华北克拉通怀安陆块新太古代低铝和高铝TTG 片麻岩的地球化学特征与成因*
2015-03-15张华锋王浩铮豆敬兆张少颖
张华锋 王浩铮 豆敬兆 张少颖
ZHANG HuaFeng1,WANG HaoZheng2,DOU JingZhao1 and ZHANG ShaoYing1
1. 中国地质大学地球科学与资源学院,北京 100083
2. 中国科学院地质与地球物理研究所,北京 100029
1. School of Earth Sciences and Resources,China University of Geosciences,Beijing 100083,China
2. Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China
2014-6-31 收稿,2015-03-01 改回.
太古宙高级变质地体中灰色片麻岩以英云闪长岩-奥长花岗岩-花岗闪长岩为主,简称TTG(Jahn et al.,1981,1984),是早前寒武纪下地壳的重要组成,其成因研究对认识早期大陆生长和演化具有重要意义(Arth and Baker,1976;Barker and Arth,1976;Barker et al.,1976;Martin,1986,1987,1994,1999;Smithies,2000;Whalen et al.,2002,2004;Condie,2005;Foley et al.,2002,2003;Rapp et al.,2003;Halla et al.,2009;Moyen,2011;Martin et al.,2014)。前人依据岩石地球化学特点将TTG 岩系分为高铝和低铝系列(Barker and Arth,1976;Barker et al.,1976;Barker,1979),SiO2=70%,Al2O3<15%的为低铝TTG,其重稀土含量高并具有负的Eu 异常,而高铝系列Al2O3>15%,重稀土含量相对低,具正或无Eu 异常。Halla et al. (2009)则根据北欧地区大量新太古代TTG 岩系的岩石地球化学特征重新定义高铝和低铝TTG 概念,划分出低铝高重稀土系列(Eu 负异常)和高铝低重稀土系列(Eu 无或正异常),并在SiO2-Al2O3含量关系图中大致划出二者的界线。他们认为高铝和低铝系列分别来自洋壳高压和低压熔融。高铝系列的岩石地球化学特点类似显生宙埃达克岩(Martin,1999),又被称为低镁埃达克岩(Rapp et al. ,1999),由洋壳部分熔融而成(Martin,1986)、洋底高原(Condie,2005)或俯冲的洋底高原(Martin et al. ,2014)以及基性下地壳熔融而成(Smithies,2000;Whalen et al. ,2002,2004;Zhang et al. ,2013a;Qian and Hermann,2013)。低铝系列则认为由偏基性岩浆分离结晶或斜长角闪岩低压熔融产物(Arth and Barker,1976;Barker and Arth,1976;Arth et al. ,1978;Drummond and Defant,1990;Drummond et al. ,1996)。迄今人们对于TTG 的成因及其机制仍存在诸多不同认识(Martin et al. ,2014)。
华北克拉通中北部怀安陆块出露大量早前寒武纪变质岩石,主要由经历麻粒岩相变质作用的灰色片麻岩组成,其中的酸性岩石类似太古宙TTG 岩系(钱祥麟等,1985;刘宇光,1989;赵宗溥,1993;Zhai,1996;伍家善等,1998),岩石化学显示主要为英云闪长岩及少量花岗闪长岩和奥长花岗岩(Zhai,1996;刘富等,2009;Liu et al. ,2012)。锆石SHRIMP 或LA-ICP-MS U-Pb 年龄表明主体形成于2.55 ~2.45Ga 期间(Zhao et al. ,2008;Liu et al. ,2012;Zhang et al. ,2012a)。其中识别出少量低铝岩系,岩性为奥长花岗质片麻岩(Zhang et al. ,2012a),但是它们一直缺乏详细地岩石成因分析及其与高铝岩系的对比工作。为此,在前人的研究成果基础上,本文以华北克拉通怀安陆块内低铝和高铝TTG 片麻岩为例,探讨其岩浆演化与成因等问题。
1 地质背景
怀安陆块位于恒山杂岩以北,宣化盆地以西,与西部孔兹岩带以大同断裂相隔,北部则以赤城-尚义断裂为界与红旗营子群分隔(图1)。其内出露的变质岩类被称为怀安杂岩,主要由经历了麻粒岩相变质作用的灰色片麻岩类和残块状分布的变质表壳岩类组成(孔兹岩系),其研究历史悠久,时代归属和命名几经更迭。在20 世纪50 年代前被广泛称作“桑干群”,60 年代至90 年代初被称为“集宁群”。90 年代初被称为“马市口群”(麻粒岩-片麻岩)和“下白窑群”(孔兹岩系)(赵宗溥,1993)或“葛胡窑灰色片麻岩系”和“丰镇群”(陈亚平等,1990)。80 年代,出露于张家口-宣化一带的地质体被归入早中太古代“迁西群”和晚太古代“遵化群”(张春华等,1990)。刘宇光(1989)提出该区主要为下地壳成因的TTG 岩套组成,经历了3.5 ~3.0Ga、2.8 ~2.7Ga 和2.4 ~2.6Ga 三次岩浆-热事件,并将其命名为“怀安群”,将原“上集宁群”统称为“集宁群”。
图1 华北克拉通(a,据Zhao et al.,1999)及怀安陆块(b,据Zhai,1996 修改)地质简图图中编号为样品位置及其编号Fig.1 Geological skeleton map of the North China Craton (a,after Zhao et al.,1999)and the Huai’an terrane (b,modified after Zhai,1996)
崔文元(1982)认为上集宁群的变质表壳岩相当于印度出露的孔兹岩系(khondalites),原岩为一套古岛弧或活动大陆边缘沉积,而下集宁群麻粒岩系原岩为中性夹基性熔岩。钱祥麟等(1985)则认为上集宁群属于晚太古代陆内沉积,而下集宁群为遭受麻粒岩相变质的一套TTG 深成岩体,形成于中晚太古代,二者为不整合接触关系。吴昌华和韩光(1989)亦认为二者之间存在不整合,但“上集宁群”为古元古代沉积盖层而不是太古宙沉积,其中的基性麻粒岩为更晚期侵入两套岩系中的岩浆岩。沈其韩等(1989)认为“下集宁群”以火山作用为主,“上集宁群”以沉积作用为主,彼此之间可能不存在不整合,而是连续的沉积。
总之,本区高级变质地质体可大致分为灰色片麻岩和富铝的变质表壳岩两部分。灰色片麻岩中酸性岩石的地球化学特征类似TTG,时代分布在2.55 ~2.45Ga 之间(Zhao et al.,2008;Liu et al.,2012;Zhang et al.,2012a;刘树文等,2011;Su et al.,2014),Nd-Hf 同位素显示为新太古代陆壳增生的产物(刘敦一等,1997;Wu et al.,2005;Liu et al.,2012;Zhang et al.,2012a;Geng et al.,2012;Su et al.,2014)。TTG 片麻岩中分布有大量席状、透镜状和岩株状基性高压麻粒岩(王仁民等,1991;翟明国等,1992),变质轨迹显示为减压降温轨迹,变质时代分布在1.93 ~1.80Ga(Guo et al.,2005;张华锋等,2006;Wang et al.,2010;王洛娟等,2011;罗志波等,2012),与区域上分布的基性高压麻粒岩年龄相似,例如,恒山地区(Zhang et al.,2006a)和承德北部(毛德宝等,1999)。
对于富铝片麻岩,其变质作用研究显示曾经历过较复杂的变质历史,总体呈顺时针变质P-T 轨迹特征(金巍等,1991;Liu et al.,1993;贺高品等,1991;卢良兆等,1996;刘福来和沈其韩,1999;Liu et al.,2014;Cai et al.,2014)。其原岩沉积环境则有稳定克拉通盆地沉积(Condie et al.,1992)和大陆边缘两种认识(卢良兆等,1996);锆石同位素年龄显示孔兹岩沉积和变质时代为古元古代(刘喜山等,1992;吴昌华和韩光,1989;Wan et al.,2009;Zhao et al.,2010;Li et al.,2010;Zhang et al.,2012b)。
2 样品及分析方法
图2 华北克拉通怀安陆块低铝奥长花岗质片麻岩野外地质特征Fig.2 Field map of the Low-Al trondhjemite from the Huai’an terrane,NCC
低铝奥长花岗质片麻岩的样品取自山西天镇县米薪关镇下阴山村东(图1),岩体周围为第四系覆盖,未能观察到与围岩高铝TTG 片麻岩的直接接触关系,推测边界因后期构造运动发生了片麻理平行化作用,确切的地质关系无法准确判断。岩体外貌肉红色,应与岩石表面风化作用有关。所取样品镜下观察局部存在弱绢云母化,但无强烈绢云母或钾长石化现象,其全岩化学成分富钠也说明不存在后期的强烈钾化作用。岩体内部可见大小不一的透镜状基性高压麻粒岩(图2a),其变质锆石U-Pb 年龄分布在2.0 ~1.8Ga 之间(张华锋等,2006)。岩石呈片麻状构造,中细粒变晶结构,矿物组成主要为奥长石(55%),石英(40%),碱性长石(5%)以及少量石榴石(1%)、黑云母,副矿物为锆石、独居石(图3)。锆石SHRIMP U-Pb 定年结果显示为2.53Ga 左右,εHf(t)=+6 ~+10,tDMC变化在2467 ~2790Ma 之间,平均2605Ma。Lu-Hf 同位素组成表明该岩体物源为新生地壳物质(Zhang et al.,2012a)。
高铝片麻岩样品分别采自怀安蔓菁沟与兴和黄土窑石墨矿区(图1),样品弱片麻状构造、条带状、块状构造,中-粗粒变晶结构。矿物组合变化较大,暗色矿物从偏基性岩石的含单斜辉石、紫苏辉石、黑云母到酸性岩石含少量黑云母的巨大变化特点。偏基性岩石以二辉石为主,似紫苏花岗岩矿物组合(图3)。紫苏辉石他形分布在单斜辉石和斜长石之间,应为后期麻粒岩相变质成因。本文所取英云闪长岩样品多呈淡黄色、青灰色,与肉红色钾质花岗岩极易区分。矿物主要由斜长石(45% ~55%)、石英(25% ~35%)、碱性长石(5% ~10%)组成,暗色矿物为二辉石(0 ~5%)、黑云母少量(1%)。岩体内部同样发育基性麻粒岩透镜体或岩席。高铝岩系的锆石U-Pb 年龄分布在2.55 ~2.45Ga 之间(Zhao et al.,2008;Liu et al.,2012;Zhang et al.,2012a;Su et al.,2014),Nd-Hf 同位素显示为新生地壳产物(Wu et al.,2005;Liu et al.,2012)。
岩石主、微量元素分析在西北大学大陆动力学重点实验室完成,分别采用XRF 和ICP-MS 分析测试。大多数主量元素测试的精确度和准确度优于5%,测试国际标样BHVO-1,AGV-1 和GSP-1 等绝大多数微量元素的分析精确度和准确度优于10%,结果见表1。
3 分析结果
3.1 主量元素
数据显示低铝奥长花岗质片麻岩的SiO2含量变化在76.5% ~79.5%之间(表1),明显高于本文及前人(Liu et al.,2012)获得的高铝TTG 岩系(66.6% ~77%);所有样品的Na2O/K2O 比值变化在2.4 ~6.2,显示出富钠特征;Na2O含量分别为3.69% ~4.55%(低铝岩系)和3% ~5.91%(高铝岩系),K2O 分别为0.91% ~1.15%(低铝岩系)和0.99%~1.77%(高铝岩系)。低铝奥长花岗质片麻岩的Al2O3(11.01% ~12.61%)、CaO(1.27% ~1.59%)、Na2O、K2O 均低于高铝岩系(见表1),并显示出相对低镁,高铁的特征,其Mg 指数(Mg#=100 ×Mg2+/(Mg2++Fe2+),FeO =0.9FeOT)变化在18 ~53,明显低于高铝岩系的镁指数(Mg#=35 ~54);在CIPW 标准矿物An-Ab-Or 分类图中(图4,O’Connor,1965),所有数据分别落入英云闪长岩和奥长花岗岩区,而前人少量数据落入花岗闪长岩区,岩石显示出富钠、钙和贫钾的特征。怀安陆块中高铝TTG 岩系的SiO2含量与Al2O3、CaO、P2O5、FeO、MgO 等元素含量呈较好的线性正相关关系(图5),而Na2O 保持不变。低铝奥长花岗质片麻岩随着SiO2含量的升高,Al2O3、MgO 含量呈逐渐降低的线性关系,FeO 则表现出先增多,后降低的趋势(图5c),而CaO、P2O5含量保持基本不变(图5b,f),暗示后期麻粒岩相变质作用对其改造较弱,可以用于成因分析解释。
图3 显微矿物结构特征(a-d)为低铝奥长花岗质片麻岩;(e-h)为英云闪长质片麻岩(高铝岩系). (a)单偏光下石榴石+钛铁矿+黑云母特征;(b)为图(a)在正交镜下石榴石+黑云母+石英+奥长石组合特征;(c)正交镜下较大的钛铁矿颗粒与黑云母、石榴石共生,颗粒间为锆石;(d)长石颗粒间的他形石英颗粒中包裹豆荚状独居石;(e)单偏光下偏基性的英云闪长质片麻岩(高铝岩系)(12HTY34)暗色矿物组合为单斜辉石+紫苏辉石+钛铁矿;(f)为(e)在正交镜下特征,主要矿物为斜长石+石英+二辉石+钛铁矿;(g)同上,为偏基性英云闪长质片麻岩(高铝岩系)样品中暗色矿物组合特征为二辉石,浅色矿物以石英、斜长石为主;(h)为酸性英云闪长质片麻岩(高铝岩系)(12HTY06)矿物组合特征,主要为斜长石+石英,少量钾长石;暗色矿物很少. 矿物缩写(Whitney and Evans,2010):Pl-斜长石;Kfs-钾长石;Qz-石英;Gt-石榴石;Cpx-单斜辉石;Opx-紫苏辉石;IIm-钛铁矿;Zrn-锆石;Bt-黑云母;Mnz-独居石Fig.3 Microscopic photos of the Late Archean Low-Al trondhjemite (a-d)and High-Al TTGs (e-h)from the Huai'an terrane
表1 怀安陆块高铝和低铝TTG 片麻岩的主量(wt%)和微量元素(×10 -6)组成特征Table 1 Major (wt%)and trace (×10 -6)elements analytical results for the Low-Al and High-Al TTG gneisses in the Huai’an terrane,NCC
图4 标准矿物Ab-An-Or 分类图解(据O’Connor,1965;Barker,1979)Fig. 4 Rock classification based on normative feldspar variation (after O’Connor,1965)and the fields drawn after Barker (1979)
3.2 微量元素
低铝奥长花岗质片麻岩与高铝TTG 岩系的稀土特征明显不同。从稀土/球粒陨石配分模式图中(图6a),明显可以看出低铝奥长花岗质片麻岩的重稀土含量相对较高,在球粒陨石的10 倍左右,并呈现出从Gd 向Lu 逐渐升高的趋势,从而导致稀土配分模式为海鸥型,具有较低的(La/Yb)N比值(4 ~6),相对低的(Gd/Yb)N(0.35 ~1)和Eu/Eu*[=EuN/(SmN×GdN)1/2]负异常为特征。高铝TTG 岩系的稀土则显示出轻、重稀土分馏强烈的特征(图6a),其(La/Yb)N比值变化在20 ~70,具正异常和无异常两种情况,样品DJG01 和12HTY06 不仅具有强烈的正铕异常,同时还表现出稀土总量相对低以及轻、重稀土分馏强烈的特征。
从微量元素蛛网图中可以看出(图6b),所有样品均表现出相对亏损Rb、Th、Nb、P、Ti 等元素的特征,但明显存在两点不同:①低铝奥长花岗质片麻岩相对亏损Sr、Ba,且Sr 的丰度也明显低于高铝TTG 岩系(表1);②低铝奥长花岗质片麻岩相对富集高场强元素(HFSE),如Zr 及重稀土元素,并具有高Y 含量的特征(>23.6 ×10-6),而高铝TTG 岩系的Y含量低,变化范围较大(0.64 ×10-6~13.7 ×10-6)。
对平定小金川土司僧格桑与大金川土司索诺木联合发动的叛乱一事,史书使用了平铺直叙的叙述方式,而管世铭的诗歌《薄伐》采用比兴的手法,以“螳臂当车”“坐井观天”等成语比拟反叛者的行为,对他们的自大狂妄加以嘲讽。“屡檄既抗命,恃险殊披猖”指出大小金川屡次违抗朝廷,发动战争,谴责了大小金川土司的猖狂之态。“释此苟不诛,何以劝柔良”则申明若是放任大小金川的叛逆行为,其他土司就会纷纷效仿,朝廷将难以应对,从而点出了朝廷镇压叛乱的必要性和紧迫性。
4 讨论
4.1 岩浆演化
两类岩石的稀土总量差异明显(图5g),但是均表现出随SiO2含量升高而降低的趋势,特别是低铝奥长花岗质片麻岩的稀土总量降低相对更快,与SiO2含量之间的斜率更大,说明二者岩浆经历过不同程度的演化。
Lu/Hf 比值可以明显地区别本文中的两类岩石(图7a,b,e),低铝奥长花岗质片麻岩的Lu/Hf =0.1 ~0.16,高铝TTG 岩系的Lu/Hf=0.01 ~0.07。前者的Lu/Hf 随着Mg#的降低而减小,呈正相关关系,后者的Lu/Hf 比值与Mg#无明显相关性(图7a)。前者的重稀土总量(ΣHREE)随着Lu/Hf的减小略有降低,而后者则呈现快速降低趋势(图7b),暗示二者源区残留相和演化过程中的分离矿物相不同。
为了进一步分析本文两类岩石地球化学成因与关系,我们依据前人提供的岩浆锆饱和温度公式(Watson and Harrison,1983;Miller et al.,2003),对两类岩石进行计算。结果显示,低铝奥长花岗质片麻岩的温度变化在767 ~846℃之间,平均799℃,而高铝TTG 岩系的温度明显较低,除样品DPG04 因锆含量很低获得不合理的温度外(608℃),其它变化在675 ~789℃,平均734℃。目前,所有锆石定年数据均未发现继承锆石,所以,我们认为锆饱和温度应代表岩浆温度和源区最小熔融温度(Miller et al.,2003)。两类岩石的稀土总量(ΣREE)以及重稀土总量(ΣHREE)随锆饱和温度(TZr)的降低而减少,具正相关关系(图7c,d),可能与岩浆冷却过程中某些矿物的分离结晶作用有关,从而引起两类岩石的稀土总量以及重稀土均发生不同程度地降低。另外,随着Eu/Eu*正异常的增大,高铝TTG 岩系的Lu/Hf 比值降低,(La/Yb)N则呈增大趋势(图7e,f),而低铝奥长花岗质片麻岩的Lu/Hf 减小时,Eu/Eu*异常和(La/Yb)N基本保持不变。
综上所述,怀安陆块内的高铝TTG 岩系的岩浆分离结晶矿物应具有如下特征:1)稀土总分配系数高,且重稀土的高于轻稀土的,如此能够引起稀土总量降低而(La/Yb)N逐渐增大;2)对Lu/Hf 比值不产生显著影响,即Lu、Hf 分配系数相近,导致残余岩浆Lu/Hf 比值变化不大情况下,其它元素或比值发生明显地或强烈地变化;3)具Eu/Eu*正异常,某种矿物堆晶作用导致岩石呈正铕异常增大趋势;4)分离结晶能够引起岩浆中Al、Ca、Mg、Fe 的明显降低(图5)。
上述特征说明本区高铝TTG 岩系的岩浆曾经历过以角闪石为主,单斜辉石为辅,少量磷灰石的分离结晶作用,岩浆晚期可能发生过斜长石的堆晶作用。这可以合理地解释岩浆中稀土总量随着温度的降低而减少,轻、重稀土分馏显著增大并伴有正铕异常逐渐增大的趋势(图7)。由于角闪石的Lu、Hf 分配系数相近,其分离结晶作用不能引起残余岩浆中Lu/Hf 比值的明显变化,而单斜辉石虽然两元素的分配系数均小于1,但对于Lu 的分配系数更高,接近Hf 的2 倍(Rollinson,1993)。因此,少量单斜辉石的分离结晶可以导致残余岩浆中Lu/Hf 比值降低趋势。
图5 SiO2与其它元素或比值的哈克图解Fig.5 Harker diagrams showing the covariations between SiO2 and some major and trace elements and element ratios
对于低铝奥长花岗质片麻岩而言,副矿物独居石、磷钇矿的分离结晶作用可能是引起其微量元素变化的主要原因。这些副矿物具有较高的Lu/Hf 比值,分离结晶能够引起残余岩浆Lu/Hf 比值和稀土总量逐渐降低的趋势。显微镜下可见独居石分布在较大的石英晶体中(图3)。该岩体矿物以奥长石+ 石英为主(图3),奥长石分离结晶不仅会引起Al2O3的降低,还会引起Na2O 和CaO 的明显变化,然而这些特征我们并没有观察到(图5)。所以,该岩体的主要矿物相未曾发生过显著的分离结晶或堆晶作用。
图6 新太古代怀安陆块中低铝奥长花岗质片麻岩和高铝TTG 片麻岩的球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough,1989)Fig.6 Chondrite-normalized REE distribution patterns (a)and primitive mantle-normalized trace elements spider diagram (b)for Archean Low-Al and High-Al TTGs in the Huai’an terrane (normalization values after Sun and McDonough,1989)
4.2 低铝奥长花岗质片麻岩的成因与源区
本文低铝、高硅、富重稀土特征的奥长花岗岩在早前寒武纪地壳中不多见(Rollinson,1988;Zhao and Cooper,1993),其地球化学成因可能有以下几种情况:1)副矿物分离结晶或堆晶作用(如,石榴石、锆石、褐帘石、磷钇矿等);2)低硅英云闪长岩分离结晶;3)低压下的小程度部分熔融。
第一种成因最早由Rollinson (1988)提出。他对苏格兰新太古代经历麻粒岩-角闪岩相变质的酸性花岗岩-奥长花岗质片麻岩岩脉(SiO2=72% ~76%)做过详细的地球化学成因研究(Rollinson,1988)。该类岩石铕正异常与高铝TTG岩系一致,但重稀土明显强烈富集。根据岩石高硅和低Ce/Y 比值及高Y 含量的变化关系等,前人提出在高温富硅的酸性岩浆中,富重稀土的副矿物,如石榴石和锆石等很容易发生堆晶作用,从而产生重稀土富集的现象。
低铝奥长花岗质片麻岩的Zr 含量增加,Mg 指数以及Lu/Hf 比值降低(图7a,c),暗示其岩浆早期没有大量锆石分离或早期岩浆中的Zr 含量未处于过饱和状态。锆饱和温度计算结果显示,其岩浆温度分布在770 ~850℃之间,而本区高铝TTG 岩系的计算结果显示岩浆温度相对较低(680 ~790℃,图7d)。因此,低铝奥长花岗质片麻岩不可能由温度更低的高铝TTG 岩系分离结晶而成。
Zhang et al. (2012a)曾根据熔融实验结果和岩体地球化学特征做过分析,提出该岩体来自新生基性地壳物质在低压条件下,斜长石和辉石、角闪石为残留相的低部分熔融产物。本文的岩石地球化学数据显示,低铝奥长花岗质片麻岩的Lu/Hf 比值明显高于本区广泛分布的高铝TTG 岩系。二者的锆石原位Hf 同位素组成也明显具有一致的特征(图8)。前者的176Lu/177Hf 明显高于后者,并具有更高的176Hf/177Hf 比值。锆石微量元素特征是其结晶环境中元素特征的反映(Zhang et al.,2012a)。二者作为同时代产物,均来自新生基性地壳熔融的产物,也应具有相似的Lu/Hf 比值。根据矿物分配系数(Rollinson,1993),基性地壳熔融过程中,能够导致熔体中Lu 和Hf 明显解耦的矿物只有石榴石。在相同的熔融条件下,源区无石榴石残留,地壳会产生相对高Lu/Hf比值的熔体。另外,源区如果大量残留角闪石,会导致岩浆具有较低的中稀土含量,因为角闪石的中稀土分配系数大于1(Rollinson,1993)。
综上所述,我们认为本文低铝奥长花岗质片麻岩的原始岩浆应该来自基性岩石低压下的低部分熔融(第三种成因)。这种富钠岩石不可能由太古宙中酸性岩石(闪长质片麻岩和高铝TTG 岩系)低压下的低部分熔融而成,其重熔产物通常都是相对富钾的花岗岩。此类岩石的成因均归结为基性岩浆分异或基性地壳低压熔融的产物(文献见前述)。所以,本区低铝奥长花岗质片麻岩很可能是角闪岩相-辉石麻粒岩相条件下(<10 ~8kbar),由新生基性地壳在低压条件下发生部分熔融的结果,其源区残留相矿物以辉石+斜长石为特征,含少量或没有角闪石的残留为特征(图9)。
图7 华北克拉通怀安陆块新太古低铝和高铝TTG 岩系的微量元素比值协变图解图例同图5Fig.7 Plots of trace element ratios relationships for Archean Low-Al and High-Al TTGs in the Huai’an terrane,NCC
4.3 高铝TTG 片麻岩成因与源区
太古宙TTG 的成因涉及到早期地壳形成和演化的机制和过程,但对于TTG 成因尚存不同观点。例如,Martin(1999)认为TTG 与显生宙Adakites 类似,应具有类似的成因,而Smithies (2000)和Condie (2005)则认为二者Mg#值方面差异较大,成因机制不同。根据地球化学模拟和实验岩石学结果,认为其源岩可能为:(1)榴辉岩(Arth and Hanson,1972;Jahn et al.,1981;Rapp et al.,2003),(2)石榴石角闪岩或石榴石麻粒岩(Martin,1987;Foley et al.,2002,2003;Qian and Hermann,2013)。
图8 华北克拉通怀安陆块新太古代低铝奥长花岗质片麻岩和高铝TTG 片麻岩的锆石Lu-Hf 同位素组成特征对比Fig. 8 Zircon in situ Lu-Hf isotopic compositions of Archean Low-Al and High-Al TTGs in the Huai’an terrane,NCC
总体上,对于TTG 的成因起源存在三种认识:①俯冲洋壳的熔融(Martin,1986;Defant and Drummond,1990;Drummond and Defant,1990;Martin,1987,1994,1999);②底侵增厚的基性下地壳(Atherton and Petford,1993;Petford and Atherton,1996;Smithes,2000;Qian and Hermann,2013;Zhang et al.,2013a)或海底高原(Condie,2005;Martin et al.,2014);③地幔岩部分熔融并经结晶分异而成(Arth and Barker,1976;Barker and Arth,1976;Kamber et al.,2002;Kleinhanns et al.,2003)。而低铝TTG 系列则有基性岩石分离结晶(Arth and Barker,1976;Barker and Arth,1976)或基性地壳在低压条件下部分熔融(Smithes,2000;Whalen et al.,2004)以及低压下洋壳部分熔融而成(Halla et al.,2009)。
本文样品中的Cr、Ni 含量低于太古宙TTG 平均值(Drummond et al.,1996)。如按照Kleinhanns et al. (2003)的模式,由富水地幔楔部分熔融形成的TTG 岩浆具有较高的Cr、Ni 含量,该岩浆再经结晶分异作用形成低Cr、Ni 含量的花岗质岩浆为太古宙钾质花岗闪长岩-花岗岩-二长花岗岩(GGM;De wit,1998)。因此本文中低Cr、Ni 的花岗质岩石不可能由幔源岩浆直接衍生而来。前人的岩石化学数据中有少数样品(3 个样品)的SiO2含量在63% ~66.5%,Cr 含量高于100 ×10-6(Liu et al.,2012),是否符合幔源岩浆分离结晶的产物呢?这些样品的Mg#值在55 ~61 之间,而且区域上与这些酸性岩浆伴生着大量同时代的辉长-闪长质片麻岩,它们的SiO2变化在51% ~64%(Zhai,1996;Liu et al.,2012),部分属于紫苏花岗岩(耿元生和刘敦一,1997)。在野外,彼此渐变过渡,无法明确识别地质关系。所以,我们认为前人部分数据也可能反映的是闪长质片麻岩和高铝TTG岩系局部混合或混染特征。前人解释为俯冲板片熔体与地幔楔反应的结果(Liu et al.,2012),对此尚需更多工作甄别。根据前人的研究成果,怀安陆块中的高铝TTG 岩系应来自俯冲板片或基性下地壳的熔融(Martin,1986,1987,1994,1999;Smithes,2000;Condie,2005;Qian and Hermann,2013;Zhang et al.,2013a)。相对于本区的低铝奥长花岗质片麻岩,高铝TTG 岩系具有高Al、Ca 含量和Sr、Ba 的正异常特征,同时显示出很低的Lu/Hf 比值(0.01 ~0.07),这表明源区残留相矿物应以石榴石和角闪石为特征。本文高铝TTG 岩系(本文和前人数据)中相对低硅(66.63%)、高钙(5.12%)、镁(1.96%)、重稀土总量(11 ×10-6)和Lu/Hf 比值(0.07)的样品(12HTY34),可能更接近原始岩浆,却具有弱的铕负异常(图7e)。如前所述,高铝TTG 岩系在岩浆演化过程中,以角闪石和单斜辉石的分离结晶为特征,岩石地球化学数据并没有显示出斜长石在早期发生过明显地分离作用,所以弱的负铕异常应反映岩浆本身特点。如果原始岩浆为部分熔融产物而不是由基性岩石分离而来,那么,其地球化学特征则暗示源岩非榴辉岩(Martin,1987;Foley et al.,2002,2003;Qian and Hermann,2013)。
图9 太古代地温梯度与玄武岩温压稳定相图(据Xiong et al.,2006;推测的太古代地温梯度线据Martin,1986)Fig.9 Archean geothermal gradient and P-T diagram showing liquidus and solidus of hydrous tholeiite as solidus of dry tholeiite(after Xiong et al.,2006;Martin,1986)
综上所述,怀安陆块中新太古代高铝TTG 岩系应由石榴石角闪岩熔融为特征,残留相有石榴石、辉石、角闪石和少量斜长石为特征,非榴辉岩相熔融产物。另外,本文TTG 岩系的稀土含量和(La/Yb)N比值随着岩浆温度增高分别增多和降低的特征,说明温度对花岗质岩石稀土元素含量起着一定的控制作用,并非只是压力(Halla et al.,2009;Moyen,2011)。这与本区古元古钾质花岗质片麻岩的稀土变化趋势一致(Zhang et al.,2011)。
4.4 高铝和低铝TTG 片麻岩的形成机制
4.4.1 地幔柱机制
华北克拉通的2.9 ~2.7Ga 和2.6 ~2.5Ga 两期增生事件的关系和范围尚存不同意见(Zhai et al.,2005;翟明国,2013;Yang et al.,2009;第五春荣等,2012;Wang and Liu,2012;刘敦一等,1997;Wu et al.,2005;Liu et al.,2012;Diwu et al.,2014),其岩浆作用演化特征和形成机制尚不清楚。
新太古代是否有板块机制曾有过不同认识(Davies,1992;王仁民等,1997),可能新太古代已经开始有类似现代板块性质的俯冲作用(Zhai and Windley,1990),但其规模可能很小。前人对太古宙TTG 岩系的研究,发现Mg#有随时间逐渐增大的趋势,认为可能与新太古代末板块俯冲和地幔楔的形成有关(Martin and Moyen,2002)。洋壳可以产生平坦俯冲,相对冷的板片只要足够时间加热(50Myr)即可熔融形成埃达克岩(Gutscher et al.,2000),也有学者认为太古宙洋壳为平坦俯冲,但是TTG 熔体是底侵引起的基性下地壳熔融而成,与埃达克岩地球化学性质不同(Smithies,2000)。无论如何,怀安陆块南部晚太古代五台杂岩中的岛弧、洋中脊型玄武岩和Adakite 的形成,表明新太古代末可能存在过俯冲作用(Wang et al.,2004)。本区大量TTG 片麻岩主要形成于晚太古代2550 ~2450Ma 之间(赵宗溥,1993;刘敦一等,1997;伍家善等,1998;Zhao et al.,2008;Liu et al.,2012;Su et al.,2014),时代上与恒山-五台杂岩一致(Kröner et al.,2005;Wilde et al.,2002,2004;Wilde and Zhao,2005;Zhang et al.,2006b)。因此,怀安陆块中的高铝TTG 岩系可能来自新太古代俯冲板片的熔融(Liu et al.,2012)。但是,我们需要考虑一个重要现象,即全球乃至整个华北克拉通均存在2.5Ga 左右的增生事件并形成大量高铝TTG 质岩石(Condie,1998,2000;Zhai et al.,2000;Zhai and Liu,2003;Wu et al.,2005;Wang and Liu,2012;Jian et al.,2012;Geng et al.,2006,2012;Yang et al.,2008,2009;Zhao et al.,2005;第五春荣等,2012)。因此,地幔柱作为一种可能的增生机制不能排除(Zhao et al.,1999;Geng et al.,2006;Yang et al.,2008)或地幔柱与俯冲板片共同作用的结果(Condie,1998)。需要指出,早前寒武纪地质演化的复杂性是各种演化机制和模型产生的重要原因之一,譬如,冀东地区形成在2.55 ~2.5Ga 的TTG 质片麻岩也有认为是岛弧环境俯冲的产物而非地幔柱机制(Nutman et al.,2011)。因此,地幔柱模式仍需要诸多证据。
4.4.2 俯冲模式
本文低铝高硅的奥长花岗质片麻岩的原始岩浆不可能由洋壳低压熔融。其形成深度即便按照推测的太古宙地温梯度也无法熔融(图9)。如果俯冲板片能够在较低压力下发生部分熔融,那么也会产生大量广泛分布的同性质的低铝高硅TTG 岩系。然而目前为止,华北克拉通中部高级变质地体中仅怀安报道有此类岩石的存在。而且,本文的低铝奥长花岗质片麻岩的岩石化学性质与Halla et al. (2009)所指的低铝TTG 岩系的岩石地球化学性质有很大不同。前人所指的低铝TTG 岩系,其SiO2含量相对较低且变化范围大,轻、重稀土分馏相对更强烈。而本文的低铝奥长花岗质片麻岩的岩浆温度明显高于本区同时代的高铝TTG 岩系。如果前者是低压洋壳熔融,后者则必然是洋壳高压条件下熔融的产物。俯冲产生的岩浆要穿过地幔楔,高压深部条件下形成的熔体与地幔作用后的温度应该更高,而低压条件下形成的熔体与浅部地幔楔作用,岩浆的温度应该相对更低(详见Xiong et al.,2006),这与本文数据结果相反。因此,本文低铝奥长花岗质片麻岩不太可能由洋壳低压熔融而成。
假如~2.53Ga 的低铝奥长花岗质片麻岩来自俯冲洋壳的熔融,其熔融压力低的特点可以用板片断裂模式加以解释(Davies and von Blanckenburg,1995;Schoonmaker et al.,2005)。俯冲板片在陆核对接初期,板片的拖拽力和陆核碰撞阻力共同导致洋壳发生撕裂形成不断发育的断裂带并导致大洋岩石圈减压熔融而形成辉长质岩浆的底侵作用,这进一步引发局部洋壳的低压低部分熔融现象,从而形成低铝奥长花岗质岩浆的侵入。随着俯冲板片断裂带的发育可以最终导致俯冲板片的断离。板片断裂模式可以解释新太古代多种高温岩浆先后出现的特征(Zhang et al.,2013b)。板片断裂发育过程中会引起软流圈物质上涌规模的逐渐增大,引起岩石圈地幔以及洋壳不同程度的大范围熔融,形成拉斑玄武质岩浆底侵和洋壳熔融成因的酸性岩浆。底侵造成基性下地壳重熔形成TTG 岩系和高温紫苏花岗岩类,而先期侵入下地壳的TTG 则可能发生重熔并形成2.5 ~2.45Ga 的钾质花岗岩类的侵入活动(赵宗溥,1993;伍家善等,1998;Zhai and Liu,2003;Zhang et al.,2011;刘树文等,2011;Zhou et al.,2011)。这种模式下形成的TTG 岩系之物源应具有多元性,例如,不同深度上的洋壳和新生大陆地壳,其形成时间上,应晚于2.53Ga 的低铝奥长花岗质岩浆,结束的标志为大量钾质花岗岩岩浆的形成。
该模式对陆-陆(弧)对接产生板片断裂比较合适。五台-恒山地区大量新太古代表壳岩(前庄旺表壳岩)被2.55 ~2.45Ga 的恒山片麻岩侵入(田永清,1991),五台杂岩的基性和中酸性火山岩被时间非常相近的2.55 ~2.45Ga 的新太古代花岗岩类侵入(田永清,1991),符合板片断裂模式下大量岩浆侵入大陆弧前盆地沉积岩和火山岩中的特点(Schoonmaker et al.,2005)。花岗绿岩带成因可以采用这种模式解释,但是全球克拉通的花岗绿岩带是围绕高级变质地体(灰色片麻岩)分布(Windley,1995),所以俯冲板片围绕高级变质地体呈卵形分布,且均在新太古末发生断裂这一模式来解释不尽合理。因此,笔者认为本区低铝奥长花岗质岩浆更可能来自基性下地壳的熔融,而非俯冲板片。
最近,Martin et al.(2014)依据前人提出的大陆幕式生长现象并结合玄武岩地球化学特征,提出高铝TTG 岩系的源区不是俯冲板片的MORB 玄武岩,而是俯冲的洋底高原玄武岩,并认为这可能是太古宙TTG 岩系与显生宙Adakite 岩系均形成在俯冲环境而地球化学特征不同的重要原因之一。然而,作者没有解释同时期伴生的低铝TTG 岩系的成因。
本区同时代还形成大量辉长质-闪长质岩浆的侵入(Zhai,1996;Liu et al.,2012),结合本区同时代低铝和高铝TTG 岩系的源区矿物特点,笔者认为前者更可能是底侵岩浆,它们导致下地壳在不同深度上熔融形成广泛分布的高铝TTG 岩浆和少量低压熔融的低铝TTG 岩系。该热事件的结束标志是大量2.5 ~2.45Ga 钾质花岗岩岩浆的侵入。对于2.5 ~2.4Ga 钾质花岗岩的成因意义仍有不同看法(Zhai and Liu,2003;Zhao et al.,2006;刘树文等,2011;Zhou et al.,2011;Zhang et al.,2011;Liu et al.,2012),其分布不只局限在怀安陆块,而是整个华北克拉通(赵宗溥,1993),它们主要来自下地壳TTG 的重熔,说明当时大陆地壳已经广泛存在并具有相当厚度,大规模陆壳生长已经完成,暗示新太古末岩浆底侵热事件的结束。同时,我们也不能忽略TTG 和钾质花岗岩的形成均属于地壳重熔作用,反映深部地壳存在过高级变质作用(Martin,1987;程裕淇等,2004;Kemp et al.,2007),其广泛形成也标志着深部地壳存在过区域麻粒岩相变质作用。在此,笔者认为地幔柱(或地幔上涌)或局部与俯冲板片共同作用的模式(Condie,1998)能够解释怀安,乃至整个华北克拉通太古宙广泛分布的TTG 岩浆和变质作用。
5 结论
(1)怀安片麻岩中低铝奥长花岗质片麻岩来自新增生基性地壳在角闪岩-麻粒岩相条件下低部分程度熔融的熔体,岩浆经历副矿物独居石的分离结晶作用;同期形成的高铝TTG 岩系由新生基性地壳在石榴石角闪岩相条件下熔融而成,岩浆经历了角闪石和辉石为主的分离结晶作用和斜长石的堆晶作用。
(2)TTG 岩系的微量元素含量特征不只与压力有关,同时也受结晶温度影响。
(3)新太古代怀安片麻岩可能是地幔柱或地幔柱与俯冲板片共同作用下的结果。
致谢 衷心感谢西北大学大陆动力学实验室主微量元素分析实验室全体员工的辛勤测试工作;对中国科学院地质与地球物理研究所翟明国研究员在野外工作上的大力支持及对初稿的鼓励表示衷心感谢;对共同参加野外考察的成都理工大学地球科学与资源学院倪志耀教授、中国科学院地质与地球物理研究所彭澎研究员、李铁胜博士、王伟博士、赵磊博士等表示真诚的谢意。中国科学院广州地球化学研究所赵太平研究员、黄小龙研究员,中国科学院地质与地球物理研究所钱青副研究员、周艳艳博士,西北大学第五春荣博士对本文提出了诸多批评和修改建议,纠正了文中许多谬误并对部分文字进行了修正,大大地提高了本文质量,作者对他们辛勤劳动和无私奉献深表谢意。
Arth JG and Hanson GN. 1972. Quartz diorites derived by partial melting of eclogite or amphibolite at mantle depths. Contributions to Mineralogy and Petrology,37(2):161 -174
Arth JG and Barker F. 1976. Rare-earth partitioning between hornblende and dacitic liquid and implications for the genesis of trondhjemitictonalitic magmas. Geology,4(9):534 -536
Arth JG,Barker F,Peterman ZE and Frideman I. 1978. Geochemistry of the gabbro-diorite-tonalite-trondhjemite suite of Southwest Finland and its implications for the origin of tonalitic and trondhjemitic magmas. Journal of Petrology,19(2):289 -316
Atherton MP and Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature,362(6416):144-146
Barker F and Arth JG. 1976. Generation of trondhjemitic-tonalitic liquids and Archaean bimodal trondhjemite-basalt suites. Geology,4(10):596 -600
Barker F,Arth JG,Peterman ZE and Friedman I. 1976. The 1.7-to 1.8-b. y. -old trondhjemites of southwestern Colorado and northern New Mexico:Geochemistry and depths of genesis. Geological Society of America Bulletin,87(2):189 -198
Barker F. 1979. Trondhjemites:Definition,environment and hypotheses of origin. In:Barker F (ed.). Trondhjemites Dacites and Related Rocks. Amsterdam:Elsevier,1 -12
Bea F. 1996. Residence of REE,Y,Th and U in granites and crustal protoliths:Implications for the chemistry of crustal melts. Journal of Petrology,37(3):521 -552
Cai J,Liu FL,Liu PH,Liu CH,Wang F and Shi JR. 2014.Metamorphic P-T path and tectonic implications of pelitic granulites from the Daqingshan Complex of the Khondalite Belt,North China Craton. Precambrian Research,241:161 -184
Chen YP,Qian XL and Liu JZ. 1990. Aechean Metamprphic Complex Sequence in Northern China Craton. In:Lithospheric Geoscience.Beijing:Seismological Press,53 -60 (in Chinese)
Cheng YQ,Yang CH,Wan YS,Liu ZX,Zhang XP,Du LG,Zhang ST,Wu JS and Gao JF. 2004. Transformation of the Crustal Rocks of the Early Precambrian Geology and Anatexis in Northern Taihang Mountain. Beijing:Geological Publishing House,1 - 176 (in Chinese)
Condie KC,Boryta MD,Liu JZ and Qian XL. 1992. The origin of khondalites:Geochemical evidence from the Archean to Early Proterozoic granulite belt in the North China Craton. Precambrian Research,59(3):207 -223
Condie KC. 1998. Episodic continental growth and supercontinents:A mantle avalanche connection. Earth and Planetary Science Letters,163(1 -4):97 -108
Condie KC. 2000. Episodic continental growth models:After thoughts and extensions. Tectonophysics,322(1 -2):153 -162
Condie KC. 2005. TTGs and adakites:Are they both slab melts?Lithos,80(1 -4):33 -44
Cui WY. 1982. The reconstruction of the original rocks and geochemical features of the granulites from Zhuozi-Yanggao area. Journal of Mineralogy and Petrology,(4):11 -26 (in Chinese with English abstract)
Davies GF. 1992. On the emergence of plate tectonics. Geology,20(11):963 -966
Davies JH and von Blanckenburg F. 1995. Slab breakoff:A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth and Planetary Science Letters,129(1 -4):85 -102
De Wit MJ. 1998. On Archean granites,greenstones,cratons and tectonics:Does the evidence demand a verdict?Precambrian Research,91(1):181 -226
Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature,347(6294):662 -665
Diwu CR,Sun Y and Wang Q. 2012. The crustal growth and evolution of North China Craton:Revealed by Hf isotopes in detrital zircons from modern rivers. Acta Petrologica Sinica,28(11):3520 -3530 (in Chinese with English abstract)
Diwu CR,Sun Y,Zhao Y and Lai SC. 2014. Early Paleoproterozoic(2.45 ~2.20Ga)magmatic activity during the period of global magmatic shutdown:Implications for the crustal evolution of the southern North China Craton. Precambrian Research,255(2):627-640
Drummond MS and Defant MJ. 1990. A model for trondhjemite-tonalitedacite genesis and crustal growth via slab melting:Archean to modern comparisons. Journal of Geophysical Research,95(B13):21503 -21521
Drummond MS,Defant MJ and Kepezhinskas PK. 1996. Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas.Transactions of the Royal Society of Edinburgh:Earth Sciences,87(1 -2):205 -215
Foley SF,Tiepolo M and Vannucci R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones.Nature,417(6891):837 -840
Foley SF,Buhre S and Jacob DE. 2003. Evolution of the Archaean crust by delamination and shallow subduction. Nature,421(6920):249-252
Geng YS and Liu DY. 1997. Petrology,geochemistry and isochronology of charnockites in Mashikou area, northwestern Hebei. Acta Petrologica et Mineralogica,16(1):1 -9 (in Chinese with English abstract)
Geng YS,Liu FL and Yang CH. 2006. Magmatic event at the end of the Archean in eastern Hebei Province and its geological implication.Acta Geologica Sinica,80(6):819 -833
Geng YS,Du LL and Ren LD. 2012. Growth and reworking of the Early Precambrian continental crust in the North China Craton:Constraints from zircon Hf isotopes. Gondwana Research,21(2 -3):517 -529
Guo JH,Sun M,Chen FK and Zhai MG. 2005. Sm-Nd and SHRIMP UPb zircon geochronology of high-pressure granulites in the Sanggan area,North China Craton:Timing of Paleoproterozoic continental collision. Journal of Asian Earth Sciences,24(5):629 -642
Gutscher MA,Maury R,Eissen JP and Bourdon E. 2000. Can slab melting be caused by flat subduction?Geology,28(6):535 -538
Halla J,Hunen JV,Heilimo E and Hölttä P. 2009. Geochemical and numerical constraints on Neoarchean plate tectonics. Precambrian Research,174(1 -2):155 -162
He GP,Lu LZ,Ye HW,Jin SQ and Ye TS. 1991. The Early Precambrian Metamorphic Evolution of the Eastern Hebei Province and the Southeastern Nei Mongol. Changchun:Jilin University Press,9 -100(in Chinese)
Jahn BM,Glikson AY,Peucat JJ and Hickman AH. 1981. REE geochemistry and isotopic data of Archaean silicic volcanics and granitoids from the Pilbara Block,Western Australia:Implications for the early crustal evolution. Geochimica et Cosmochimica Acta,45(9):1633 -1652
Jahn BM,Vidal P and Kröner A. 1984. Multi-chronometric ages and origin of Archean tonalitic gneisses in Finnish Lapland:A case for long crustal residence time. Contributions to Mineralogy and Petrology,86(4):398 -408
Jian P,Kröner A,Windley BF,Zhang Q,Zhang A and Zhang LQ.2012. Episodic mantle melting-crustal reworking in the Late Neoarchean of the northwestern North China Craton:Zircon ages of magmatic and metamorphic rocks from the Yinshan Block.Precambrian Research,222 -223:230 -254
Jin W,Li SX and Liu XS. 1991. A study on characteristics of Early Precambrian high-grade metamorphic rock series and their metamorphic dynamics. Acta Petrologica Sinica,7(4):27 -35 (in Chinese with English abstract)
Kamber BS,Ewart A,Collerson KD,Bruce MC and McDonald GD.2002. Fluid-mobile trace element constraints on the role of slab melting and implications for Archaean crustal growth models.Contributions to Mineralogy and Petrology,144(1):38 -56
Kemp AIS,Shimura T and Hawkesworth CJ. 2007. Linking granulites,silicic magmatism,and crustal growth in arcs:Ion microprobe(zircon)U-Pb ages from the Hidaka metamorphic belt,Japan.Geology,35(9):807 -810
Kleinhanns IC,Kramers JD and Kamber BS. 2003. Importance of water for Archaean granitoid petrology:A comparative study of TTG and potassic granitoids from Barberton Mountain Land,South Africa.Contributions to Mineralogy and Petrology,145(3):377 -389
Kröner A,Wilde SA,Li JH and Wang KY. 2005. Age and evolution of a Late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fupingterrain of northern China. Journal of Asian Earth Sciences,24(5):577 -595
Li XP, Yang ZY, Zhao GC, Grapes R and Guo JH. 2010.Geochronology of khondalite-series rocks of the Jining Complex:Confirmation of depositional age and tectonometamorphic evolution of the North China craton. International Geology Review,53(10):1194 -1211
Liu DY,Geng YS and Song B. 1997. Late Archean crustal accretion and reworking in northwestern Hebei Province:Isochronology evidence.Acta Geoscientia Sinica,18(3):226 - 232 (in Chinese with English abstract)
Liu F,Guo JH,Lu XP and Diwu CR. 2009. Crustal growth at ~2.5Ga in the North China Craton:Evidence from whole-rock Nd and zircon Hf isotopes in the Huai’an gneiss Complex. Chinese Science Bulletin,54(24):4704 -4713
Liu F,Guo JH,Peng P and Qian Q. 2012. Zircon U-Pb ages and geochemistry of the Huai’an TTG gneisses terrane:Petrogenesis and implications for 2. 5Ga crustal growth in the North China Craton.Precambrian Research,212 -213:225 -244
Liu FL and Shen QH. 1991. Retrogressive textures and metamorphic reaction features of Al-rich gneisses in the granulite facies belt from northwestern Heibei Province. Acta Petrologica Sinica,15(4):505-517 (in Chinese with English abstract)
Liu PH,Liu FL,Liu CH,Liu JH,Wang F,Xiao LL,Cai J and Shi JR.2014. Multiple mafic magmatic and high-grade metamorphic events revealed by zircons from meta-mafic rocks in the Daqingshan-Wulashan Complex of the Khondalite Belt,North China Craton.Precambrian Research,246:334 -357
Liu SW,Lü YJ,Wang W,Yang PT,Bai X and Feng YG. 2011.Petrogenesis of the Neoarchean granitic gneisses in northern Hebei Province. Acta Petrologica Sinica 27(4):909 -921 (in Chinese with English abstract)
Liu XS,Jin W and Li SY. 1992. Low-pressure metamorphism of granulite facies in an Early Proterozoic orogenic event in Central Inner Mongolia. Acta Geologica Sinica,66(3):244 -256 (in Chinese with English abstract)
Liu XS,Jin W,Li SX and Xu XC. 1993. Two types of Precambrian high-grade metamorphism, Inner Mongolia, China. Journal of metamorphic Geology,11(4):499 -510
Liu YG. 1989. Precambrian geology,petrology and geochemistry of NW Hebei and adjacent areas,China. Ph. D. Dissertation. Beijing:Institute of Geology,Academia Sinica,23 - 78 (in Chinese with English abstract)
Lu LZ,Xu XC and Liu FL. 1996. The Precambrian Khondalite Series in Northern China. Changchun:Changchun Publishing House,16 -69(in Chinese)
Luo ZB,Zhang HF,Diwu CR and Zhang H. 2012. Zircon U-Pb,Lu-Hf isotope and trace element compositions of intermediate pyroxene granulite in the Huai’an area,northern Heibei Province:Constraints on the timing of retrograde metamorphism. Acta Petrologica Sinca,28(11):3721 -3728 (in Chinese with English abstract)
Mao DB,Zhong CT,Chen ZH,Lin YX,Li HM and Hu XD. 1999. The isotope ages and their geological implications of high-pressure basic granulites in north region to Chengde,Hebei Province,China. Acta Petrologica Sinica,15(4):524 - 531 (in Chinese with English abstract)
Martin H. 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction zone magmas. Geology,14(9):753-756
Martin H. 1987. Genesis of Archean trondhjemites,tonalites,and granodiorites from eastern Finland: Major and trace element geochemistry. Journal of Petrology,28(5):921 -953
Martin H. 1994. The Archean grey gneisses and the genesis of continental crust. Developments in Precambrian Geology,11:205 -258
Martin H. 1999. Adakitic magmas:Modern analogues of Archean granitoids. Lithos,46(3):411 -429
Martin H and Moyen JF. 2002. Secular changes in tonalite-trondhjemitegranodiorite composition as markers of the progressive cooling of Earth. Geology,30(4):319 -322
Martin H,Moyen JF,Guitreau M,Blichert-Toft J and Pennec JLL.2014. Why Archaean TTG cannot be generated by MORB melting in subduction zones. Lithos,198 -199:1 -13
Miller CF,Mcdowell SM and Mapes RW. 2003. Hot and cold granites?Implications of zircon saturation temperatures and preservation of inheritance. Geology,31(6):529 -532
Moyen JF. 2011. The composite Archaean grey gneisses:Petrological significance,and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos,123(1 -4):21 -36
Nutman AP,Wan YS,Du LL,Friend CRI,Dong CY,Xie HQ,Wang W,Sun HY and Liu DY. 2011. Multistage Late Neoarchaean crustal evolution of the North China Craton,eastern Hebei. Precambrian Research,189(1):43 -65
O’Connor JT. 1965. A classification for quartz-rich igneous rock based on feldspar ratios. In:US Geological Survey Professional Paper B525. USGS,79 -84
Petford N and Atherton M. 1996. Na-rich partial melts from newly underplated basaltic crust:The Cordillera Blanca Batholith,Peru.Journal of Petrology,37(6):1497 -1521
Qian Q and Hermann J. 2013. Partial melting of lower crust at 10 ~15kbar:Constraints on adakite and TTG formation. Contributions to Mineralogy and Petrology,165(6):1195 -1224
Qian XL,Cui WY and Wang SQ. 1985. Evolution of the Nei Mongoleastern Hebei Archaean granulite belt in the North China Craton. In:The records of Geological Research of Department of Geology,Peking University. Beijing:Peking University Press,20 -29 (in Chinese with English abstract)
Rapp RP,Shimizu N,Norman MD and Applegate GS. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge:Experimental constraints at 3.8GPa. Chemical Geology,160(4):335 -356
Rapp RP,Shimizu N and Norman MD. 2003. Growth of early continental crust by partial melting of eclogite. Nature,425(6958):605 -609
Rollinson HR. 1988. Heavy rare-earth element enrichment in Archean felsic veins. Geology,16(3):279 -282
Rollinson HR. 1993. Using Geochemical Data: Evaluation,Presentation, Interpretation. Singapore: Longma Singapore Publishers (Pte)Ltd.
Schoonmaker A,Kidd WSF and Bradley DC. 2005. foreland-forearc collisional granitoid and mafic magmatism caused by lower-plate lithospheric slab breakoff:The Acadian of Maine,and other orogens. Geology,33(12):961 -964
Shen QH,Zhang YF,Gao JF and Wang P. 1989. Archean metamorphic rocks in mid-southern in Nei Mongol. Bulletin of the Institute of Geology,Chinese Academy of Geological Sciences,21 (in Chinese)
Smithies RH. 2000. The Archaean tonalite-trondhjemite-granodiorite(TTG)series is not an analogue of Cenozoic adakite. Earth and Planetary Science Letters,182(1):115 -125
Su YP,Zheng JP,Griffin WL,Zhao JH,Li YL,Wei Y and Huang Y.2014. Zircon U-Pb ages and Hf isotope of gneissic rocks from the Huai’an Complex:Implications for crustal accretion and tectonic evolution in the northern margin of the North China Craton.Precambrian Research,255(Part 1):335 -354
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society,London,Special Publication,42(1):313 -345
Tian YQ. 1991. Geology and Gold Mineralization of Wutaishan-Hengshan Greenstone Belt. Taiyuan:Shaixi Science and Technology Press,1-227 (in Chinese)
Wan YS,Liu DY,Dong CY,Xu ZY,Wang ZJ,Wilde SA,Yang YH,Liu ZH and Zhou HY. 2009. The Precambrian Khondalite Belt in the Daqingshan area,North China Craton:Evidence for multiple metamorphic events in the Palaeoproterozoic era. Geological Society,London,Special Publications,323(1):73 -97
Wang AD and Liu YC. 2012. Neoarchean (2.5 ~2.8Ga)crustal growth of the North China Craton revealed by zircon Hf isotope:A synthesis. Geoscience Frontiers,3(2):147 -173
Wang J,Wu YB,Gao S,Peng M,Liu XC,Zhao LS,Zhou L,Hu ZC,Gong HJ and Liu YS. 2010. Zircon U-Pb and trace element data from rocks of the Huai’an Complex:New insights into the Late Paleoproterozoic collision between the Eastern and Western blocks of the North China Craton. Precambrian Research,178(1 -4):59-71
Wang LJ,Guo JH,Peng P and Liu F. 2011. Metamorphic and geochronological study of garnet-bearing basic granulites from Gushan,the eastern end of the Khondalite Belt in the North China Craton. Acta Petrologica Sinica,27(12):3689 -3700 (in Chinese with English abstract)
Wang RM,Chen ZZ and Chen F. 1991. Grey tonalitic gneiss and highpressure granulite inclusions in Hengshan,Shanxi Province and their geological significance. Acta Petrologica Sinica,11(4):36 - 44(in Chinese with English abstract)
Wang RM,Chen ZZ and Lai XY. 1997. Archean geotectonic transition of systems from mantle plume to plate tectonics in North China. Earth Science,22(3):317 -321 (in Chinese with English abstract)
Wang ZH,Wilde SA,Wang KY and Yu LJ. 2004. A MORB-arc basaltadakite association in the 2. 5Ga Wutai greenstone belt:Late Archean magmatism and crustal growth in the North China Craton.Precambrian Research,131(3 -4):323 -343
Watson EB and Harrison TM. 1983. Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters,64(2):295 -304
Whalen JB,Percival JA,McNicoll VJ and Longstaffe FJ. 2002. A mainly crustal origin for tonalitic granitoid rocks,Superior Province,Canada:Implications for Late Archean tectonomagmatic processes.Journal of Petrology,43(8):1551 -1570
Whalen JB,McNicoll VJ,Galley AG and Longstaffe FJ. 2004. Tectonic and metallogenic importance of an Archean composite high-and low-Al tonalite suite,Western Superior Province,Canada. Precambrian Research,132(3):275 -301
Whitney DL and Evans BW. 2010. Abbreviations for names of rockforming minerals. American Mineralogist,95(1):185 -187
Wilde SA,Zhao GC and Sun M. 2002. Development of the North China Craton during the Late Archaean and its final amalgamation at 1.8Ga; Some speculations on its position within a global Palaeoproterozoic supercontinent. Gondwana Research,5(1):85 -94
Wilde SA,Cawood PA,Wang KY,Nemchin A and Zhao GC. 2004.Determining Precambrian crustal evolution in China:A case study from Wutaishan,Shanxi Province,demonstrating the application of recise SHRIMP U-Pb geochronology. In:Malpas J,Fletcher JR and Aitchison JC (eds.). Aspects of the Tectonic Evolution of China.Geological Society of London Special Publication,226(1):5 -26
Wilde SA and Zhao GC. 2005. Archean to Paleoproterozoic evolution of the North China Craton. Journal of Asian Earth Science,24(5):519 -522
Windley BF. 1995. The Evolving Continents. 3rdEdition. New York:John Willy and Sons,401 -460
Wu CH and Han G. 1989. Intrusive origin of melanogranulife and metamorphism of norite-gabbro from the Jining-Yanggao area.Geological Review 35 (1):1 - 12 (in Chinese with English abstract)
Wu JS, Geng YS and Shen QH. 1998. Archean Geological Characteristics and Tectonic Evolution of China-Korea Paleocontinent. Beijing:Geological Publishing House,192 - 211 (in Chinese)
Wu FY,Zhao GC,Wilde SA and Sun DY. 2005. Nd isotopic constraints on crustal formation in the North China Craton. Journal of Asian Earth Sciences,24(5):523 -545
Xiong XL,Xia B,Xu JF,Niu HC and Xiao WS. 2006. Na depletion in modern adakites via melt/rock reaction within the sub-arc mantle.Chemical Geology,229(4):273 -292
Yang J,Gao S,Chen C,Tang YY,Yuan HL,Gong HJ,Xie SW and Wang JQ. 2009. Episodic crustal growth of North China as revealed by U-Pb age and Hf isotopes of detrital zircons from modern rivers.Geochimica et Cosmochimica Acta,73(9):2660 -2673
Yang JH,Wu FY,Wilde SA and Zhao GC. 2008. Petrogenesis and geodynamics of Late Archean magmatism in eastern Hebei,eastern North China Craton:Geochronological,geochemical and Nd-Hf isotopic evidence. Precambrian Research,167(1 -2):125 -149
Zhai MG and Windley BF. 1990. The Archaean and Early Proterozoic banded iron formations of North China: Their characteristics geotectonic relations chemistry and implications for crustal growth.Precambrian Research,48(3):267 -286
Zhai MG,Guo JH,Yan YH,Han XL and Li YG. 1993. Discovery of high-pressure basic granulite terrain in North China Archaean Craton and preliminary study. Sciences in China (Series D),36(11):1402 -1408
Zhai MG. 1996. Granulites and Lower Continental Crust in North China Archaean Craton. Beijing:Seismological Press,1 -236
Zhai MG,Bian AG and Zhao TP. 2000. The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean and its breakup during Late Plaleoproterozoic and Meso-Proterozoic.Science in China (Series D),43(S1):219 -232
Zhai MG and Liu WJ. 2003. Palaeoproterozoic tectonic history of the North China craton:A review. Precambrian Research,122(1 -4):183 -199
Zhai MG,Guo JH and Liu WJ. 2005. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China craton.Journal of Asian Earth Sciences,24(5):547 -561
Zhai MG. 2013. The main old lands in China and assembly of Chinese unified continent. Science China (Earth Sciences),56(11):1829-1852
Zhang C,Holz F,Koepke J,Wolff PE,Ma CQ and Bédard JH. 2013a.Constraints from experimental melting of amphibolite on the depth of formation of garnet-rich restites,and implications for models of Early Archean crustal growth. Precambrian Research,231:206 -217
Zhang CH,Wang QC,Gao MG,Li ZL and Shi XL. 1990. Early Precambrian Metamorphism of Hebei Province. Beijing:Geological Publishing House,1 -161 (in Chinese)
Zhang HF,Zhai MG and Peng P. 2006. Zircon SHRIMP U-Pb age of the Paleoproterozoic high-pressure granulites from the Sanggan area,North China craton and its geologic implications. Earth Science Frontiers,13(3):190 -199 (in Chinese with English abstract)
Zhang HF,Zhai MG,Santosh M,Di-Wu CR and Li SR. 2011.Geochronology and petrogenesis of Neoarchean potassic meta-granites from Huai’an Complex:Implications for the evolution of the North China Craton. Gondwana Research,20(1):82 -105
Zhang HF,Zhai MG,Santosh M,DiWu CR and Li SR. 2012a. Low-Al and high-Al trondhjemites in the Huai’an Complex,North China Craton: Geochemistry, zircon U-Pb and Hf isotopes, and implications for Neoarchean crustal growth and remelting. Journal of Asian Earth Sciences,49:203 -213
Zhang HF,Yang YH,Santosh M,Zhao XM,Ying JF and Xiao Y.2012b. Evolution of the Archean and Paleoproterozoic lower crust beneath the Trans-North China Orogen and the Western Block of the North China Craton. Gondwana Research,22(1):73 -85
Zhang J,Zhao GC,Sun M,Wilde SA,Li SZ and Liu SW. 2006a. Highpressure mafic granulites in the Trans-North China Orogen:Tectonic significance and age. Gondwana Research,9(3):349 -362
Zhang J,Zhao GC,Li SZ,Sun M,Liu SW,Xia XP and He YH.2006b. U-Pb zircon dating of the granitic conglomerates of the Hutuo Group:Affinities to the Wutai granitoids and significance to the tectonic evolution of the Trans-North China orogen. Acta Geologica Sinica,80(6):886 -898
Zhang XH,Yuan LL,Xue FH and Zhai MG. 2013b. Neoarchean metagabbro and charnockite in the Yinshan block,western North China Craton:Petrogenesis and tectonic implications. Precambrian Research,255(Part 2):563 -582
Zhao JX and Cooper JA. 1993. Fractionation of monazite in the development of V-shaped REE patterns in leucogranite systems:Evidence from a muscovite leucogranite body in central Australia.Lithos,30(1):23 -32
Zhao GC,Wilde SA,Cawood PA and Lu LZ. 1999. Thermal evolution of two types of mafic granulites from the North China Craton:Implications for both mantle plume and collisional tectonics.Geological Magazine,136(3):223 -240
Zhao GC,Sun M,Wilde S and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited. Precambrian Research,136(2):177 -202
Zhao GC,Sun M,Wilde SA,Li SZ,Liu SW and Zhang J. 2006.Composite nature of the North China granulite-facies belt:Tectonothermal and geochronological constraints. Gondwana Research,9(3):337 -348
Zhao GC,Wilde SA,Sun M,Guo JH,Kroner A,Li SZ,Li XP and Wu CM. 2008. SHRIMP U-Pb zircon geochronology of the Huai’an Complex:Constraints on Late Archean to Paleoproterozoic crustal accretion and collision of the Trans-North China Orogen. American Journal of Science,308(3):270 -303
Zhao GC,Wilde SA,Guo JH,Cawood PA,Sun M and Li XP. 2010.Single zircon grains record two Paleoproterozoic collisional events in the North China Craton. Precambrian Research,177(3 -4):266 -276
Zhao ZF. 1993. The Precambrian Crustal Evolution. Beijing:Science Press,284 -330 (in Chinese)
Zhou YY,Zhao TP,Wang CY and Hu GH. 2011. Geochronology and geochemistry of 2. 5 to 2. 4Ga granitic plutons from the southern margin of the North China Craton:Implications for a tectonic transition from arc to post-collisional setting. Gondwana Research,20(1):171 -183
附中文参考文献
陈亚平,钱祥麟,刘金中. 1990. 华北克拉通北缘中段太古代变质杂岩序列. 见:岩石圈地质科学. 北京:北京大学出版社,53 -60
程裕淇,杨崇辉,万渝生,刘增校,张西平,杜利林,张寿广,伍家善,高吉凤. 2004. 太行山中北段早前寒武纪地质和深熔作用对地壳岩石的改造. 北京:地质出版社,1 -176
崔文元. 1982. 卓资-阳高一带麻粒岩相岩石的原岩恢复及其地球化学特征. 矿物岩石,(4):11 -26
第五春荣,孙勇,王倩. 2012. 华北克拉通地壳生长和演化. 来自现代河流碎屑锆石Hf 同位素组成的启示. 岩石学报,28(11):3520 -3530
耿元生,刘敦一. 1997. 冀西北马市口地区紫苏花岗岩的岩石学、地球化学和同位素年代学. 岩石矿物学杂志,16(1):1 -9
贺高品,卢良兆,叶慧文,靳是琴,叶挺松. 1991. 冀东和内蒙古东南部早前寒武纪变质作用演化. 长春:吉林大学出版社,9-100
金巍,李树勋,刘喜山. 1991. 内蒙大青山地区早前寒武纪高级变质岩系特征和变质动力学. 岩石学报,7(4):27 -35
刘敦一,耿元生,宋彪. 1997. 冀西北地区晚太古代大陆地壳的增生和再造——同位素年代学证据. 地球学报,18(3):226 -23
刘富,郭敬辉,路孝平,第五春荣. 2009. 华北克拉通2.5Ga 地壳生长事件的Nd-Hf 同位素证据:以怀安片麻岩地体为例. 科学通报,54(17):2517 -2526
刘福来,沈其韩. 1999. 冀西北麻粒岩相带富铝片麻岩的退变结构及其变质反应性质. 岩石学报,15(4):505 -517
刘树文,吕勇军,王伟,杨朋涛,白翔,凤永刚. 2011. 冀北太古代花岗质片麻岩的成因. 岩石学报,27(4):909 -921
刘喜山,金巍,李树勋. 1992. 内蒙古中部早元古代造山事件中麻粒岩相低压变质作用. 地质学报,66(3):244 -256
刘宇光. 1989. 中国冀西北及邻区早前寒武纪变质杂岩的成因和地壳演化:岩石学、地球化学、同位素地质年代学研究. 博士学位论文. 北京:中国科学院地质所,23 -78
卢良兆,徐学纯,刘福来. 1996. 中国北方早前寒武纪孔兹岩系. 长春:长春出版社,16 -69
罗志波,张华锋,第五春荣,张红. 2012. 冀西北怀安地区中性辉石麻粒岩的锆石U-Pb、Lu-Hf 及微量元素组成对区域退变质时代的制约. 岩石学报,28(11):3721 -3738
毛德宝,钟长汀,陈志宏,林源贤,李惠民,胡小蝶. 1999. 承德北部高压基性麻粒岩的同位素年龄及其地质意义. 岩石学报,15(4):524 -531
钱祥麟,崔文元,王时麒. 1985. 内蒙冀东太古宙麻粒岩相岩带的演化. 见:北京大学地质学系地质研究论文集. 北京:北京大学出版社,20 -29
沈其韩,张荫芳,高吉凤,王平. 1989. 内蒙古中南部太古宙变质岩. 中国地质科学院地质研究所所刊,21 号
田永清. 1991. 五台山-恒山绿岩带地质及金的成矿作用. 太原:山西科技出版社,1 -227
王洛娟,郭敬辉,彭澎,刘富. 2011. 华北克拉通孔兹岩带东端孤山剖面石榴石基性麻粒岩的变质作用及年代学研究. 岩石学报,27(12):3689 -3700
王仁民,陈珍珍,陈飞. 1991. 恒山灰色片麻岩和高压麻粒岩包体及其地质意义. 岩石学报,11(4):36 -44
王仁民,陈珍珍,赖兴运. 1997. 华北太古宙从地幔柱体制向板块构造体制的转化. 地球科学,22(3):317 -321
吴昌华,韩光. 1989. 集宁-阳高地区侵入成因的暗色麻粒岩及苏长辉长岩的变质作用. 地质论评,35(1):1 -12
伍家善,耿元生,沈其韩. 1998. 中朝古大陆太古宙地质特征及构造演化. 北京:地质出版社,192 -211
翟明国,郭敬辉,阎月华,韩秀伶,李永刚. 1992. 中国华北太古宙高压基性麻粒岩的发现及初步研究. 中国科学(D 辑),(12):1325 -1330
翟明国. 2013. 中国主要古陆与联合大陆的形成——综述与展望.中国科学(地球科学),43(10):1583 -1606
张春华,王启超,高明文,李增龙,石晓兰. 1990. 河北早前寒武纪变质作用. 北京:地质出版社,1 -161
张华锋,翟明国,彭澎. 2006. 华北克拉通桑干地区高压麻粒岩的锆石SHRIMP U-Pb 年龄及其地质含义. 地学前缘,13(3):190-199
赵宗溥. 1993. 中朝准地台前寒武纪地壳演化. 北京:科学出版社,284 -330