核磁共振成像技术在心房颤动围术期应用进展
2015-02-21肖婧雯综述张建成审校
肖婧雯 综述 张建成 审校
(福建医科大学研究生院省立临床医学院 福建省立医院心内科,福建 福州 350001)
心房颤动是临床上常见的心律失常,其不协调的心房活动可导致心房肌纤维化、心房电重构及血栓形成,临床上表现为心房结构改变、心房颤动持续、脑卒中等危险。目前心房颤动复律治疗的主要方法包括药物复律、电复律、介入手术、外科手术等,其中介入手术包括射频导管消融及冷冻球囊导管消融。
心血管核磁共振显象(cardiac magnetic resonance,CMR)技术对心脏结构及功能的诊断、评估具有准确性,无电离辐射性,从而被广泛应用于心血管疾病的诊断、鉴别诊断及临床研究等方面[1-2],尤其对心房颤动患者心房结构改变及手术瘢痕的判断,通过静脉注射了钆螯合剂,可见心肌瘢痕或纤维化区域呈延迟钆剂显像[3]。现综述CMR 在心房颤动中的应用。
1 CMR 与术前肺静脉评估
肺静脉异搏兴奋灶是触发心房颤动的最常见因素之一[4-5],目前对症状性、药物难治性心房颤动患者行环肺静脉隔离术成为首选治疗。因肺静脉存在解剖变异,术前了解肺静脉解剖情况对指导消融策略非常关键。Kato 等[6]对28例心房颤动患者及27例正常志愿者进行了肺静脉核磁共振检查,发现肺静脉总变异率达38%,心房颤动患者的肺静脉直径大于对照组。Mansour 等[7]进一步运用CMR 三维成像技术对105 名心房颤动患者术前检查,其中59例(56%)为正常肺静脉,30例(29%)存在副肺静脉,18例(17%)为左肺静脉共干(其中2例存在右中肺静脉),105例患者中肺静脉直径平均为(7.9± 4.2)mm,有26例(25%)肺静脉直径<10 mm,15例(14%)肺静脉直径>25 mm。因此,应用CMR 三维成像技术明确肺静脉有无狭窄,有无左右共干、右中静脉及较早分支肺静脉等解剖变异,有助于预选择适宜的消融导管[8]。对于左心耳与左肺静脉间、右中肺静脉与右侧上下静脉间存在的较宽界脊者,术前详细评估这些区域的解剖结构,有助提高导管消融的安全性和有效性[9]。术前运用CMR 评估肺静脉解剖情况不仅有助于拟定消融策略,更能避免传统的肺静脉血管成像三维重建的辐射性。
2 CMR 与术前左房评估
初发心房颤动,心房的结构和电生理特性均正常,但若心房颤动反复或持续发作将导致心房结构和电生理特性的改变,从而促进心房颤动发生和维持[10-11]。心房颤动致左房重构可表现为心房肌纤维化、左房扩大等。相对于经胸超声心动图,术前CMR在评估左房大小方面并不能体现出优越性,但在评估心房肌纤维化程度时,具有高敏感性、高特异性。
Oakes 等[12]利用延迟钆剂心脏磁共振显像(LGEcMRI)技术对81例拟行心房颤动消融术患者及6例健康志愿者的左房结构重构(SMR)亦左房纤维化程度进行分层(根据左房壁延迟增强面积分为轻度<15%、中度15%~35%、重度>35%),并对心房颤动患者消融术后行48 h 动态心电监测,术后3 个月、6 个月、1 年行8 d 动态心电监测心房颤动复发率,结果显示43例轻度SMR 复发6例(14.0%),30例中度SMR复发13例(43.3%),8例重度SMR 复发6例(75%)。提出术前行LGE-cMRI 有希望用于预测消融疗效,并可提供预示疾病进展的指标。
随后Mahnkopf 等[13]发表了运用LGE-cMRI 对心房颤动患者进行Utah 分级(根据左房纤维化定量/左房壁体积百分比分为:Ⅰ级<5%、Ⅱ级5%~20%、Ⅲ级20%~35%、Ⅳ级>35%),结果显示心房颤动导管消融的成功率随着Utah 分级的升高而降低。Akoum等[14-16]也通过该方法评估心房颤动射频消融术前左房纤维化程度,同样发现手术成功率及术后复发率与左房纤维化程度呈负相关。
Verma 等[17]使用多极环状标测导管通过腔内超声引导下对700例心房颤动患者进行左心房的广泛电压映射,低电压或无电压区(电压幅值≤5 mV)定义为瘢痕区,对左房瘢痕的心房颤动患者行肺静脉前庭隔离术,术后的复发率(57%)明显高于无左房瘢痕的心房颤动患者(19%),因此提出左房呈低电压的瘢痕区范围可作为术后心房颤动复发的独立预测因子。Oakes 等[12]则发现延迟增强区域与电解剖标测显示的低电压区域有很强的相关性。
因此术前行CMR 评估左房纤维化程度对于选择合适的手术患者及避免不必要的侵入性操作有指导意义。同时CMR 也可评估左房大小,心房颤动后左房扩大程度也可作为另一个心房颤动射频术后复发率的预测因子[18-19]。
3 CMR 与术后瘢痕
Peters 等[3]率先证实LGE-cMRI 可用于23例心房颤动患者射频消融术后左房及肺静脉瘢痕情况的描述后,应用CMR 评估心房颤动射频术后瘢痕情况与心房颤动手术成功率、复发率的关系得到了广泛关注。随后Peters 等[20]进一步对35例首次射频消融术后(46±28)d 的心房颤动患者运用三维LGE-cMRI 描述及评估手术瘢痕,并在术后1 年用7 d 动态心电图评判有无心房颤动复发,得出瘢痕范围大的、呈现环形瘢痕的患者术后复发率低的结论。McGann 等[21-22]也报到了射频消融术后环肺静脉瘢痕与术后复发率成负相关。
然而射频消融术后左房瘢痕情况是否随着时间改变呢?这一问题在Badger 等[23]的研究中得到了答案,25例心房颤动患者分为两组,一组于术后24 h、3个月,另一组于术后6 个月、9 个月行CMR,研究表明射频消融术后3 个月可形成稳定的环肺静脉瘢痕,随着时间延长瘢痕范围无明显改变。McGann 等[24]也提出了预测瘢痕最佳时机在术后3 个月。在运用LGEcMRI 的延迟增强信号及T2信号,观察25例心房颤动患者肺静脉隔离术前、术后即刻、术后3 个月的手术瘢痕占环肺静脉口百分比,Arujuna 等[25]发现复发组中术后急性期有更高的T2信号及3 个月后延迟增强信号明显减弱,均提示这些可逆损伤组织很可能成为肺静脉电位传导恢复的潜在机制。
射频消融形成环肺静脉瘢痕隔离肺静脉触发电位毋庸置疑,然而在Cochet 等[26]及其同伴运用LGEcMRI、速度编码磁共振成像、电影成像等技术对26 名持续心房颤动患者行射频消融治疗,5 年的随访发现,左房收缩功能、舒张功能、主动射血功能等都不同程度下降并与瘢痕严重程度密切相关。由于Cochet 等研究的例数少,对于何种能源损伤的瘢痕既能提高手术成功率、降低复发率,又能尽可能减少对左房功能的损害的问题,是否与手术方式、环肺静脉大小与深度有关,值得进一步研究分析。
综上所述,随着时间推移,术后慢性期瘢痕与急性期相比有所减少,可逆损伤组织成为环肺静脉瘢痕间裂隙。对于心房颤动触发来源于肺静脉的患者,若行2 次手术前行CMR 定位瘢痕间裂隙,将有助于提高手术效率及成功率[27]目前有关CMR 与心房颤动术后瘢痕的研究多以导管射频消融为手术方式,但对于近年开展的冷冻球囊导管消融术所致的瘢痕情况,及两种术式的瘢痕损伤对比尚未发现相关研究。
4 CMR 与左房血栓
脑卒中是心房颤动最危险的并发症之一,心房颤动形成左房血栓是导致脑卒中的危险因素之一。传统运用经食管超声心动图(transesophageal echocardiography,TEE)观测有无左房血栓,而Ohyama 等[28]对50例有心源性脑卒中史的非瓣膜性心房颤动患者进行CMR 扫描,发现CMR 与TEE 在评判左房血栓时准确性相当,且CMR 扫描出的血栓尺寸比TEE 大约20%,因此提出与TEE 相比,CMR 对于血栓的判断更敏感。而Mohrs 等[29]以经胸超声心动图为参考研究的25例患者结果显示,CMR 对于探查左房血栓仅有47%的敏感性及50%的特异性,从而评论运用CMR诊断左房血栓缺乏精确性。然而对于CMR 评估左房血栓的真正价值,需要更多的数据支持。
5 结语
除外可存在忧郁症、自闭症等精神疾病患者,对钆剂过敏以及与行CMR 同步心电监测电压过低而无法识别心电门控的少数患者,CMR 在与纤维化、炎症等病变相关的心血管病中可以广泛应用。对心房颤动术前行无放射性、非侵入性的CMR 检查能够详尽评估肺静脉、左房结构的特性,及早发现左房纤维化程度,二次手术瘢痕及瘢痕间裂隙定位,是指导治疗方案、选择手术方式的重要辅助手段,更有利于心房颤动患者的治疗。
[1]Larose E,Rodés-Cabau J,Delarochelliere R,et al.Cardiovascular magnetic resonance for the clinical cardiologist[J].Can J Cardiol,2007,23(Suppl B):84B-88B.
[2]Daccarett M,McGann CJ,Akoum NW,et al.MRI of the left atrium:predicting clinical outcomes in patients with atrial fibrillation[J].Expert Rev Cardiovasc Ther,2011,9(1):105-111.
[3]Peters DC,Wylie JV,Hauser TH,et al.Detection of pulmonary vein and left atrial scar after catheter ablation with three-dimensional navigator-gated delayed enhancement MR imaging:initial experience[J].Radiology,2007,243(3):690-695.
[4]Haïssaguerre M,Jaïs P,Shah DC,et al.Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins[J].N Engl J Med,1998,339(10):659-666.
[5]Hsieh MH,Tai CT,Tsai CF,et al.Pulmonary vein electrogram characteristics in patients with focal sources of paroxysmal atrial fibrillation[J].J Cardiovasc Electrophysiol,2000,11(9):953-959.
[6]Kato R,Lickfett L,Meininger G,et al.Pulmonary vein anatomy in patients undergoing catheter ablation of atrial fibrillation:lessons learned by use of magnetic resonance imaging[J].Circulation,2003,107(15):2004-2010.
[7]Mansour M,Holmvang G,Sosnovik D,et al.Assessment of pulmonary vein anatomic variability by magnetic resonance imaging:implications for catheter ablation techniques for atrial fibrillation[J].J Cardiovasc Electrophysiol,2004,15(4):387-393.
[8]Mansour M,Holmvang G,Ruskin J.Role of imaging techniques in preparation for catheter ablation of atrial fibrillation[J].J Cardiovasc Electrophysiol,2004,15(9):1107-1108.
[9]Mansour M,Refaat M,Heist EK,et al.Three-dimensional anatomy of the left atrium by magnetic resonance angiography:implications for catheter ablation for atrial fibrillation[J].J Cardiovasc Electrophysiol,2006,17(7):719-723.
[10]Allessie MA,Boyden PA,Camm AJ,et al.Pathophysiology and prevention of atrial fibrillation[J].Circulation,2001,103(5):769-777.
[11]Krogh-Madsen T,Abbott GW,Christini DJ.Effects of electrical and structural remodeling on atrial fibrillation maintenance:a simulation study[J].PLoS Comput Biol,2012,8(2):e1002390.
[12]Oakes RS,Badger TJ,Kholmovski EG,et al.Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation[J].Circulation,2009,119(13):1758-1767.
[13]Mahnkopf C,Badger TJ,Burgon NS,et al.Evaluation of the left atrial substrate in patients with lone atrial fibrillation using delayed-enhanced MRI:implications for disease progression and response to catheter ablation[J].Heart Rhythm,2010,7:1475-1481.
[14]Akoum N,Daccarett M,McGann C,et al.Atrial fibrosis helps select the appropriate patient and strategy in catheter ablation of atrial fibrillation:a DE-MRI guided approach[J].J Cardiovasc Electrophysiol,2011,22(1):16-22.
[15]Marrouche NF,Wilber D,Hindricks G,et al.Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation:the DECAAF study[J].JAMA,2014,311(5):498-506.
[16]McGann C,Akoum N,Patel A,et al.Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI [J].Circ Arrhythm Electrophysiol,2014,7(1):23-30.
[17]Verma A,Wazni OM,Marrouche NF,et al.Pre-existent left atrial scarring in patients undergoing pulmonary vein antrum isolation:an independent predictor of procedural failure[J].J Am Coll Cardiol,2005,45(2):285-292.
[18]Montefusco A,Biasco L,Blandino A,et al.Left atrial volume at MRI is the main determinant of outcome after pulmonary vein isolation plus linear lesion ablation for paroxysmal-persistent atrial fibrillation[J].J Cardiovasc Med (Hagerstown),2010,11(8):593-598.
[19]von Bary C,Dornia C,Eissnert C,et al.Predictive value of left atrial volume measured by non-invasive cardiac imaging in the treatment of paroxysmal atrial fibrillation[J].J Interv Card Electrophysiol,2012,34(2):181-188.
[20]Peters DC,Wylie JV,Hauser TH,et al.Recurrence of atrial fibrillation correlates with the extent of post-procedural late gadolinium enhancement:a pilot study[J].JACC Cardiovasc Imaging,2009,2(3):308-316.
[21]McGann CJ,Kholmovski EG,Oakes RS,et al.New magnetic resonance imaging-based method for defining the extent of left atrial wall injury after the ablation of atrial fibrillation[J].J Am Coll Cardiol,2008,52(15):1263-1271.
[22]Segerson NM,Daccarett M,Badger TJ,et al.Magnetic resonance imaging-confirmed ablative debulking of the left atrial posterior wall and septum for treatment of persistent atrial fibrillation:rationale and initial experience[J].J Cardiovasc Electrophysiol,2010,21(2):126-132.
[23]Badger TJ,Oakes RS,Daccarett M,et al.Temporal left atrial lesion formation after ablation of atrial fibrillation[J].Heart Rhythm,2009,6(2):161-168.
[24]McGann C,Kholmovski E,Blauer J,et al.Dark regions of no-reflow on late gadolinium enhancement magnetic resonance imaging result in scar formation after atrial fibrillation ablation[J].J Am Coll Cardiol,2011,58(2):177-185.
[25]Arujuna A,Karim R,Caulfield D,et al.Acute pulmonary vein isolation is achieved by a combination of reversible and irreversible atrial injury after catheter ablation:evidence from magnetic resonance imaging[J].Circ Arrhythm Electrophysiol,2012,5(4):691-700.
[26]Cochet H,Scherr D,Zellerhoff S,et al.Atrial structure and function 5 years after successful ablation for persistent atrial fibrillation:an MRI study[J].J Cardiovasc Electrophysiol,2014,25(7):671-679.
[27]Bisbal F,Guiu E,Cabanas-Grandío P,et al.MRI-guided approach to localize and ablate gaps in repeat AF ablation procedure[J].JACC Cardiovasc Imaging,2014,7(7):653-663.
[28]Ohyama H,Hosomi N,Takahashi T,et al.Comparison of magnetic resonance imaging and transesophageal echocardiography in detection of thrombus in the left atrial appendage[J].Stroke,2003,34(10):2436-2439.
[29]Mohrs OK,Nowak B,Petersen SE,et al.Thrombus detection in the left atrial appendage using contrast-enhanced MRI:a pilot study[J].Am J Roentgenol,2006,186(1):198-205.