,陈文寄. 1997. 辽西及邻区中生代火山岩:年代学、地球化学和构造背景. 北京:地震出版社,1 -279

陈志广,张连昌,吴英华,万博,曾庆栋. 2008. 内蒙古西拉木伦成矿带碾子沟钼矿区A 型花岗岩地球化学和构造背景. 岩石学报,24(4):879 -889

李春昱,汤耀庆. 1983. 亚洲古板块划分以及有关问题. 地质学报,57(1):1 -10

邵济安. 1991. 中朝板块北缘中段地壳演化. 北京:北京大学出版社,1 -134

吴福元,杨进辉,张艳斌,柳小明. 2006. 辽西东南部中生代花岗岩的时代. 岩石学报,22(2):315 -325

吴福元,李献华,杨进辉,郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报,23(6):1217 -1238

肖安成,杨树峰,陈汉林. 2001. 二连盆地的形成的地球动力学背景. 石油与天然气地质,22(2):137 -145

解洪晶,武广,朱明田,刘军,张连昌. 2012. 内蒙古道郎呼都格地区A 型花岗岩年代学、地球化学及地质意义. 岩石学报,28(2):483 -494

张晓晖,翟明国. 2010. 华北北部古生代大陆地壳增生过程中的岩浆作用与成矿效应. 岩石学报,26(5):1329 -1341

郑亚东,Davis GA,王琮,Darby BJ,张长厚. 2000. 燕山带中生代主要构造事件与板块构造背景问题. 地质学报,74(1):289 -302

钟玉婷,徐义刚. 2009. 与地幔柱有关的A 型花岗岩的特点——以峨眉山大火成岩省为例. 吉林大学学报(地球科学版),39(5):828 -838

猜你喜欢

锆石岩浆同位素
锆石的成因类型及其地质应用
俄成功试射“锆石”高超音速巡航导弹
岩浆里可以开采出矿物质吗?
火山冬天——岩浆带来的寒冷
锆石 谁说我是假宝石
《同位素》变更为双月刊暨创刊30周年征文通知
狰狞的地球
《同位素》(季刊)2015年征订通知
硼同位素分离工艺与生产技术
稳定同位素氘标记苏丹红I的同位素丰度和化学纯度分析