肿瘤miRNAs调控机制的研究进展与展望
2015-02-18刘利英宋土生
黄 辰,刘利英,倪 磊,宋土生
(西安交通大学医学部:1.基础医学院细胞生物学与遗传学系;2.生物医学研究实验中心,环境与疾病相关基因教育部重点实验室,陕西西安 710061)
目前,研究显示人类基因组包含20 805个蛋白质编码基因和37 147个非编码基因和假基因,它们通过RNA加工与编辑形成196 501个基因转录本(GRCh37.p13primary assembly)[1]。根据编码功能,RNA可以分为两大类:编码RNA和非编码RNA(non-coding RNA,ncRNA)。编码 RNA主要指作为蛋白质翻译模板的RNA,即mRNA。而ncRNA又可以根据其长短分为长非编码RNA(long non-coding RNA,lncRNA)和短非编码 RNA(sncRNA)[2]。而根据生物学功能,RNA又可以分为两大类:翻译相关RNA和调节性RNA。前者主要包括mRNA、tRNA和rRNA,后者主要包括lncRNA、siRNA(small interfering RNA)、miRNA (microRNA)、piRNA(PIWI-interacting RNAs)、saRNA (small activating RNA)、PASRs(promoter-associated small RNAs)、tiRNA(transcription initiation RNA)以及其他小 RNA等。其中,miRNA以其种类多、作用广泛,而受到学术界的关注。
miRNA是在真核生物中发现的一类内源性的具有调控功能的非编码RNA,其大小长约20~25个核苷酸[3]。成熟的miRNAs参与了生命活动的发育、病毒防御、造血过程、器官形成、细胞增殖和凋亡、脂肪代谢等调节途径。以下主要探讨肿瘤中miRNA的调控及其作用机制,以及其在未来的研究发展趋势。
1 miRNA的生物发生及其作用机制
绝大多数的miRNAs是从基因组中的间隔区转录而来,其中人类有25%左右的miRNA位于基因的内含子,并与前体mRNA同向转录。首先,由RNA聚合酶Ⅱ转录出miRNA中间转录本pri-miRNA,并经历5′端的戴帽和3′端poly A的加尾等加工过程。pri-miRNA进一步折叠形成具有1个或多个发卡式的二级结构,包含一个33bp左右的颈状区和10核苷酸的环状末端。其发卡式结构是miRNA的基本单元,被核内的RNA聚合酶ⅢDrosha和共因子DGCR8(哺乳动物)或Pasha(昆虫或蠕虫)识别,并在颈环状结构的颈端11bp的位置进行切割,产生2nt 3′端掉尾的颈环状结构,即pre-miRNA。pre-miRNA被exportin-5和共因子Ran-GTP从细胞核转运到细胞质。RNA聚合酶ⅢDicer-1及其伴侣分子TRBP或PACT(哺乳动物)将pre-miRNA加工形成~22-nt双链RNAs,其两端分别有2nt核苷酸的尾部,称为 miRNA/miRNA*双链[4-6](图1)。
图1 miRNA生物发生与作用机制Fig.1 The biogenesis and mechanism of miRNA
miRNA发挥生物学效应需要AGO蛋白的参与。在哺乳类动物中,AGO蛋白家族有4个成员,即AGO1-4[7-8]。AGO结合在低自由能的miRNA/miRNA*双链的一侧,偏好尿嘌呤,并严格识别miRNA的5'端单磷酸。该过程需要依赖ATP以及Hsc70/Hsp90伴侣复合体,形成RISC。miRNA的种子区是结合靶mRNA的关键,RISC将miRNA导向靶 mRNA[4]。AGO直接与P-body蛋白TNRC6(哺乳动物)相互作用,募集CCR4-NOT和PAN2-PAN3去腺苷化酶复合体,缩短靶mRNA的polyA[9]。同时,miRNA也可抑制蛋白质的翻译启动,但机制尚不清晰。
2 miRNA的转录前调节
表观遗传变化包括DNA甲基化、组蛋白修饰等,通过调节染色质重塑以及基因表达而参与人类的疾病发生。在肿瘤组织中,常可观察到抑癌作用的miRNA表达下调,如 miR-302b、miR-338-3p、let-7b等分别在肝癌、胃癌以及口腔癌中呈现低表达状态[10-12]。
miRNA的表达下调,与表观修饰、杂合性丢失以及相关转录因子失活有关。其中,表观修饰异常是最为关键的因素。研究表明,miR-124家族成员可以靶向CDK6,从而引起Rb基因的磷酸化下降,抑制细胞的增殖活性[13]。其在结直肠癌[14-15]、急性淋巴细胞性白血病[16]、宫颈癌[17]等肿瘤中低表达,基因发生高甲基化修饰。miR-34家族成员作为P53的靶基因,通过抑制MET、CDK4、CCNE2和 MYC等增殖相关基因,阻滞了细胞周期,诱导了细胞凋亡[18-20]。miR-34a和 miR-34b/c的基因分别位于1p36和11q23,启动子区均含有CpG岛,在口腔癌、食管癌、胃癌、结肠癌、胰腺癌、乳腺癌、肺癌、肾癌以及黑色素瘤等肿瘤中呈现高甲基化修饰[21-24]。miR-9的启动子高甲基化修饰最早发现于乳腺癌[25-26]和胰腺癌[27]。其后发现miR-9-1的甲基化修饰与结直肠癌淋巴结转移相关[28];miR-9-1和miR-9-3的甲基化修饰也与肾细胞癌转移复发相关[29]。而在胃癌组织中,miR-9家族3个成员均发生甲基化,异位表达miR-9可以抑制细胞增殖以及侵袭转移[30]。已有证明,癌基因FGFR1[31]、CDK6[32]和 CDX2[33]为 miR-9直接作用靶点。其他由于DNA甲基化而引起表达异常的 miRNA 还包括 靶向 FOXP1、HDAC4、ANXA2和 MET的miR-1[34-36],靶向SOX4的 miR-129-2[37],靶向 CDC42、LSD1、CDK6、EZH2、MIB1的 miR-137[38-41],靶向 MYC、MUC1、IRS-1、FSCN1的 miR-145[42-45]以及 miR-125b等。
3 miRNA的转录后调节网络
3.1 miRNA的ceRNA调节 竞争性内源性RNA(competing endogenous RNA,ceRNA)调控机制是由哈佛大学的SALMENA等总结了miRNA的研究资料后提出的。ceRNA是指细胞内具有miRNA结合位点(miRNA response elements,MRE),并参与miRNA靶转录本竞争结合的内源RNA分子[46]。
传统观念认为miRNA通过主动与靶miRNA的MRE特异性结合而诱导其降解或抑制翻译。然而,新近的研究表明,具有MRE位点的mRNA、假基因的转录本或lncRNA可以通过竞争性结合miRNA而抑制miRNA对靶mRNA的沉默效应[47-48](图2)。
图2 ceRNA对miRNA的网络调控Fig.2 ceRNA control miRNA by network
mRNA作为ceRNA的现象非常普遍。例如,在胃癌组织中,miR-126作为抑癌基因可以靶向癌基因Crk、PI3KR2,同时也发现miR-126可以抑制抑癌基因PLK2的表达[49]。这些基因均可确认为miR-126的ceRNA。miR-145是已经确认的肝癌的抑癌基因,其在肝癌细胞中的靶向基因包括IRS1[43]、SOX9[50]、HDAC2[51]等。
除了mRNA可以作为miRNA的ceRNA以外,假基因也是重要的ceRNA来源。假基因PTENP1和抑癌基因PTEN拥有很多共同的MRE,两者可以通过竞争性结合相同的miRNA分子,如miR-17、miR-19、miR-21、miR-26和 miR-214,而实现相互调控。PTENP1的高表达将竞争抑制这些miRNA的活性,进而促进了PTEN的表达而发挥抑癌作用。假基因KRASIP和KRAS之间也具有相似的调控作用[52]。lncRNA 可以作为非编码的 ceRNA,其对miRNA的调节能力要高于mRNA来源的ceRNA。研究证明,肝癌组织中高表达的HULC,可以作为miR-372的海绵抑制物,抑制miR-372的活性,而导致其靶基因PRKACB翻译升高[53]。在干细胞中,非编码linc-RoR 高表达,并与 OCT4、SOX2以及NANOG同时与miR-145发生作用,从而抑制了miR-145效应。在细胞分化过程中,linc-RoR表达下调,对miR-145抑制作用下降,导致miR-145抑制OCT4、SOX2和 NANOG表达的作用提高[54]。
近年研究发现,ncRNA还包含着一种环状RNA(circular RNA,circRNA),也具有ceRNA 的作用。第一个被报道的circRNA是ciRS-7,其结构上具有70多个保守的miRNA靶位点,包括miR-7。在鼠脑组织中,ciRS-7高度表达,抑制了 miR-7的活性[55-56]。circRNA的作用并非是ciRS-7特例。miR-7作为抑癌基因,靶向下调 EGFR[57]、CCNE1[58]、睾丸决定因子(sex-determining region Y,SRY)。SRY是睾丸特异性circRNA,其可以作为miR-138的海绵,抑制其活性[55]。circRNA在细胞中的调控作用可能有3种方式:miRNA的抑制剂、miRNA缓冲调节以及miRNA的储存器(图3)。
图3 circRNA的作用模式Fig.3 Action mechanism of circRNA
3.2 miRNA的RNA结合蛋白调控 RNA结合蛋白(RNA binding protein,RBP)是一类参与转录后调控的蛋白质,其在mRNA上的结合位点可以横跨5'端或3'端,根据其蛋白质种类、mRNA或细胞背景的不同,对翻译过程具有促进或抑制作用[59]。
近年研究发现,RBP可以与miRNA共同参与转录后调控。RBP参与的miRNA调控机制存在2种模式,即合作型与竞争抑制型。Pumilio蛋白是一类合作型RBP,其主要结合于mRNA的miRNA结合域的邻近位点,改变mRNA的空间构象,有利于miRNA与靶mRNA的结合,促进miRNA抑制蛋白质翻译效应。在乳腺癌细胞系MCF7中,Pumilio结合于p27Kip1mRNA上,诱导其发生构象改变,暴露出miR-221/222结合位点,进而导致p27Kip1表达下调,引起细胞增殖[60]。而在膀胱癌中,Pumilio结合某些miRNAs而抑制癌基因E2F3的表达,但是这些miRNA在膀胱癌中常表现为选择性下调[60-61]。Dnd1蛋白是一类竞争型RBP,在生殖细胞肿瘤的形成中发挥抑制作用。Dnd1主要作用于p27Kip1和LATS2等mRNA的3'UTRs区,阻止了miRNA对这些靶基因的抑制作用,从而维持了p27Kip1和LATS2等的抑癌活性[62]。在DNA损伤修复时,P53将诱导RBM38表达,并通过与mRNA 3'UTRs区结合,阻止miRNA对靶基因的翻译抑制[63]。RBP对miRNA的调节还涉及miRNA形成相关的蛋白质,如DICER、AGO等,本文不再赘述。
4 miRNA的研究误区与发展方向
不同的miRNA在不同细胞中的作用方式不同,与细胞背景有着密切关系。目前,对miRNA的功能研究多是通过生物信息预测,分析其作用靶基因,并结合报告基因的研究方法分析其靶向关系,并通过细胞学实验,证明其作用机制。然而,细胞中miRNA的靶基因极其复杂,不同靶基因互相形成ceRNA,从而影响miRNA对单一目标靶基因的调控作用。本研究组在前期的报告基因研究结果证明,miR-195可以直接靶向CCNE1 3′UTRs区。但是,细胞学实验表明,miR-195不但不能抑制细胞内源CCNE1,而且可以促进其表达。该研究提示,miR-195可能对其他mRNA的亲和力高于CCNE1mRNA,并且miR-195可能影响了CCNE1的抑制因素,从而诱导CCNE1高表达(图4)。因此,现行的miRNA研究方案存在一定的缺陷。
图4 miR-195靶向CCNE1Fig.4 miR-195targeted CCNE1
目前miRNA研究亟需解决以下问题:①特定细胞中miRNA的靶mRNA的数量;②不同mRNA与miRNA的作用强弱;③ceRNA在特定细胞中对miRNA的调节;④miRNA调控的网络关系以及反馈机制。miRNA高通量靶基因的鉴定系统的建立,将是miRNA网络调控研究的关键。然而,目前为止,尚无高效简洁的研究特异miRNA在特定细胞中网络调控机制的技术。建立该项技术,将为miRNA的研究奠定坚实的基础。
[1]CAMPBELL MJ.Vitamin D and the RNA transcriptome:more than mRNA regulation[J].Front Physiol,2014,5:181.
[2]QI P,DU X.The long non-coding RNAs,a new cancer diagnostic and therapeutic gold mine[J].Mod Pathol,2013,26(2):155-165.
[3]FILIPOWICZ W,BHATTACHARYYA SN,SONENBERG N.Mechanisms of post-transcriptional regulation by microRNAs:are the answers in sight?[J].Nat Rev Genet,2008,9(2):102-114.
[4]BARTEL DP.MicroRNAs:genomics,biogenesis,mechanism,and function[J].Cell,2004,116(2):281-297.
[5]CAI X,HAGEDORN CH,CULLEN BR.Human microRNAs are processed from capped,polyadenylated transcripts that can also function as mRNAs[J].RNA,2004,10(12):1957-1966.
[6]LEE Y,KIM M,HAN J,et al.MicroRNA genes are transcribed by RNA polymeraseⅡ[J].EMBO J,2004,23(20):4051-4060.
[7]KURAMOCHI-MIYAGAWA S,KIMURA T,YOMOGIDA K,et al.Two mouse piwi-related genes:miwi and mili[J].Mech Dev,2001,108(1-2):121-133.
[8]DENG W,LIN H.Miwi,a murine homolog of piwi,encodes a cytoplasmic protein essential for spermatogenesis[J].Dev Cell,2002,2(6):819-830.
[9]PIAO X,ZHANG X,WU L,et al.CCR4-NOT deadenylates mRNA associated with RNA-induced silencing complexes in human cells[J].Mol Cell Biol,2010,30(6):1486-1494.
[10]WANG L,YAO J,ZHANG X,et al.miRNA-302b suppresses human hepatocellular carcinoma by targeting AKT2[J].Mol Cancer Res,2014,12(2):190-202.
[11]GUO B,LIU LY,YAO JY,et al.miR-338-3p suppresses progression of gastric cancer through PTEN-AKT signaling pathways by targeting P-Rex2a[J].Mol Cancer Res,2014,12(3):313-321.
[12]GAO L,WANG X,WANG X,et al.IGF-1R,a target of let-7b,mediates crosstalk between IRS-2/Akt and MAPK pathways to promote proliferation of oral squamous cell carcinoma[J].Oncotarget,2014,5(9):2562-2574.
[13]PIERSON J,HOSTAGER B,FAN R,et al.Regulation of cyclin dependent kinase 6 by microRNA124 in medulloblastoma[J].J Neurooncol,2008,90(1):1-7.
[14]PARK SY,KIM H,YOON S,et al.KITENIN-targeting microRNA-124 suppresses colorectal cancer cell motility and tumorigenesis[J].Mol Ther,2014,22(9):1653-1654.
[15]ZHANG Y,ZHENG L,HUANG J,et al.MiR-124 radiosensitizes human colorectal cancer cells by targeting PRRX1[J].PLoS One,2014,9(4):e93917.
[16]WONG KY,SO CC,LOONG F,et al.Epigenetic inactivation of the miR-124-1 in haematological malignancies[J].PLoS One,2011,6(4):e19027.
[17]WILTING SM,VAN BOERDONK RA,HENKEN FE,et al.Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer[J].Mol Cancer,2010,9:167.doi:10.1186/1476-4598-9-167.
[18]ZHANG DG,ZHENG JN,PEI DS.P53/microRNA-34-induced metabolic regulation:new opportunities in anticancer therapy[J].Mol Cancer,2014,13:115.doi:10.1186/1476-4598-13-115.
[19]CHENG CY,HWANG CL,CORNEY DC,et al.miR-34 Cooperates with p53in suppression of prostate cancer by joint regulation of stem cell compartment[J].Cell Reports,2014,6(6):1000-1007.
[20]WEI J,SHI Y,ZHENG L,et al.miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2[J].J Cell Biol,2012,197(4):509-521.
[21]TANAKA N,TOYOOKA S,SOH J,et al.Frequent methylation and oncogenic role of microRNA-34b/c in small-cell lung cancer[J].Lung Cancer,2012,76(1):32-38.
[22]WANG R,MA J,WU Q,et al.Functional role of miR-34 family in human cancer[J].Curr Drug Targets,2013,14(10):1185-1191.
[23]WONG MY,YU Y,WALSH WR,et al.microRNA-34 family and treatment of cancers with mutant or wild-type p53[J].Int J Oncol,2011,38(5):1189-1195.
[24]XIE K,LIU J,CHEN J,et al.Methylation-associated silencing of microRNA-34b in hepatocellular carcinoma cancer[J].Gene,2014,543(1):101-107.
[25]HSU PY,DEATHERAGE DE,RODRIGUEZ BA,et al.Xenoestrogen-induced epigenetic repression of microRNA-9-3 in breast epithelial cells[J].Cancer Res,2009,69(14):5936-5945.
[26]LEHMANN U,HASEMEIER B,CHRISTGEN M,et al.Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer[J].J Pathol,2008,214(1):17-24.
[27]OMURA N,LI CP,LI A,et al.Genome-wide profiling of methylated promoters in pancreatic adenocarcinoma[J].Cancer Biol Ther,2008,7(7):1146-1156.
[28]BANDRES E,AGIRRE X,BITARTE N,et al.Epigenetic regulation of microRNA expression in colorectal cancer[J].Int J Cancer,2009,125(11):2737-2743.
[29]HILDEBRANDT MA,GU J,LIN J,et al.Hsa-miR-9 methylation status is associated with cancer development and metastatic recurrence in patients with clear cell renal cell carcinoma[J].Oncogene,2010,29(42):5724-5728.
[30]XIANG S,LIU Z,ZHANG B,et al.Characterization of human gastric carcinoma-related methylation of 9 miR CpG islands and repression of their expressions in vitro and in vivo[J].BMC Cancer,2012,12:249.doi:10.1186/1471-2407-12-249.
[31]RODRIGUEZ-OTERO P,ROMÁN-GÓMEZ J,VILAS-ZORNOZA A,et al.Deregulation of FGFR1 and CDK6 oncogenic pathways in acute lymphoblastic leukaemia harbouring epigenetic modifications of the MIR9 family[J].Br J Haematol,2011,155(1):73-83.
[32]POOS K,SMIDA J,NATHRATH M,et al.How microRNA and transcription factor co-regulatory networks affect osteosarcoma cell proliferation[J].PLoS Comput Biol,2013,9 (8):e1003210.
[33]ROTKRUA P,AKIYAMA Y,HASHIMOTO Y,et al.MiR-9 downregulates CDX2 expression in gastric cancer cells[J].Int J Cancer,2011,129(11):2611-2620.
[34]NASSER MW,DATTA J,NUOVO G,et al.Down-regulation of micro-RNA-1(miR-1)in lung cancer:suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1[J].J Biol Chem,2008,283(48):33394-33405.
[35]LEWIS A,RIDDOCH-CONTRERAS J,NATANEK SA,et al.Downregulation of the serum response factor/miR-1 axis in the quadriceps of patients with COPD [J].Thorax,2012,67(1):26-34.
[36]BRONISZ A,WANG Y,NOWICKI MO,et al.Extracellular vesicles modulate the glioblastoma microenvironment via a tumor suppression signaling network directed by miR-1[J].Cancer Res,2014,74(3):738-750.
[37]KANG M,LI Y,LIU W,et al.miR-129-2suppresses proliferation and migration of esophageal carcinoma cells through downregulation of SOX4 expression[J].Int J Mol Med,2013 32(1):51-58.
[38]ZHU X,LI Y,SHEN H,et al.miR-137inhibits the proliferation of lung cancer cells by targeting cdc42 and Cdk6[J].FEBS Lett,2013,587(1):73-81.
[39]SUN G,YE P,MURAI K,et al.miR-137 forms a regulatory loop with nuclear receptor TLX and LSD1 in neural stem cells[J].Nat Commun,2011,2:529.doi:10.1038/ncomms1532.
[40]SMRT RD,SZULWACH KE,PFEIFFER RL,et al.MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1[J].Stem Cells,2010,28(6):1060-1070.
[41]SZULWACH KE,LI X,SMRT RD,et al.Cross talk between microRNA and epigenetic regulation in adult neurogenesis[J].J Cell Biol,2010,189(1):127-141.
[42]WU H,XIAO Z,WANG K,et al.miRNA-145is downregulated in human ovarian cancer and modulates cell growth and invasion by targeting p70S6K1 and MUC1[J].BBRC,2013,441(4):693-700.
[43]XING AY,WANG B,SH DB,et al.Deregulated expression of miR-145 in manifold human cancer cells[J].Exp Mol Pathol,2013,95(1):91-97.
[44]CHEN Z,ZENG H,GUO Y,et al.miRNA-145inhibits nonsmall cell lung cancer cell proliferation by targeting c-Myc[J].J Exp Clin Cancer Res,2010,29:151.doi:10.1186/1756-9966-29-151.
[45]CHIYOMARU T,ENOKIDA H,TATARANO,et al.miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer[J].Br J Cancer,2010,102(5):883-891.
[46]TAY Y,KATS L,SALMENA L,et al.Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs[J].Cell,2011,147(2):344-357.
[47]SALMENA L,POLISENO L,TAY Y,et al.A ceRNA hypothesis:The Rosetta stone of a hidden RNA language?[J].Cell,2011,146(3):353-358.
[48]YOON JH,ABDELMOHSEN K,GOROSPE M.Functional interactions among microRNAs and long noncoding RNAs[J].Semin Cell Dev Biol,2014,34:9-14.
[49]LIU LY,WANG W,ZHAO LY,et al.miR-126 inhibits growth of SGC-7901 cells by synergistically targeting the oncogenes PI3KR2 and Crk,and the tumor suppressor PLK2[J].Int J Oncol,2014,45(3):1257-1265.
[50]PANZA A,VOTINO C,GENTILE A,et al.Peroxisome proliferator-activated receptorγ-mediated induction of microRNA-145 opposes tumor phenotype in colorectal cancer[J].Biochim Biophy Acta,2014,1843(6):1225-1236.
[51]NOH JH,CHANG YG,KIM MG,et al.miR-145 functions as a tumor suppressor by directly targeting histone deacetylase 2in liver cancer[J].Cancer Lett,2013,335(2):455-462.
[52]POLISENO L,SALMENA L,ZHANG J,et al.A coding-independent function of gene and pseudogene mRNAs regulates tumour biology[J].Nature,2010,465(7301):1033-1038.
[53]WANG J,LIU X,WU H,et al.CREB up-regulates long noncoding RNA,HULC expression through interaction with microRNA-372 in liver cancer[J].Nucleic Acids Res,2010,38(16):5366-5383.
[54]ZHOU X,GAO Q,WANG JZ,et al.Linc-RNA-RoR acts as a“sponge”against mediation of the differentiation of endometrial cancer stem cells by microRNA-145[J].Gynecol Oncol,2014,133(2):333-339.
[55]HANSEN TB,JENSEN TI,CLAUSEN BH,et al.Natural RNA circles function as efficient microRNA sponges[J].Nature,2013,495(7441):384-388.
[56]HANSEN TB,KJEMS J,DAMGAARD CK.Circular RNA and miR-7in cancer[J].Cancer Res,2013,73(18):5609-5612.
[57]KALINOWSKI FC,GILES KM,CANDY PA,et al.Regulation of epidermal growth factor receptor signaling and erlotinib sensitivity in head and neck cancer cells by miR-7[J].PLoS One,2012,7(10):e47067.
[58]ZHANG X,HU S,ZHANG X,et al.MicroRNA-7 arrests cell cycle in G1 phase by directly targeting CCNE1 in human hepatocellular carcinoma cells[J].BBRC,2014,443(3):1078-1084.
[59]GLISOVIC T,BACHORIK JL,YONG J,et al.RNA-binding protein and post-transcriptional gene regulation[J].FEBS Let,2008,582(14):1977-1986.
[60]KEDDE M,VAN KOUWENHOVE M,ZWART W,et al.A Pumilio-induced RNA structure switch in p27-3’UTR controls miR-221 and miR-222 accessibility[J].Nat Cell Biol,2010,12(10):1014-1020.
[61]MILES WO,TSCHÖP K,HERR A,et al.Pumilio facilitates miRNA regulation of the E2F3 oncogene[J].Genes Dev,2012,26(4):356-368.
[62]KEDDE M,STRASSER MJ,BOLDAJIPOUR B,et al.RNA-binding protein Dnd1 inhibits microRNA access to target mRNA[J].Cell,2007,131(7):1273-1286.
[63]SHU L,YAN W,CHEN X.RNPC1,an RNA-binding protein and a target of the p53 family,is required for maintaining the stability of the basal and stress-induced p21 transcript[J].Genes,2006,20(21):2961-2972.