APP下载

逆转ATP结合盒转运蛋白参与耐药的研究进展

2015-03-13司瑞瑞吴育锋孙奋勇

中国医药导报 2015年6期
关键词:肿瘤

司瑞瑞 吴育锋 孙奋勇

[摘要] ATP结合盒(ABC)转运蛋白超家族利用水解ATP的能量将药物泵出细胞外,其功能和表达的改变参与了几乎所有肿瘤多药耐药的形成。研究通过作用于跨膜转运蛋白而逆转肿瘤多药耐药已经成为目前的热点,虽然一系列临床实验的失败使逆转耐药的研究遇到了挫折,但是研究仍在推进。在此基础上,本文主要论述了以ABC转运蛋白为代表的跨膜转运蛋白在肿瘤多药耐药及逆转耐药方面的研究进展,并展望未来研究的方向。

[关键词] ABC转运蛋白;肿瘤;多药耐药;逆转耐药

[中图分类号] R92 [文献标识码] A [文章编号] 1673-7210(2015)02(c)-0150-06

在对抗肿瘤的过程中,作为主要治疗手段之一的化疗,由于多药耐药现象(multi-drug resistance,MDR)的出现影响了肿瘤化疗的效果[1]。ATP结合盒(ATP-binding cassette,ABC)转运蛋白超家族成员利用ATP水解的能量跨膜转运各种底物,包括肽、脂质和抗癌药物,几乎参与了所有肿瘤的化疗耐药形成过程。人们已付出大量努力来明确这些蛋白的结构和功能[2-5],以探索可拮抗其作用并克服MDR(既具有临床特异性又具有高亲和力)的抑制剂。虽然前三代拮抗剂由于不同的原因而失败了,但研究仍在推进。本文通过对ABC转运蛋白及逆转临床耐药的新方法进行系统评价,讨论出现的问题和取得的经验,对临床治疗工作和未来应用前景有重要的指导意义。

1 ABC转运蛋白概述

人类基因组包含48个ABC转运蛋白基因,它们在序列同源性和结构域相似性的基础上可进一步分为七个不同的亚家族(ABCA~ABCG)。典型的ABC转运蛋白由两个高度疏水的跨膜区(transmembrane domain,TMD)和两个核苷酸结合区(nucleotide-binding domain,NBD)组成,少数ABC转运蛋白只有一个NBD和一个TMD组成(半转运蛋白),比如ABCG2(breast cancer resistance protein,BCRP),被称为半转运蛋白,通过形成二聚体来发挥功能[6-7]。目前研究最多的是P-糖蛋白(P-gp,ABCB1)、多药耐药性蛋白(MRP1,ABCC1;MRP2,ABCC2)和乳腺癌耐药蛋白(BCRP,ABCG2)。

1.1 P-gp

P-gp的检测和分离最初是由Juliano等[8]于1976年在具有MDR表型的中国仓鼠卵巢癌细胞中发现的,位于人染色体7q21.1,它是由MDR1基因编码的170 kDa的质膜蛋白[9-10]。在生理条件下,P-gp主要表达于由上皮细胞内衬的排泄器官(如肝、肾、肠、肺和肾上腺)、血液-组织的毛细血管内皮细胞的近顶膜处(如血-脑,血-睾丸屏障等)。

P-gp利用ATP水解提供的能量将亲脂疏水性药物主动泵出到细胞外,致使细胞内药物浓度降低而产生耐药。P-gp通过将外来物质泵出细胞以减少对细胞本身的伤害,它的跨膜区域结合带有中性正电荷的疏水性底物,可将底物从脂质双分子层递呈给转运蛋白[11]。综合文献报道,P-gp膜转运蛋白参与了长春碱类、蒽类化合物、紫杉醇类等药物耐药性的形成。P-gp作用方式就像“疏水真空泵”,当化疗药物经浓度梯度进入细胞后与P-gp底物结合区结合,同时NBD水解ATP;随后,P-gp构型发生改变,药物由蛋白的高亲和位点移到低亲和位点并被排出胞外[12]。其次,P-gp还可使胞内药物重新分布,使药物聚集在细胞器如溶酶体内,进一步使化疗药物脱离作用靶点,从而导致耐药。另外,P-gp对细胞程序性凋亡级联反应有抑制作用,从而提高了肿瘤细胞的存活率[13],并能保护耐药细胞免于细胞毒性药物的攻击及Fas配体诱导的多种形式的半胱氨酸依赖性凋亡[14]。

1.2 多药耐药性蛋白(multidrug resistance-associated protein,MRP)

MRP最初在多柔比星耐药的H69AR肺肿瘤细胞中被检测到,约190 kD[15]。MRP主要表达于人体许多正常组织内,尤其高表达于血-脑屏障的脉络细胞基底外侧膜上,以及支气管上皮细胞、胎盘中[16-18]。不同于P-gp的是,MRP不能转运未经修饰的化疗药物的天然产物,但可转运经生物转化后与谷胱甘肽(glutathione,GSH)结合的产物[19]。MRP1的活性可以被GSH增强,这使得它可以输送许多中性和碱性的药物[20]。另外,MRP1可调节细胞氧化应激和氧化还原之间的平衡,保持灵敏的免疫反应性[21-22]。MRP1可广泛介导转运肿瘤细胞内的抗癌药物,包括长春花生物碱、蒽环类、表鬼臼毒素、紫杉烷、氨甲蝶呤和喜树碱[23-24]。

MRP蛋白介导的耐药机制与P-gp不同的是,MRP并不能独立泵出未经修饰的化疗药物及其天然代谢产物,它的底物需要与还原型GSH相结合,通过MRP/GS-X泵外排。GSH也可调节MRP蛋白对药物的转运,降低GSH的胞内浓度将影响MRP2蛋白的转运功能;而GSH合酶的抑制剂(如:丁硫氨酸亚砜胺等)可逆转MRP蛋白对柔红霉素的耐药性。另外有报道指出,柔红霉素的胞内聚集与胞内GSH水平呈负相关[25]。还有研究表明,MRP参与了更多底物的耐药,如喜树碱衍生物、顺铂、长春碱类和多柔比星等的耐药[26]。

1.3 乳腺癌耐药蛋白

BCRP最早被发现在多柔比星抵抗的MCF7/AdrVp乳腺癌细胞中[27]。BCRP基因定位于4q22.23,它是一个有665个氨基酸的(75 kDa)ABC半转运蛋白,仅具有1个TMD和1个NBD。在跨膜转运中,单体BCRP形成二聚体或多聚体[28]。BCRP主要定位于一些健康组织细胞的顶膜,包括胎盘合体细胞、肝细胞和肠黏膜细胞中,在那里它可能通过外排潜在的破坏性毒素,以保护胎儿,或将毒素外排至胆管和肠腔等特定的体腔[29]。在大脑微血管,BCRP驻留在微血管内皮细胞的管腔侧,通过血脑屏障限制了毒物的渗透性[30]。同时,BCRP也参与维持细胞内激素和叶酸的动态平衡,主要通过转运类固醇结合物以及叶酸和它的谷氨酸聚合物来实现[31-32]。

研究证实,BCRP的耐药机制也具有自身的特点,即BCRP单体之间通过二硫键形成同二聚体,使结构近似于完全转运蛋白,而后再发挥药物排出泵的功能[33-34]。Zhou等[35]发现BCRP可使细胞内比生群、米托蒽醌、拓扑替康、柔红霉素、罗丹明和哌唑嗪等药物的浓度下降。另外有报道指出,在生理pH值条件下BCRP具有转运甲氨蝶呤、叶酸的功能[36]。Shulenin等[37]的研究显示,低pH值环境可提高BCRP对药物的转运作用。

1.4 其他ABC转运蛋白

ABCA1广泛表达于肾上腺及子宫中,高表达于肝和脑,在调节脂蛋白代谢方面具有重要作用,在载脂蛋白的刺激下,转运胆固醇和磷脂通过胞膜[33-34]。ABCA2主要表达于中枢神经系统(CNS),介导细胞内脂质运输[33,35-36]。ABCA3高表达于肺泡Ⅱ型细胞,参与合成和分泌肺表面活性物质[37]。ABCA4与视网膜细胞磷脂转运有关[38]。ABCA12在角质细胞表面参与转运葡萄糖[39]。还有一些成员参与神经退行性疾病过程,如:ABCA1调节中枢神经系统的胆固醇浓度和淀粉样前体蛋白加工产生的神经毒性淀粉样蛋白[40-42];ABCA7与阿尔茨海默病密切相关[43];ABCA13参与精神分裂症和双相情感障碍[44]。ABCD亚科包含由4个基因编码的半转运体。ABCD1与肾上腺脑白质营养不良(ALD)疾病有关。其他ABCD家族基因的功能还没有被制订出来,但其序列相似性表明,它们可能参与脂肪酸代谢。ABCE亚科包含单个成员,如OABP、ABCE1,这种蛋白质识别某些病毒感染后产生的寡聚腺苷酸。

2 逆转多药耐药现象的研究现状

第一代抑制剂已被批准用于临床,包括奎尼丁、醋酸甲地孕酮、他莫昔芬、维拉帕米以及环孢菌素A。维拉帕米是第一个P-gp的抑制剂,它能直接与抗癌药物竞争ABC转运蛋白的外排作用,使得抗癌药物在细胞内保持较高的浓度,从而逆转MDR作用。在第Ⅰ期临床试验研究评估中,其产生P-gp抑制作用的剂量阈值较高,这导致了较大的心脏毒性[45]而未能应用于临床。另外,观察其他第一代抑制剂,虽没有太大的毒性,但在随机临床试验中缺乏有效的差异性[46-47]而中止。

第二代抑制剂为第一代抑制剂的衍生物,以增加在正常组织中对ABC转运蛋白的抑制,提高治疗指数并减少毒性为目的。该类药物包括环胞素A的衍生物代司朴达(Valspodar,PSC833)、以维拉帕米为结构基础的S9788、奎尼丁的类似物比立考达(Biricodar,VX-710)及MS209等。大多数这些抑制剂可抑制细胞色素P450同工酶3A4介导的抗癌药物如紫杉醇和长春新碱的代谢作用,从而使患者血液中的药物浓度增高而增加毒副作用[48]。多非喹达(MS209)被证明可使对多西他赛和紫杉醇耐药的B16黑色素瘤重新获得化疗敏感性,同样的实验结果也表现在大肠癌HCT-15和小乳腺癌MCF-7移植瘤中[49]。但是多非喹达虽然没有增加毒性,但是在与环磷酰胺、阿霉素、氟尿嘧啶联合用药时对晚期或复发性乳腺癌无进展生存期(PFS)并没有改善[50]。该类药物可干扰化疗药物代谢,抑制其他转运蛋白超家族的成员,并带来不可预知的毒副作用,使重要脏器的解毒能力降低,因此,虽然该类药物有逆转活性高且无心血管毒性的特点,但仍未能应用于临床。

第三代抑制剂有高效力的ABC转运蛋白抑制作用,可特异性的与P-gp作用,并可减少化疗药带来的药物毒性,具有良好的开发前景。此类抑制剂的优点在于它不是细胞色素P450的底物,因而不会改变与其合用的抗癌药物的药动学性质。同时它对其他转运蛋白超家族的影响较小,从而最大限度地减少了对其他转运蛋白的抑制而产生的副作用。但是因为大多数人对这些药物仍然产生了较大的副作用而使临床试验(Ⅱ期或Ⅲ期)终止。例如,Tariquidar(XR-9576),是邻氨基苯甲酰胺的衍生物,无论是在体外和体内都表现出可高效力的逆转P-gp介导的多药耐药,在裸鼠体内Tariquidar可完全恢复耐药小细胞肺癌和卵巢癌异种移植物对紫杉醇、依托泊苷、长春新碱的抗肿瘤活性[51]。尽管如此,Tariquidar在Ⅱ期临床研究完成之前仍然被终止了,因有研究表明它与其他化疗药物合用后,其毒性比对照组更强。Biricodar(VX-710)增加肿瘤细胞对米托蒽醌、阿霉素、柔红霉素的吸收和保留,并在抗P-gp、MRP1和BCRP过表达的过程中恢复肿瘤细胞的敏感性[52-53]。Ⅱ期临床研究与阿霉素和长春新碱的组合因药物毒性和没有明显改善患者小细胞肺癌的复发率而终止[54]。

3 逆转ABC转运蛋白所致MDR的展望

3.1 针对ABC转运蛋白的单克隆抗体

有证据表明,在体内体外研究中单克隆抗体(如MRK16、UIC2和HYB-241)可特异性结合于P-gp,可以通过抑制许多化疗药物的外排作用而提高化疗效果(例如,柔红霉素、阿霉素、长春新碱、依托泊苷、紫杉醇)[55-56]。该MRK16抗体识别人P-gp的表位,并能至少部分地逆转P-gp在相关组织中的表达[57]。

3.2 抑制相关的信号转导及核受体

在肿瘤细胞中ABC药物转运蛋白的过度表达可能通过干扰其信号转导途径而受到抑制。有研究通过靶向转录因子阻断hedgehog通路,增加了对长春新碱和依托泊苷的敏感性,通过抑制P-gp和MRP1的表达缓解胶质瘤细胞耐药[58]。

3.3 纳米载体

纳米载体分为磁性纳米载体、聚酰胺-胺行树枝状高分子(PAMAM)、穹窿体。磁性纳米载体中的铁氧化物Fe3O4纳米颗粒的磁性最强,易实现靶向定位。将化疗药物装入Fe3O4颗粒中作用于肿瘤细胞将减少化疗药物的外排及下调转运蛋白的表达。PAMAM是一个球形分子,其优点是具有低毒性、几乎无免疫原性。它可以联合转运抗癌药物和siRNA,通过改变细胞内药物分布逆转MDR。此外,siRNA与化疗药物结合可表现出令人满意的基因沉默效果,使化疗药物进入细胞,诱导更多的细胞毒性。穹窿体的优点在于体积小(小于100 nm),其外壳可防止外来蛋白酶侵犯且不会引起体内免疫反应,可特异地定位于细胞表面受体,转运特定药物。

3.4 生物技术

短发夹状RNA(shRNA)和siRNA技术是基因沉默的一种手段,他们通过慢病毒及质粒等载体的携带可以靶向沉默MDR1、MRP1、MRP4、BCRP等基因,从而抑制相应的跨膜转运蛋白的表达,进而减少抗癌药物的外排,达到逆转耐药的作用。例如:MDR1及MDR3基因沉默能恢复A2780/taxol细胞对紫杉醇的敏感性并诱导细胞凋亡,从而逆转 A2780/taxol细胞对紫杉醇的耐药性[59]。

4 小结

随着对ABC转运蛋白的结构和功能的了解日益深入,大量的基础和临床研究已经介入,抑制这些转运蛋白的活性、提高抗癌疗效的药物研发已经着手。但是目前评估这些药物的临床试验还正在挫折中前行。展望新的战略,如涉及RNAi技术和纳米粒子等研究不断创新,可能会克服以前几代抑制剂的局限性。虽然说MDR是一个复杂的现象,源于不同的机制,但是继续研究抑制MDR以造福患者是人类的追求。

[参考文献]

[1] Edwards BK,Noone AM,Mariotto AB,et al. Annual report to the nation on the status of cancer, 1975-2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer [J]. Cancer,2013,116(3):544-573.

[2] Gillet JP,Gottesman MM. Advances in the molecular detection of abc transporters involved in multidrug resistance in cancer [J]. Current Pharmaceutical Biotechnology,2011, 12(4):686-692.

[3] Huang Y,Penchala S,Pham AN,et al. Genetic variations and gene expression of transporters in drug disposition and response [J]. Expert Opinion on Drug Metabolism & Toxicology,2008,4(3):237-254.

[4] Zinzi L,Capparelli E,Cantore M,et al. Small and innovative molecules as new strategy to revert MDR [J]. Frontiers in Oncology,2014,4(2):194-213.

[5] Colabufo NA,Berardi F,Contino M,et al. Abc pumps and their role in active drug transport [J]. Current Topics in Medicinal Chemistry,2009,9(2):119-129.

[6] Dean M,Hamon Y,Chimini G. The human atp-binding cassette(ABC)transporter superfamily [J]. Journal of Lipid Research,2001,42(7):1007-1017.

[7] Gottesman MM,Fojo T,Bates SE. Multidrug resistance in cancer:Role of atp-dependent transporters [J]. Nature reviews Cancer,2002,2(1):48-58.

[8] Juliano RL,Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants [J]. Biochimica Et Biophysica Acta,1976,455(1):152-162.

[9] Zhou SF. Structure,function and regulation of p-glycoprotein and its clinical relevance in drug disposition [J]. Xenobiotica,2008,38(7-8):802-832.

[10] Loo TW,Bartlett MC,Clarke DM. Drug binding in human p-glycoprotein causes conformational changes in both nucleotide-binding domains [J]. The Journal of Biological Chemistry, 2003,278(3):1575-1578.

[11] Sauna ZE,Ambudkar SV. Evidence for a requirement for atp hydrolysis at two distinct steps during a single turnover of the catalytic cycle of human p-glycoprotein [J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97(6):2515-2520.

[12] Sauna ZE,Kim IW,Ambudkar SV. Genomics and the mechanism of p-glycoprotein(ABCB1)[J]. Journal of Bioenergetics and Biomembranes,2007,39(5-6):481-487.

[13] Robinson LJ,Roberts WK,Ling TT,et al. Human MDR1 protein overexpression delays the apoptotic cascade in Chinese hamster ovary fibroblasts [J]. Biochemistry,1997,36(37):11169-11178.

[14] Smyth MJ,Krasovskis E,Sutton VR,et al. The drug efflux protein, p-glycoprotein,additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis [J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(12):7024-7029.

[15] Cole SP,Bhardwaj G,Gerlach JH,et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line [J]. Science,1992,258(5088):1650-1654.

[16] Wijnholds J,DeLange EC,Scheffer GL,et al. Multidrug resistance protein 1 protects the choroid plexus epithelium and contributes to the blood-cerebrospinal fluid barrier [J]. The Journal of Clinical Investigation,2000,105(3):279-285.

[17] Van Der Deen M,De Vries EG,Timens W,et al. ATP-binding cassette(ABC)transporters in normal and pathological lung [J]. Respiratory Research,2005,6(59):345-350.

[18] Nagashige M,Ushigome F,Koyabu N,et al. Basal membrane localization of MRP1 in human placental trophoblast [J]. Placenta,2003,24(10):951-958.

[19] Cole SP,Deeley RG. Transport of glutathione and glutathione conjugates by MRP1 [J]. Trends in Pharmacological Sciences,2006,27(8):438-446.

[20] Renes J,De Vries EG,Nienhuis EF,et al. ATP and glutathione-dependent transport of chemotherapeutic drugs by the multidrug resistance protein MRP1 [J]. British Journal of Pharmacology,1999,126(3):681-688.

[21] Mueller CF,Widder JD,McNally JS,et al. The role of the multidrug resistance protein-1 in modulation of endothelial cell oxidative stress [J]. Circulation Research,2005,97(7):637-644.

[22] Wijnholds J,Evers R,Van Leusden MR,et al. Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein [J]. Nature Medicine,1997,3(11):1275-1279.

[23] Allen JD,Brinkhuis RF,Van Deemter L,et al. Extensive contribution of the multidrug transporters p-glycoprotein and MRP1 to basal drug resistance [J]. Cancer Research,2000,60(20):5761-5766.

[24] Keppler D. Multidrug resistance proteins(MRPs,ABCCs):Importance for pathophysiology and drug therapy [J]. Handbook of Experimental Pharmacology,2011,(201):299-323.

[25] Koike K,Kawabe T,Tanaka T,et al. A canalicular multispecific organic anion transporter(cmoat)antisense cdna enhances drug sensitivity in human hepatic cancer cells [J]. Cancer Research,1997,57(24):5475-5479.

[26] Borst P,Evers R,Kool M,et al. The multidrug resistance protein family [J]. Biochimica Biophysica Acta,1999, 1461(2):347-357.

[27] Doyle LA,Yang W,Abruzzo LV,et al. A multidrug resistance transporter from human MCF-7 breast cancer cells [J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(26):15665-15670.

[28] Ni Z,Bikadi Z,Rosenberg MF,et al. Structure and function of the human breast cancer resistance protein(bcrp/ABCG2)[J]. Current drug Metabolism,2010,11(7):603-617.

[29] Sarkadi B,Homolya L,Szakacs G,et al. Human multidrug resistance ABCB and ABCG transporters: Participation in a chemoimmunity defense system [J]. Physiological Reviews,2006,86(4):1179-1236.

[30] Tainton KM,Smyth MJ,Jackson JT,et al. Mutational analysis of p-glycoprotein:suppression of caspase activation in the absence of atp-dependent drug efflux [J]. Cell death and Differentiation,2004,11(9):1028-1037.

[31] Assaraf YG. The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis [J]. Drug Resistance Updates:Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy,2006,9(4-5):227-246.

[32] Suzuki M,Suzuki H,Sugimoto Y,et al. ABCG2 transports sulfated conjugates of steroids and xenobiotics [J]. The Journal of Biological Chemistry,2003,278(25):22644-22649.

[33] Langmann T,Mauerer R,Zahn A,et al. Real-time reverse transcription-PCR expression profiling of the complete human ATP-binding cassette transporter superfamily in various tissues [J]. Clinical Chemistry,2003,49(2):230-238.

[34] McNeish J,Aiello RJ,Guyot D,et al. High density lipoprotein deficiency and foam cell accumulation in mice with targeted disruption of ATP-binding cassette transporter-1 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000,97(8):4245-4250.

[35] Zhou C,Zhao L,Inagaki N,et al. ATP-binding cassette transporter ABC2/ABCA2 in the rat brain: a novel mammalian lysosome-associated membrane protein and a specific marker for oligodendrocytes but not for myelin sheaths [J]. The Journal of Neuroscience:the Official Journal of the Society for Neuroscience,2001,21(3):849-857.

[36] Mack JT,Beljanski V,Tew KD,et al. The ATP-binding cassette transporter ABCA2 as a mediator of intracellular trafficking [J]. Biomedicine & Pharmacotherapy,2006,60(9):587-592.

[37] Shulenin S,Nogee LM,Annilo T,et al. ABCA3 gene mutations in newborns with fatal surfactant deficiency [J]. The New England Journal of Medicine,2004,350(13):1296-1303.

[38] Allikmets R. A photoreceptor cell-specific ATP-binding transporter gene(ABCR) is mutated in recessive stargardt macular dystrophy [J]. Nature Genetics,1997,17(1):122.

[39] Akiyama M,Sugiyama-Nakagiri Y,Sakai K,et al. Mutations in lipid transporter ABCA12 in harlequin ichthyosis and functional recovery by corrective gene transfer [J]. The Journal of Clinical Investigation,2005,115(7):1777-1784.

[40] Chan SL,Kim WS,Kwok JB,et al. ATP-binding cassette transporter A7 regulates processing of amyloid precursor protein in vitro [J]. Journal of Neurochemistry,2008,106(2):793-804.

[41] Kim WS,Chan SL,Hill AF,et al. Impact of 27-hydroxycholesterol on amyloid-beta peptide production and ATP-binding cassette transporter expression in primary human neurons [J]. Journal of Alzheimer's Disease:JAD,2009,16(1):121-131.

[42] Wahrle SE,Jiang H,Parsadanian M,et al. Overexpression of ABCA1 reduces amyloid deposition in the pdapp mouse model of alzheimer disease [J]. The Journal of Clinical Investigation,2008,118(2):671-682.

[43] Hollingworth P,Harold D,Sims R,et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2ap are associated with alzheimer's disease [J]. Nature Genetics,2011,43(5):429-435.

[44] Knight HM,Pickard BS,Maclean A,et al. A cytogenetic abnormality and rare coding variants identify ABCA13 as a candidate gene in schizophrenia,bipolar disorder,and depression [J]. American Journal of Human Genetics,2009,85(6):833-846.

[45] Ozols RF,Cunnion RE,Klecker RW,et al. Verapamil and adriamycin in the treatment of drug-resistant ovarian cancer patients [J]. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology,1987,5(4):641-647.

[46] Millward MJ,Cantwell BM,Munro NC,et al. Oral verapamil with chemotherapy for advanced non-small cell lung cancer: a randomised study [J]. British Journal of Cancer,1993,67(5):1031-1035.

[47] Milroy R. A randomised clinical study of verapamil in addition to combination chemotherapy in small cell lung cancer. West of scotland lung cancer research group, and the aberdeen oncology group [J]. British Journal of Cancer,1993,68(4):813-818.

[48] Bates SE,Bakke S,Kang M,et al. A phase Ⅰ/Ⅱ study of infusional vinblastine with the p-glycoprotein antagonist valspodar(PSC 833) in renal cell carcinoma [J]. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research,2004,10(14):4724-4733.

[49] Naito M,Matsuba Y,Sato S,et al. Ms-209,a quinoline-type reversal agent,potentiates antitumor efficacy of docetaxel in multidrug-resistant solid tumor xenograft models [J]. Clinical Cancer Research:An Official Journal of the American Association for Cancer Research,2002,8(2):582-588.

[50] Saeki T,Nomizu T,Toi M,et al. Dofequidar fumarate(MS-209)in combination with cyclophosphamide,doxorubicin,and fluorouracil for patients with advanced or recurrent breast cancer [J]. Journal of Clinical Oncology:Official Journal of the American Society of Clinical Oncology,2007,25(4):411-417.

[51] Mistry P,Stewart AJ,Dangerfield W,et al. In vitro and in vivo reversal of p-glycoprotein-mediated multidrug resistance by a novel potent modulator,XR9576 [J]. Cancer Research,2001,61(2):749-758.

[52] Germann UA,Shlyakhter D,Mason VS,et al. Cellular and biochemical characterization of VX-710 as a chem-osensitizer: reversal of p-glycoprotein-mediated multidrug resistance in vitro [J]. Anti-cancer Drugs,1997,8(2):125-140.

[53] Minderman H,O'Loughlin KL,Pendyala L,et al. VX-710(biricodar) increases drug retention and enhances chem-osensitivity in resistant cells overexpressing p-glycoprotein,multidrug resistance protein,and breast cancer resistance protein [J]. Clinical Cancer Research:An Official Journal of the American Association for Cancer Research,2004,10(5):1826-1834.

[54] Gandhi L,Harding MW,Neubauer M,et al. A phase Ⅱ study of the safety and efficacy of the multidrug resistance inhibitor VX-710 combined with doxorubicin and vincristine in patients with recurrent small cell lung cancer [J]. Cancer,2007,109(5):924-932.

[55] Iwahashi T,Okochi E,Ariyoshi K,et al. Specific targeting and killing activities of anti-p-glycoprotein monoclonal antibody MRK16 directed against intrinsically multidrug-resistant human colorectal carcinoma cell lines in the nude mouse model [J]. Cancer Research,1993, 53(22):5475-5482.

[56] Mechetner EB,Roninson IB. Efficient inhibition of p-glycoprotein-mediated multidrug resistance with a monoclonal antibody [J]. Proceedings of the National Academy of Sciences of the United States of America,1992,89(13):5824-5828.

[57] Mickisch GH,Pai LH,Gottesman MM,et al. Monoclonal antibody MRK16 reverses the multidrug resistance of multidrug-resistant transgenic mice [J]. Cancer Research,1992,52(16):4427-4432.

[58] Cui D,Xu Q,Wang K,et al. Gli1 is a potential target for alleviating multidrug resistance of gliomas [J]. Journal of the Neurological Sciences,2010,288(1-2):156-166.

[59] Eyre R,Harvey I,Stemke-Hale K,et al. Reversing paclitaxel resistance in ovarian cancer cells via inhibition of the ABCB1 expressing side population [J]. Tumour Biology:the Journal of the International Society for Oncodevelopmental Biology and Medicine,2014,35,10):9879-9892.

(收稿日期:2014-11-22 本文编辑:程 铭)

猜你喜欢

肿瘤
《肿瘤预防与治疗》2021年总目次
与肿瘤“和平相处”——带瘤生存
切除“面积”中的“肿瘤”
北京肿瘤防治联盟(BJCA)
北京肿瘤防治联盟(BJCA)
滚蛋吧!肿瘤君
《肿瘤预防与治疗》2017年总目次
ceRNA与肿瘤
床旁无导航穿刺确诊巨大上纵隔肿瘤1例
肿瘤标志物在消化系统肿瘤早期诊断中的应用