甘肃龙首山岩带西井镁铁质岩体成因及其构造意义
2015-03-07钱壮志焦建刚冯延清
段 俊,钱壮志,2,焦建刚,2,鲁 浩,冯延清
1.长安大学地球科学与资源学院,西安 710054 2.西部矿产资源与地质工程教育部重点实验室,西安 710054 3.山东省地质矿产勘查开发局第三地质大队,山东 烟台 264004
甘肃龙首山岩带西井镁铁质岩体成因及其构造意义
段 俊1,钱壮志1,2,焦建刚1,2,鲁 浩3,冯延清1
1.长安大学地球科学与资源学院,西安 710054 2.西部矿产资源与地质工程教育部重点实验室,西安 710054 3.山东省地质矿产勘查开发局第三地质大队,山东 烟台 264004
西井岩体位于北祁连造山带以北,阿拉善地块西南缘的龙首山隆起带。以往的研究多以沿龙首山断裂分布的镁铁-超镁铁质岩带作为和金川岩体相关的岩浆事件进行,而本次选择西井镁铁质岩体进行了精确的地质年代学和地球化学研究,确定了西井岩体岩性主要为橄榄辉石岩和辉长岩,成岩时代为 (421.0±9.0) Ma,可以和北祁连高压变质带榴辉岩年龄相对应;εNd(t)为4.06~5.52,(87Sr/86Sr)i为0.704 548~0.707 575,具有地幔岩石圈特征;微量元素及其同位素计算表明西井岩体经历了约10%的下地壳物质混染。据此得出西井岩体及其龙首山岩带早志留世镁铁质侵入岩体成因模式为:祁连洋壳连续俯冲过程中洋壳与陆壳分离,热的软流圈物质持续冲击地幔岩石圈的底部;由于热传导效应,大地热流沿着地幔岩石圈上升,使得80 km深度的湿的橄榄岩层发生熔融,产生玄武质岩浆作用,玄武质岩浆上升过程中与下地壳物质发生约10%混染,形成西井岩体及其龙首山镁铁--超镁铁质岩带。
SHRIMP测年;地球化学;西井镁铁质岩体;龙首山镁铁-超镁铁质岩带;北祁连造山带
0 引言
祁连造山带是一个包括蛇绿岩套、高压变质岩带、岛弧火山岩、深成花岗岩类侵入岩、复理石、磨拉石和上覆盖层的造山缝合带。夏林圻等[1-2]运用区域构造和火山岩浆演化动力学思路研究了北祁连海相火山岩成因;吴才来等[3]确定了北祁连早古生代花岗质岩浆事件; Song 等[4-9]对北祁连超高压变质带进行了年龄分析;这些都从北祁连演化的角度对上述岩石单元进行了很好的解释。在北祁连造山带以北、阿拉善地块西南缘沿着龙首山断裂分布着一系列镁铁--超镁铁质侵入岩体,构成龙首山岩带。由于该岩带中存在着含世界级岩浆镍-铜硫化物矿床的金川超镁铁质岩体,前人通常将龙首山岩带的其他镁铁质岩体与金川岩体进行对比,以证明这些岩体与金川岩体的关系,并试图在金川外围继续寻找与金川岩浆事件相关的岩浆硫化物矿床。焦建刚等[10-11]通过龙首山岩带中几个典型镁铁--超镁铁质岩体岩石地球化学分析,提出龙首山岩带岩体处于相同的构造环境,存在连续的岩浆演化关系;闫海卿等[12]认为野芨里岩体具有与金川岩体相似的地球化学特征;李文渊等[13]将阿拉善地块南缘的镁铁--超镁铁质岩体自北而南分为北大山岩带、龙首山岩带和北海子岩带,龙首山岩带和北海子岩带为中元古代早期超地幔柱作用下地幔派生岩浆的产物。
为了确定龙首山镁铁-超镁铁质岩带成因,本文选择龙首山岩带中段的西井镁铁质岩体为研究对象,进行精确的地质年代学和地球化学研究。根据西井岩体的锆石U-Pb年龄和地球化学模拟计算,结合已有的北祁连榴辉岩的p-T-t轨迹,最终确定西井岩体及龙首山镁铁--超镁铁质岩带形成时的地球动力学背景。
1 地质背景
西井镁铁质岩体位于阿拉善地块西南缘的龙首山镁铁--超镁铁质岩带中段(图1)。阿拉善地块是一个三角形地块,位于华北克拉通西缘[15],基底为早前寒武纪石英闪长质/花岗质片麻岩,上覆盖层为寒武纪到中奥陶世地层。阿拉善地块位于北祁连造山带以北,Song S G等[14]根据北祁连岛弧岩石年龄[16]和高压变质岩年龄[17-18]提出祁连洋在约445 Ma闭合, 阿拉善地块和祁连地块之间发生碰撞。
如图2a所示,龙首山地区镁铁--超镁铁质岩体主要分布于西、中、东3个地段:西段以藏布台岩体为代表,中段以金川和西井岩体为代表,东段以小口子岩体为代表。这些岩体特征见表1。
2 岩体特征
西井镁铁质岩体侵入于新元古界震旦系硅质条带大理岩--灰岩、千枚岩类石英岩和加里东早期肉红色似斑状中粗粒花岗岩中(图2b)。岩体呈透镜状,可分为东、西两个岩体;西岩体长600 m,宽60~100 m;东岩体长80 m,宽65 m。整个岩体在地表露头共有19个,最小长约20 m,宽约15 m;最大长达30~195 m;岩性主要为橄榄辉石岩和辉长岩。
橄榄辉石岩:黑绿色,中粒结构,块状构造。主要矿物组成为:橄榄石30%,单斜辉石60%,铬榴石5%,斜方辉石5%。橄榄石半自形粒状,粒径为0.2~2.0 mm,由于构造扰动而略具定向排列(图3a)。单斜辉石位于橄榄石周围,少数单斜辉石碎块聚集成集合体,且多发生透闪石化(图3b),后期热液作用萃取矿物中的金属形成铬榴石(图3c)。
据文献[14]修编。图1 中国主要构造单元简图Fig.1 Schematic map of major tectonic units of China
图2 龙首山岩带地质图(a)和西井岩体地质简图(b)Fig.2 Geological map of Longshoushan terrane with localities of major mafic-ultramafic intrusions(a)and Schematic geologic map of the Xijing mafic intrusion(b)
序号岩体名称地理位置岩体特征围岩特征1藏布台山丹县城83°方向23.4km单辉橄榄岩,面积约0.61km2炭质千枚岩,绿泥石英片岩,绿泥次闪片岩2青井子金川镍矿297°方向73.5km角闪单辉岩,面积约5.07km2炭质石英千枚岩,绿泥次闪片岩夹薄层灰岩3青石窑金川镍矿305°方向47km橄榄辉石岩,面积约0.13km2炭质千枚岩,硅质白云岩,绿泥绢云片岩,钠长阳起片岩4金川河西堡35°方向15km二辉橄榄岩,面积约1.34km2大理岩,条带-均质混合岩,片麻岩5西井永昌县城351°方向40km橄榄辉石岩,面积约0.053km2硅质条带大理岩-灰岩,千枚岩夹石英岩6塔马子沟金川镍矿285°方向10.25km辉石岩,辉石橄榄岩,面积约0.027km2云母石英片岩夹薄层大理岩7毛草泉金川镍矿283°方向8.5km辉石岩,橄榄辉石岩,面积约0.017km2云母石英片岩,含石墨大理岩8Ⅴ号异常金川镍矿Ⅲ矿区北西2km斜长二辉橄榄岩,橄榄岩,面积约0.004km2大理岩,混合片麻岩9小口子金川镍矿110°方向37.5km橄榄辉石岩,橄榄岩,面积0.2km2二云石英片岩、斜长角闪岩、片麻岩及白云大理岩
a.橄榄辉石岩镜下显微照片; b.单斜辉石透闪石化镜下显微照片; c.铬榴石镜下显微照片; d.橄榄辉长岩镜下显微照片。Ol. 橄榄石, Cpx. 单斜辉石。图3 西井岩体岩石显微照片Fig.3 Photomicrographs of rocks from Xijing intrusion
辉长岩:暗绿色,较为新鲜,辉长结构(图3d)。主要矿物组成为:单斜辉石35%,斜长石60%,金属矿物5%。单斜辉石半自形粒状,粒径0.5~1.0 mm,解理发育,部分辉石边部蚀变为角闪石。长石表面干净,双晶发育。岩石结构构造表明矿物结晶顺序为:橄榄石→ 斜方辉石→单斜辉石→斜长石。
3 采样位置与分析方法
沿着西井岩体从南往北穿切岩体采样。矿物成分测试用JXI-8100型电子探针完成,测试条件为加速电压15 kV,电流1.0×10-8A,束斑直径1 μm。主量元素采用XRF-1800 型X射线荧光光谱仪测试,XRF熔片法依据国家标准GB/T14506.28-1993。微量元素分析采用美国X-7型ICP-MS完成,上述工作在长安大学西部矿产资源与地质工程教育部重点实验室进行。
Nd-Sr同位素测试在中国地质科学院完成,分析方法为同位素稀释法,测试仪器为MAT262固体同位素质谱计,测试方法参见文献[19]。锆石SHRIMP测年在北京离子探针中心完成。锆石样品为较新鲜的橄榄辉石岩,从中挑选岩浆锆石>20粒。将挑选好的待测样品锆石与RSES 参考样SL13及数粒TEM置于环氧树脂制靶。锆石阴极发光及SHRIMP U-Pb测年详细分析流程和原理参考文献[20-22] 。
4 测试结果
4.1 主要矿物成分和全岩主量、微量元素成分
西井岩体中主要矿物的平均化学成分见表2。橄榄石Fo(Fo=100Mg/(Mg+Fe))值为81~86,属贵橄榄石,位于玄武质岩浆结晶分异形成的橄榄石Fo值范围(80~90)内[23-24]。全岩主量、微量元素成分见表3。为了排除蚀变的干扰,将全岩主量元素扣除烧失量后重新进行100%计算,然后将全岩主量元素成分和主要堆晶矿物橄榄石、辉石的平均化学成分进行对比(图4),岩体全岩主量元素成分并没有完全落入堆晶矿物控制的区域(图4中灰色区域),表明岩石成分代表玄武质岩浆成分,而不是堆晶矿物成分。薄片中可见到斜长石、角闪石、黑云母及铁-钛氧化物等矿物,这与全岩样品中高的Al2O3、TFeO 和TiO2组分相一致。
球粒陨石标准化的稀土元素和原始地幔标准化的抗蚀变影响的微量元素蛛网图中,稀土元素呈平坦型(图5),具有岛弧拉斑玄武岩特征[26]。
4.2 岩体年代学
阴极发光图像中,西井岩体锆石多呈柱状,半自形--自形晶,晶面平直光滑。锆石韵律环带较发育(图6), Th/U值>0.4,为岩浆锆石的特征[27]。由于锆石XJ-7和XJ-15中U质量分数过高,故将其剔除。其他16个锆石的U-Pb谐和年龄为(421.0±9.0)Ma(图7,表4),代表西井岩体结晶年龄。
4.3 Sr-Nd同位素
西井岩体的Sr、Nd同位素测定结果及特征值见表5。(87Sr/86Sr)i值按照421 Ma计算,结果为0.704 548~0.707 575,平均0.706 125。εNd(421 Ma)的变化范围相对较窄,4.06~5.52,平均4.88。由于Rb-Sr比Sm-Nd更具有活动性,因此受蚀变影响使得(87Sr/86Sr)i变化范围较大。
5 讨论
5.1 年代学意义
西井岩体的成岩年龄为(421.0±9.0)Ma,金川岩体中含硫化物的超镁铁质岩石锆石U-Pb年龄约为830 Ma[28-30],表明两者形成于完全不同的岩浆事件。北祁连高压变质带榴辉岩年龄为463~489 Ma[5, 31],该事件年龄可以和西井岩体成岩年龄相对应。
表2 西井岩体中主要矿物平均化学成分
注:n为测点数。
表3 西井镁铁--超镁铁质岩石主量、微量元素成分
注:主量元素质量分数单位为%;微量元素质量分数单位为10-6。
Ol. 橄榄石;Cpx. 单斜辉石;Opx 斜方辉石。图4 西井岩体主量元素Hark图解Fig.4 Hark diagrams of major element of Xijing intrusion
西井岩体εNd(t)为4.06~5.52,(87Sr/86Sr)i为0.704 548~0.707 575,具有岩石圈地幔特征,位于阿尔卑斯造山带镁铁质侵入岩范围之内(图8a)。阿尔卑斯造山带形成于特提斯洋闭合之后碰撞造山,碰撞开始于55 Ma。在阿尔卑斯造山带也发现了高压变质的榴辉岩,埋深70~100 km,高压变质年龄为35~45 Ma[37-39]。Davies和von Blanckenburg[40]用板块断裂模式很好地解释了阿尔卑斯地区碰撞造山过程中地幔源区岩浆作用和超高压变质作用的共存现象,且地幔侵入岩体在地表沿着Peri-Adriatic线状构造分布。这一模式同样可以用于解释北祁连造山带高压折返的榴辉岩和沿着龙首山断裂走向分布的早志留世地幔侵入岩体共存现象。
球粒陨石和原始地幔值引自文献[25]。图5 西井岩体球粒陨石标准化稀土元素和原始地幔标注化微量元素配分曲线图Fig.5 Chondrite normalized REE pattern and primitive mantle normalized spider diagrams of Xijing intrusion
测点号w(U)/10-6w(Th)/10-6232Th/238Uw(206Pbc)/10-6w(206Pb∗)/10-6207Pb∗/235U1σ/%206Pb∗/238U1σ/%(206Pb/238U年龄)/MaXJ11671671.030.739.900.530003.90.068602.0427.8±8.1XJ2117900.801.346.500.460008.20.063902.1399.5±8.3XJ3107670.651.946.200.420007.50.065802.7411.0±10.6XJ41431100.800.978.500.470007.40.068403.3426.3±13.5XJ56524120.650.7836.400.480003.80.064501.7402.9±6.5XJ61541280.860.899.200.520007.60.068701.9428.2±8.1XJ79954520.470.2452.100.450002.60.060801.8380.3±6.8XJ9142750.551.888.900.4600012.70.071702.1446.2±8.8XJ101541170.781.899.300.4300012.70.069002.1430.4±8.6XJ11117470.420.806.300.480007.30.062602.5391.7±9.5XJ125792660.470.6733.100.490003.40.066101.7412.5±6.7XJ131551501.001.129.500.5100010.20.071002.1442.2±8.8XJ141911810.981.4811.500.420009.30.069201.9431.1±7.9XJ156745050.780.3842.000.530003.10.072401.7450.3±7.4XJ162923281.163.8319.500.5000012.00.074902.0465.5±8.9XJ175031800.370.4429.100.550003.40.067001.7418.2±7.0XJ194142730.680.6923.600.470004.80.065901.8411.3±7.2XJ202012331.200.9811.600.450007.60.066502.0415.1±8.2
注:206Pbc指普通铅中206Pb;206Pb*指放射成因铅中206Pb; 应用204Pb实测值校正普通铅, 并假设206Pb/238U和207Pb/235U年龄一致。
图6 西井岩体锆石CL图像及各测试点的年龄结果Fig.6 CL images and the results of analyze point for zircons from Xijing intrusion
图7 西井岩体锆石U-Pb谐和年龄及加权平均年龄示意图Fig.7 U-Pb Concordia age and weighted mean age of zircons from Xijing intrusion
宋述光等[41]根据榴辉岩相的矿物成分、共生关系及其变质作用的p-T条件,并结合同位素年代学数据提出榴辉岩相的峰期变质阶段的p-T条件为2.2~2.6 GPa,变质时代为464~490 Ma。如图8b所示:2.6 GPa对应的变质深度为80 km,岩石圈熔融温度为1 110 ℃。1 370 ℃软流圈通过大地热流传播上升到地幔岩石圈可以发生熔融的80 km深度的湿的橄榄岩层需要几十个百万年,而高压榴辉岩可以在大陆俯冲过程中的任何时间和深度从俯冲板块脱离,因此西井岩体的成岩年龄和超高压变质年龄相差60 Ma是合理的。
表5 西井岩体Rb-Sr、Sm-Nd同位素组成
a.下地壳(LC)值据文献[32-33]; 原始地幔(PM)、洋岛玄武岩(OIB)和大洋中脊玄武岩(MORB)值据文献[25]; 软流圈熔体区域来自于MORB的Nd和Sr同位素数据,岩石圈地幔熔体区域来自文献[34],阿尔卑斯镁铁质侵入体区域引自文献[35-36]。b.地幔发生熔融条件,干的软流圈用干的橄榄石固相线表示[42],岩石圈熔融用角闪橄榄岩固相线表示[43]。DMM.亏损地幔源区。图8 西井岩体εNd (421 Ma)-(87Sr/86Sr)i相关图(a)和岩石圈熔融条件示意图(b)Fig.8 Correlation diagram of εNd (421 Ma) and (87Sr/86Sr)i of Xijing intrusion (a) and conditions for melting of lithosphere (b)
5.2 地壳混染
选择具有相似配分系数的微量元素比值来判断西井岩体岩浆的混染程度,因为这些比值在部分熔融和岩浆分异过程中不会发生改变。西井岩体Th/U值(3.97)较几种主要源区特征比值没有明显的差异,Nb/U值(5.09)、Ce/Pb值(1.98)二者相较典型的洋中脊玄武岩、洋岛玄武岩、地壳、典型地幔等环境特征比值都更接近于地壳值,均显示西井岩体遭受一定程度的地壳物质混染。
由于西井岩体的稀土配分曲线为平坦型,具有岛弧拉斑玄武岩特征,笔者选择原始地幔演化岩浆的微量元素作为模拟起始端元,上地壳和下地壳为终点端元,用不受蚀变影响的微量元素比值进行模拟计算,结果表明西井岩体在岩浆侵位过程中遭受小于10%下地壳物质混染(图9)。同样选择原始地幔演化的岩浆和上、下地壳为终点端元,进行同位素模拟计算,计算结果如图8a所示,亦表明西井岩体经历了5%~15%的下地壳物质混染。
上地壳(UC)和下地壳(LC)值据文献[32-33];原始地幔(PM)、洋岛玄武岩(OIB)和E型大洋中脊玄武岩(E-MORB)值据文献[25]。图9 西井岩体Nb/Yb-Th/Yb相关图(a)和Zr/Nb-La/Sm相关图(b)Fig.9 Plot of Nb/Yb-Th/Yb (a) and Zr/Nb-La/Sm (b) of Xijing intrusion
5.3 西井岩体成因模型
祁连地块和阿拉善地块的碰撞开始于祁连洋壳俯冲进入海沟之后(图10a),由于祁连地块为厚的陆壳具有浮力,与冷的致密的祁连洋壳产生的向下拖拽力方向相反。因此,在祁连地块和祁连洋壳之间的过渡区存在拉伸力,该拉伸力随着深度加深呈数量级增加。Kusznir和Park[44]指出在岩石圈伸展过程中会发生局部应变,当应变率非常高时,将产生细小断裂,热的低黏度软流圈物质进入断裂(图10b)。在板块连续俯冲过程中,大陆岩石圈随着温度升高而变软,导致浮力增大,大洋岩石圈继续向下拖拽,软流圈上涌引起局部加热且过渡区域岩石圈减薄,这些因素综合作用于上述细小断裂,最终发生板块破裂,祁连洋壳与陆壳分离。随着大洋板块断裂,软流圈物质快速上升进入岩石圈破碎空间,且持续撞击地幔楔上部厚的地幔岩石圈(图10c)。
图10 龙首山岩带镁铁-超镁铁质岩体形成过程Fig.10 Geodynamic model of Longshoushan mafic-ultramafic intrusion belt
在减压过程中,软流圈并不会发生熔融,如图8b所示,软流圈只有在沿着1 280℃绝热线上升到50 km深度的时候才会发生熔融,该深度是下地壳深度。板块破裂导致热的软流圈和厚的地幔岩石圈共存于断裂空间。假如地幔岩石圈在早期祁连洋俯冲过程中被交代而含水,存在如角闪石和金云母等含水矿物,这将使得固相线降低(图8b),引起地幔岩石圈小范围的熔融,这些熔体将先被捕获[45]。随着大洋岩石圈和大陆岩石圈的分离,更多的地幔岩
石圈和热的软流圈物质接触(图10d),使得断裂附近地幔岩石圈底部被持续加热,由于热传导效应,大地热流沿着地幔岩石圈上升,使得80 km深度的湿的橄榄岩层发生熔融,产生玄武质岩浆,岩浆的同位素组分位于岩石圈地幔,这与西井岩体的同位素特征相对应(图8a)。玄武岩质岩浆继续上升和地壳物质发生混染,地球化学模拟表明,西井岩体岩浆在上升过程中遭受了约10%下地壳物质混染。
由于板块断裂导致热传导沿着断裂走向分布,且地幔岩石圈发生熔融的深度和断裂深度之间距离保持一定,这将导致产生的岩浆作用在地壳表现为与板块断裂走向一致的方向分布,且岩浆作用的时间将会集中在很窄的时间段,这一机理可以很好地解释沿着龙首山断裂分布的龙首山镁铁--超镁铁质岩带中早志留世镁铁质岩体成因。
板块断裂使祁连地块大陆岩石圈和大洋岩石圈分离,热的低密度的软流圈物质导致俯冲板块快速升温并给大陆板块提供浮力,使得超高压相岩石作为浮力块体返回近地表[46-47]。这样很好地解释了北祁连榴辉岩相高压变质岩带与龙首山镁铁--超镁铁质岩带共存的现象。
6 结论
1)西井岩体的成岩年龄为(421.0±9.0)Ma,可以和北祁连高压变质带榴辉岩年龄相对应。εNd(t)为4.06~5.52,(87Sr/86Sr)i为0.704 548~0.707 575,具有岩石圈地幔特征,位于阿尔卑斯造山带侵入体范围之内。可用板块断裂模式解释西井岩体和龙首山岩带早志留世镁铁质侵入岩体成因。
2)微量元素及同位素计算表明,西井镁铁质岩体形成过程中经历了约10%的下地壳物质同化混染。
3)西井岩体成因模式为:祁连洋壳连续俯冲过程中,洋壳与陆壳分离,热的软流圈物质持续冲击地幔岩石圈的底部,形成玄武质岩浆,岩浆上升过程中和下地壳物质发生约10%混染,形成包括西井岩体在内的龙首山镁铁-超镁铁质岩带。
[1] 夏林圻, 夏祖春, 徐学义. 北祁连山海相火山岩岩石成因[M]. 北京: 地质出版社, 1996: 1-149. Xia Linqi, Xia Zuchun, Xu Xueyi. Petrogenesis of Marine Volcanic Rocks in the North Qilian Mountains[M]. Beijing: Geological Publishing House, 1996: 1-149.
[2] Xia L Q, Xia Z C, Xu X Y. Magmageneisis in the Ordovician in Back Basins of the Northern Qilian Mountains, China[J]. Geological Society of America Bulletin, 2003, 115: 1510-1522.
[3] 吴才来, 徐学义, 高前明, 等. 北祁连早古生代花岗质岩浆作用及其构造演化[J]. 岩石学报, 2010, 26(4): 1027-1044. Wu Cailai, Xu Xueyi, Gao Qianming, et al. Early Palaezoic Granitoid Magmatism and Tectonic Evolution in North Qilian, NW China[J]. Acta Petrologica Sinica, 2010, 26(4): 1027-1044.
[4] Song S, Zhang L, Niu Y. Ultra-Deep Origin of Garnet Peridotite from the North Qaidam Ultrahigh-Pressure Belt, Northern Tibetan Plateau, NW China[J]. American Mineralogist, 2004, 89: 1330-1336.
[5] 宋述光, 张立飞,Niu Y L, 等. 北祁连山榴辉岩锆石SHRIMP定年及其构造意义[J]. 科学通报, 2004, 49: 848-852. Song Shuguang, Zhang Lifei, Niu Y L, et al. Zircon U-Pb SHRIMP Ages of Eclogites from the North Qilian Mountains, NW China and Their Tectonic Implication[J]. Chinese Science Bulletin, 2004, 49: 848-852.
[6] Song S G, Zhang L E, Niu Y L, et al. Geochronology of Diamond-Bearing Zircons from Garnet-Peridotite in the North Qaidam UHPM Belt, North Tibetan Plateau: A Record of Complex Histories Associated with Continental Collision[J]. Earth and Planetary Science Letters, 2005, 234: 99-118.
[7] Song S G, Zhang L F, Niu Y L, et al. Evolution from Oceanic Subduction to Continental Collision: A Case Study of the Northern Tibetan Plateau Inferred from Geochemical and Geochronological Data[J]. Journal of Petrology, 2006, 47: 435-455.
[8] Song S G, Zhang L F, Niu Y L, et al. Eclogite and Carpholite-Bearing Meta-Pelite in the North Qilian Suture Zone, NW China: Implications for Paleozoic Cold Oceanic Subduction and Water Transport into Mantle[J]. Journal of Metamorphic Geology, 2007, 25: 547-563.
[9] Song S G, Niu Y L, Zhang L, et al. Tectonic Evolution of Early Paleozoic HP Tamorphic Rocks in the North Qilian Mountains, NW China: New Perspectives[J]. Journal of Asian Earth Sciences, 2009, 35: 334-353.
[10] 焦建刚, 闫海卿, 钱壮志, 等. 龙首山岩带典型镁铁--超镁铁质岩体岩石地球化学特征[J]. 矿物岩石, 2006, 26(1): 49-56. Jiao Jiangang, Yan Haiqing, Qian Zhuangzhi, et al. Geochemical Characteristics of Typical Mafic-Ultramafic Rocks in Longshou Mountains[J]. Journal of Mineralogical and Petrological Sciences, 2006, 26(1): 49-56.
[11] 焦建刚, 闫海卿, 刘瑞平. 龙首山几个镁铁-超镁铁质岩体比较[J]. 地质与勘探, 2006, 42(5): 60-65. Jiao Jiangang, Yan Haiqing, Liu Ruiping. Comparison of Several Mafic-Ultramafic Intrusions in the Longshoushan Mountain[J]. Geology and Prospectin, 2006, 42(5): 60-65.
[12] 闫海卿, 汤中立, 焦建刚, 等. 内蒙古野芨里镁铁质-超镁铁质岩体的岩石地球化学特征[J]. 现代地质, 2005, 19(4): 515-521. Yan Haiqing, Tang Zhongli, Jiao Jiangang, et al. Petrological and Geochemical Characteristics of Yejili Mafic-Ultramafic Intrusion, Inner Mongolia[J]. Geoscience, 2005, 19(4): 515-521.
[13] 李文渊, 汤中立, 郭周平, 等. 阿拉善地块南缘镁铁--超镁铁岩形成时代及地球化学特征[J]. 岩石矿物学杂志, 2004, 24(2): 117-126. Li Wenyuan, Tang Zhongli, Guo Zhouping, et al. Petrogenetic Epoch and Geochemical Characteristics of Mafic-Ultramafic Rocks on the Southern Margin of Alxa Massif in Northern China[J]. Acta Petrological Et Mineralogical, 2004, 24(2): 117-126.
[14] Song S G, Niu Y L, Su L, et al. Tectonics of the North Qilian Orogen, NW China[J]. Gondwana Research, 2013, 23: 1378-1401.
[15] 赵国春. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论[J]. 岩石学报, 2009, 25: 1772-1792. Zhao Guochun. Metamorphic Evolution of Major Tectonic Units in the Basement of the North China Craton: Key Issues and Discussion[J]. Acta Petrologica Sinica, 2009, 25: 1772-1792.
[16] Wang C Y, Zhang Q, Qian Q, et al. Geochemistry of the Early Paleozoic Baiyin Volcanic Rocks (NW China): Implications for the Tectonic Evolution of the North Qilian Orogenic Belt[J]. Journal of Geology, 2005, 113: 83-94.
[17] Liou J G, Wang X, Coleman R G. Blueschists in Major Suture Zones of China[J]. Tectonics, 1989, 8: 609-619.
[18] Liu Y J, Neubauer F, Genser J, et al.40Ar/39Ar Ages of Blueschist Facies Pelitic Schists from Qingshuigou in the Northern Qilian Mountains, Western China[J]. Island Arc, 2006, 15: 187-198.
[19] 何学贤, 唐索寒, 朱祥坤, 等. 多接收器等离子体质谱(MC-ICPMS)高精度测定Nd同位素方法[J]. 地球学报, 2007, 28(4): 405-410. He Xuexian, Tang Suohan, Zhu Xiangkun, et al. Precise Measurement of Nd Isotopic Ratios by Means of Multi-Collector Magnetic Sector Inductively Coupled Plasma Mass Spectrometry[J]. Acta Geoscience Sinica, 2007, 28(4):405-410.
[20] Compston W, Williams I S, Kirschvink J L, et al. Zircon U-Pb Ages for the Early Cambrian Time-Scale[J]. Journal of the Geological Society, 1992, 149: 171-184.
[21] Williams I S, Claesson S. Isotope Evidence for the Precambrian Province and Caledonian Metamorphism of High Grade Paragneiss from the Seve Nappes, Scandinavian Caledonides, Ⅱ Ion Microprobe Zircon U-Th-Pb[J]. Contributions to Mineralogy and Petrology, 1987, 97: 205-217.
[22] Williams I S. U-Th-Pb Geochromology by Ion Microprobe, Applications of Microanalytical Techniques to Understanding Mineralizing Processes[J]. Reviews in Economic Geology, 1998, 7: 1-35.
[23] 杨言辰, 孙德有, 马志红, 等. 红旗岭镁铁超镁铁岩侵入体及铜镍硫化物矿床的成岩成矿机制[J]. 吉林大学学报: 地球科学版, 2005, 35(5): 594-600. Yang Yanchen, Sun Deyou, Ma Zhihong, et al. The Forming Mechanisms of Hongqiling Mafic and Ultramafic Intrusive Bodies and Cu-Ni Sulfide Deposits[J]. Journal of Jilin University: Earth Science Edition 2005, 35(5): 594-600.
[24] 郝立波, 吴超, 孙立吉, 等. 吉林红旗岭铜镍硫化物矿床Re-Os同位素特征及其意义[J]. 吉林大学学报: 地球科学版, 2014, 44(2): 507-517. Hao Libo, Wu Chao, Sun Liji, et al. Re-Os Isotope Characteristics of Hongqiling Cu-Ni Sulfide Deposit in Jilin Provinece and Its Sibnificance[J]. Journal of Jilin University: Earth Science Edition, 2014, 44(2): 507-517.
[25] Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[J]. Geological Society London, Speciety Publication, 1989, 42: 313-345.
[26] Lassiter J C, Depaolo D J. Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotope Constraints. Mahoney J Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism[J].Geophy-sical Monography, American Geophysical Union, 1997: 335-355.
[27] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1640. Wu Yuanbao,Zheng Yongfei.The Genetic Mineralogy of Zircon and the Constraint to the Interpretation of U-Pb Age[J]. Chinese Science Bulletin,2004,49(16):1589-1640.
[28] Zhang M, Kamo S L, Li C. Precise U-Pb Zircon-Baddeleyite Age of the Jinchuan Sulfide Ore-Bearing Ultramafic Intrusion, Western China[J]. Mineral Deposit, 2010, 45: 3-9.
[29] 李献华, 苏犁, 宋彪, 等. 金川超镁铁侵入岩SHRIMP锆石U-Pb年龄及地质意义[J]. 科学通报, 2004, 49: 420-422. Li Xianhua, Su Li, Song Biao, et al. SHRIMP U-Pb Zircon Age of the Jinchuan Ultramafic Intrusion and Its Geological Significance[J]. Chinese Science Bulletin, 2004, 49: 420-422.
[30] Li X H, Su L, Chung S L, et al. Formation of the Jinchuan Ultramafic Intrusion and the World’s Third Largest Ni-Cu Sulfide Deposit: Associated with the Similar to 825 Ma South China Mantle Plume?[J]. Geochemistry, Geophysics, Geosystems, 2005,doi: 10.1029/2005GC001006.
[31] Zhang J X, Meng F C, Wan Y S. A Cold Early Palaeozoic Subduction Zone in the North Qilian Mountains, NW China: Petrological and U-Pb Geochronological Constraints[J]. Journal of Metamorphic Geology, 2007, 25: 285-304.
[32] Zindler A, Hart S. Chemical Geodynamics[J]. Annual Review of Earth Planetary Sciences, 1986, 14: 493-571.
[33] Rudnick R L, Gao S. Composition of the Continental Crust[C]//Rudnick RL. Treatise on Geochemistry. Amsterdam: Elsvier, 2003: 1-64.
[34] Wilson M. Igneous Petrogenesis: A Global Tectonic Approach[M]. London: Unwin Hyman, 1989: 1-466.
[35] Kagami H, Ulmer P, Hansmann W, et al. Nd-Sr Isotopic and Geochemical Characteristics of the Southern Adamello (Northern Italy) Intrusives: Implications for Crustal Versus Mantle Origin[J]. Journal of Geophysical Research: Solid Earth, 1991, 96: 14331-14346.
[36] von Blanckenburg F, Friih-Green G, Diethelm K, et al. Nd-, Sr-and O-Isotopic and Chemical Evidence for a Two-Stage Contamination History of Mantle Magma in the Central Alpine Bergell Intrusion[J]. Contributions to Mineralogy and Petrollogy, 1992, 110: 33-45.
[37] Becker H. Garnet Peridotite and Eclogite Sm-Nd Mineral Ages from the Lepontine Dome (Swiss Alps): New Evidence for Eocene High-Pressure Metamorphism in the Central Alps[J]. Geology, 1993, 21: 599-602.
[38] Christensen J N, Selverstone J, Rosenfeld J L, et al. Correlation by Rb-Sr Geochronology of Garnet Growth Histories from Different Structural Levels Within the Tauern Window, Eastern Alps[J]. Contributions to Mineralogy and Petrollogy, 1994, 118: 1-12.
[39] Tilton G R, Schreyer W, Schertl H-P. Pb-Sr-Nd Isotopic Behavior of Deeply Subducted Crustal Rocks from the Dora Maira Massif, Western Alps, Italy-II: What Is the Age of the Ultra-High-Pressure Metamorphism?[J]. Contributions to Mineralogy and Petrollogy, 1991, 108: 22-33.
[40] Davies J H, von Blanckenburg F. Slab breakoff: A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens[J]. Earth and Planetary Science Letters, 1995, 129: 85-102.
[41] 宋述光. 北祁连山古大洋俯冲带高压变质岩研究评述[J]. 地质通报, 2009, 28(12): 1769-1778. Song Shuguang. High-Pressure Metamorphic Rocks in the North Qilian Ocean Subduction Zone, China: A Review[J]. Geological Bulletin of China, 2009, 28(12): 1769-1778.
[42] McKenzie D, Bickle M J. The Volume and Composition of Melt Generated by Extension of the Lithosphere[J]. Journal of Petrology, 1988, 29: 625-679.
[43] Mengel K, Green D H. Stability of Amphibole and Phlogopite in Metasomatized Peridotite Under Water-Saturated and Water-Undersaturated Conditions[C]//Fourth International Kimberlite Conference. Kimberlites and Related Rocks-Their Occurrence, Origin and Emplacement. Sydney: Geological Society of Australia, Special Publication, 1989: 571-581.
[44] Kusznir N J, Park R G. The Extensional Strength of the Continental Lithosphere: Its Dependence on Geothermal Gradient, and Crustal Composition and Thickness[C]//Coward M P, Dewey J F, Hancock P L. Continental Extensional Tectonics. London: Geological Society London, Special Publication, 1987: 35-52.
[45] McKenzie D P. Some Remarks on the Movement of Small Melt Fractions in the Mantle[J]. Earth and Planetary Science Letters, 1989, 95: 53-72.
[46] Platt J P. The Uplift of High-Pressure-Low-Tempe-rature Metamorphic Rocks[J]. Philosophical Tran-sactions of the Royal Society of London, 1987, 321: 87-102.
[47] Wheeler J. Structural Evolution of a Subducted Continental Sliver: The Northern Dora Maira Massif, Italian Alps[J]. Journal of the Geological Society, 1991, 148: 1101-1113.
Genesis of Xijing Intrusion from Longshoushan Terrane and the Tectonic Significance
Duan Jun1, Qian Zhuangzhi1,2, Jiao Jiangang1,2, Lu Hao3, Feng Yanqing1
1.CollegeofEarthSciencesandResources,Chang’anUniversity,Xi’an710054,China2.MOEKeyLaboratoryofWesternChinaMineralResourcesandGeologicalEngineering,Xi’an710054,China3.TheThirdExplorationInstituteofGeologyandMineralResourcesofShandongProvince,Yantai264004,Shandong,China
The Xijing mafic intrusion is located in Longshoushan terrane in the west of Alxa block and the north of Qilian orogenic belt. Previous interpretation for mafic-ultramafic intrusions along Longshoushan rift suggested that the genesis of these intrusions were related to the magmatism of Jinchuan intrusion. The major petrographic components of Xijing intrusion are olivine websterite and gabbro, and Xijing intrusion was formed in (421.0±9.0) Ma, which is consistent with the age of eclogites from North Qilian orogenic belt. The values ofεNd(t) and (87Sr/86Sr)iare 4.06-5.52 and 0.704 548-0.707 575 respectively, which lie in the field of lithospheric mantle. The calculation of isotope and trace elements indicates that Xijing intrusion was contaminated by the lower crustal materials in about 10%. At last, we interpret the evolution of Xijing intrusion and Longshoushan intrusion belt as follows: during Qilian continental subduction, the ocean lithosphere detached from the continental lithosphere, the hot asthenosphere impinged the base of the overriding mantle lithosphere near the breakoff point. Because of the conduction, the heat flow went up and caused the melting of lithosphere at solidus of a hydrated peridotite at a depth of 80 km, which produced basalt magmatism. During the ascent of magma through the mantle into the crust, the magma was contaminated with lower crust and formed the Xijing intrusion and Longshoushan mafic-ultramafic intrusion belt.
SHRIMP dating; geochemistry; Xijing mafic intrusion; Longshoushan mafic-ultramafic intrusion belt; north of Qilian qrogenic belt
10.13278/j.cnki.jjuese.201503115.
2014-12-10
国家自然科学基金项目(41072058);中国地质调查局项目(1212011085061,12120114044401);国家留学基金委项目(201306560011)
段俊(1986--),男,博士研究生,主要从事矿物学、岩石学、矿床学方面研究,E-mail:duanjun108@163.com。
10.13278/j.cnki.jjuese.201503115
P588.1
A
段俊,钱壮志,焦建刚,等.甘肃龙首山岩带西井镁铁质岩体成因及其构造意义.吉林大学学报:地球科学版,2015,45(3):832-846.
Duan Jun, Qian Zhuangzhi, Jiao Jiangang,et al. Genesis of Xijing Intrusion from Longshoushan Terrane and the Tectonic Significance.Journal of Jilin University:Earth Science Edition,2015,45(3):832-846.doi:10.13278/j.cnki.jjuese.201503115.