癌细胞代谢相关的耐药干预方法的研究进展
2015-01-24余德才常州市第一人民医院肝胆外科江苏常州3003南京大学医学院附属鼓楼医院肝胆外科江苏南京0000
颜 晨,余德才,江 勇(.常州市第一人民医院肝胆外科,江苏常州 3003;.南京大学医学院附属鼓楼医院肝胆外科,江苏南京 0000)
癌细胞代谢相关的耐药干预方法的研究进展
颜 晨1,余德才2,江 勇1
(1.常州市第一人民医院肝胆外科,江苏常州 213003;2.南京大学医学院附属鼓楼医院肝胆外科,江苏南京 210000)
癌细胞的代谢与正常细胞有很大差别,癌细胞主要由无氧糖酵解供能,其脂肪酸及谷氨酰胺的合成也都高于正常细胞。而癌细胞代谢中的Warburg效应、脂肪酸合成及谷氨酰胺降解失调中一些关键酶的活性与癌细胞耐药密切相关。例如,乳酸脱氢酶A与乳腺癌的紫杉醇/曲妥珠单抗耐药相关;脂肪酸合成酶与乳腺癌的多西紫杉醇/曲妥珠单抗/多柔比星耐药相关;谷氨酰胺酶与胃癌的顺铂耐药相关等。因此,针对这些与癌细胞耐药相关的代谢途径的治疗方法,与化疗药物联合应用,可能会克服癌细胞耐药。本文综述癌细胞代谢与癌症耐药的关系,即通过抑制代谢过程中关键酶的活性来克服癌细胞耐药,最终提高癌症治疗疗效。
癌症;细胞代谢;抗药性
癌症的药物治疗(包括化疗及靶向药物治疗)是目前抗癌症治疗的最常用措施。然而,药物对癌症的作用仅在治疗初期有效,随着治疗周期的延长,都不可避免地出现耐药现象,使得许多抗癌症药物失败,癌症复发,成为癌症治疗中最难克服的难题[1]。因此,研究癌细胞耐药的机制,提高治疗疗效,具有重要的临床意义。自从Warburg发现癌细胞与正常细胞存在显著的代谢差异以来,许多学者将癌症看做是一个“代谢疾病”,并且针对癌症代谢特点改善癌症治疗已成为热门话题[2-4]。大量实验数据表明,癌细胞特有的代谢特点与癌细胞耐药之间存在密切联系,本文将对癌细胞代谢过程中主要的关键酶与耐药间的关系及相应的机制作一综述。
1 癌细胞代谢特点
癌细胞的代谢特点和正常细胞有明显的不同,即使在供氧充足的情况下,葡萄糖向乳酸转换,而不是像正常细胞那样经三羧酸循环由线粒体氧化磷酸化产生ATP。癌细胞的这种代谢特点称为“Warburg效应”[5]。癌细胞以无氧糖酵解作为主要的能量获取方式被认为是癌细胞一个重要特征。癌细胞不需外源性信号的刺激即可直接启动细胞对营养物质的摄取[6]。癌细胞的这种特点有利于促进其快速增殖,还能增加过氧化物生成诱导DNA损伤加速基因突变率。即便是采用糖酵解这种效率较低的能量利用方式,癌细胞仍然可通过大量高速的糖酵解过程获得足够的ATP[7]。
除了依赖无氧糖酵解,癌细胞还有其他一些代谢特点,例如脂肪酸的从头合成增加以及谷氨酰胺的代谢增强[8]。癌细胞通过大量的脂肪酸从头合成获得新的膜结构,其中包含一些特殊的脂类成分形成脂筏结构以促进细胞生长相关受体活化,一些脂类的中间产物如单酰辅酶A参与了生长因子受体的转录调控[9],一些循环脂类还能直接促进癌细胞的生长和转移[10]。这些研究表明,癌细胞通过脂肪酸的从头合成途径,一方面促进细胞膜的形成,支持快速分裂,另一方面利用脂代谢中间产物或翻译后修饰产物对促增殖和存活相关通路进行正向调控。有研究表明,谷氨酰胺代谢是癌细胞主要的氮源,并优先被癌细胞摄取[11]。肿瘤的生长和血谷氨酰胺浓度呈负相关。癌细胞能快速消耗大量谷氨酰胺,原因有二:其一,癌细胞运输谷氨酰胺穿过血浆细胞膜的速度较非癌细胞快,如人肝癌细胞消耗谷氨酰胺的速度比正常细胞快5~10倍[12]。其二,癌细胞内谷氨酰胺酶(glutaminase,GLS)异常活跃,GLS是癌细胞谷氨酰胺降解的限速酶,将谷氨酰胺分解为谷氨酸和氨。
癌细胞的这些特点导致三大物质循环过程中关键酶的活性及表达量明显不同于正常细胞。而这些酶代谢失调产生的中间产物可以促进癌细胞自身的生物合成[13]。并且在癌症治疗过程中和癌症耐药密切相关。
2 抗癌药物作用机制与癌症耐药
通常抗癌药物是通过阻断细胞增殖周期中重要的过程造成细胞不可逆的损伤或诱导细胞凋亡起作用的。其作用机制包括:①影响核酸合成。例如吉西他滨和5-氟尿嘧啶(5-fluorouracil,5-FU)分别通过抑制核糖核苷酸还原酶和胸苷酸合成酶而起作用。②影响蛋白合成。例如长春新碱通过干扰蛋白质代谢、抑制氨基酸在细胞膜的转运而起作用。③直接破坏DNA。例如丝裂霉素通过与DNA形成交叉连接使细胞DNA解聚,以及引起DNA单链断裂而起作用。④嵌入DNA中干扰模板作用。例如多柔比星及其家族药物通过抑制拓扑异构酶干扰模板形成而起作用。⑤影响体内激素平衡。例如糖皮质激素通过影响体内肾上腺皮质激素的平衡而起作用[14]。
使用一定疗程的化疗药物治疗后,绝大多数癌症患者都会出现的药物耐受是导致癌症治疗失败的最主要原因。癌症耐药基于癌细胞中单一或少数几个位点的结构和功能发生改变,主要机制有:①细胞膜抑制药物转运、促进药物外排;②细胞浆内药物靶酶或代谢酶的活性改变;③细胞核内DNA修复功能增强[16];④细胞内与耐药或抗凋亡相关的分子表达量升高等[15]。克服癌症耐药从而提高化疗疗效已成为当今研究的热门话题。随着对癌细胞代谢研究的深入,越来越多的实验表明,癌细胞的代谢失调与肿瘤耐药之间有重要的关联。
3 癌细胞代谢失调导致的癌症耐药
大量证据表明,癌细胞代谢失调在癌症治疗过程中和癌症耐药密切相关。如乳酸脱氢酶A在乳腺癌的治疗过程中与紫杉醇/曲妥珠单抗耐药相关[17];丙酮酸脱氢酶激酶3在宫颈癌和结肠癌的治疗过程中与低氧诱导的药物耐药有关[18];脂肪酸合成酶在乳腺癌的治疗过程中与多西紫杉醇/曲妥珠单抗/多柔比星耐药相关,以及在胰腺癌的治疗过程中与吉西他滨和放疗耐药相关[19];GLS在胃癌的治疗过程中与顺铂耐药相关[20]。癌细胞代谢失调引起癌症耐药的分子机制极其复杂。例如,增强的糖酵解可生成更多的ATP和NADPH,而NADPH是一个重要的抗氧化剂,可抑制化疗药物诱导的氧化损伤,从而产生癌症耐药。其中高ATP水平在癌症耐药中也起着一定的作用。一方面,高ATP水平可激活ATP结合盒(ATP-binding cassette,ABC)转运,从而增加药物外排[21]。另一方面,高ATP水平还可上调低氧诱导因子1(hypoxia inducible factor-1,HIF-1)信号,诱导低氧相关的药物耐受。HIF-1α又与药物耐受密切相关。首先,HIF-1α可增强糖酵解过程中关键酶的活性,促进代谢由氧化磷酸化向糖酵解转变,降低三羧酸循环途径产生的活性氧(reactine oxygen species,ROS),防止DNA损伤,激活DNA修复和应激反应的途径,抑制癌细胞凋亡[22-23]。其次,HIF-1α可促进细胞膜碳酸酐酶的表达,使细胞外环境酸化,引起细胞内外pH差值增加,这将会减少化疗药物的被动吸收量,促使活性药物外排,从而不足以维持胞内抗癌药物浓度[24]。最后,HIF-1α可促进抗凋亡信号基因表达。通过表达抗凋亡信号(生存素,Bcl-Xl和Mcl-1等)逃避化疗药物的杀伤作用[25]。
3.1 针对葡萄糖代谢酶
葡萄糖代谢是一个非常复杂的过程,它是细胞所需能量的主要来源,有一系列酶参与这一过程。其中一些关键酶,包括葡萄糖转运体,己糖激酶(hexekinase,HK),乳酸脱氢酶(lactate dehydrogenase,LDH)以及丙酮酸脱氢酶激酶(pyruvate dehydrogenase,PDH)与癌症耐药有密切关系。
3.1.1 葡萄糖转运体
葡萄糖通过胞膜从胞外转运到胞内是葡萄糖代谢的第一限速步骤,主要由葡萄糖转运蛋白(glucose transporters,GLUT)家族参与这一过程。在癌细胞中,经常可见GLUT家族代谢失调[26]。人类GLUT家族包括14种亚型(GLUT1~14 或SLC2A1~14)。WZB117是GLUT1的一种抑制剂,可通过抑制葡萄糖的摄取来抑制糖酵解过程,从而降低细胞内ATP水平。对于应用WZB117治疗的癌症患者,添加外源性ATP可降低WZB117的疗效,提示降低癌细胞内ATP水平可能是WZB117抗癌治疗的一个重要机制[27]。此外,WZB117还可诱导内质网应激反应,导致细胞周期停滞。WZB117和顺铂或紫杉醇联合还可显示出协同的抗癌效果[28]。在低氧条件下,GLUT1的抑制剂根皮素(phloretin)可显著提高柔红霉素的抗癌疗效,并克服低氧引起的耐药[29]。GLUT4参与多发性骨髓瘤(multiple myeloma,MM)细胞的葡萄糖摄取过程。而GLUT4的特异性抑制剂,利托那韦可降低Mcl-1蛋白的表达,从而抑制MM细胞对葡萄糖的摄取,进而诱导MM细胞凋亡。此外,利托那韦还可抑制初级骨髓瘤细胞的增殖,提高癌细胞对多柔比星的敏感性[30]。
3.1.2 己糖激酶
HK在糖酵解和细胞凋亡中均起重要作用。其抑制剂,如2-脱氧葡萄糖(2-deoxyglucose,2-DG)、3-溴丙酮酸(3-bromo-pyruvate,3-BrPA)和氯尼达明(lonidamine,LND)已用于早期临床试验,三者联合抗癌症的疗效已有文献详细阐述[31]。2-DG作为葡萄糖的无毒类似物,可竞争性地抑制癌细胞对葡萄糖的摄取,从而降低细胞内ATP水平,抑制细胞分裂增殖周期,进而导致细胞凋亡[32]。在氧充足的条件下,2-DG还可诱导未折叠蛋白反应,引起下游的一些唯BH3域蛋白提前凋亡。唯BH3域蛋白是Bcl-2家族蛋白的一种,此外Bcl-2家族蛋白还包括抗凋亡成员(Bcl-2,Bcl-XL,Bcl-w,Mcl-1和A1)、促凋亡成员(Bax和Bak)。它们在癌症的发生、发展、凋亡以及癌症耐药方面都起重要作用[33]。ABT-737和ABT-263都是Bcl-2的小分子抑制剂,有研究表明,联合应用2-DG或LND可以促进ABT-263/ 737诱导的细胞凋亡[34-38]。其机制可从以下2方面阐述:①2-DG可激活AMP活化蛋白激酶以及抑制Mcl-1的转化,从而降低Mcl-1的水平[34];②2-DG减弱Bak和Mcl-1的相互作用,进而增强了ABT-263/737从Mcl-1/Bcl-XL/Bak异源体中释放Bak的作用,从而引起细胞凋亡[36]。表明2-DG-ABT-737联合使用可以改善ABT-737耐药。
曲妥珠单抗是一种针对ErbB2的人源化单克隆抗体,在治疗ErbB2+的乳腺癌患者中有很好疗效,但是大多数患者都会出现后天性曲妥珠单抗耐药[36]。有研究表明,ErbB2的过度表达可促进糖酵解并增加癌细胞对糖酵解抑制剂的敏感性[37]。2-DG/曲妥珠单抗联合可显著抑制糖酵解,从而抑制曲妥珠单抗敏感/耐药的乳腺癌细胞的生长。这些结果表明,2-DG可改善曲妥珠单抗耐药,增强曲妥珠单抗治疗ErbB2+乳腺癌的疗效。
3-BrPA是一种作用于HKⅡ的抑制剂,是一些特定癌症化疗的敏感药物[38]。3-BrPA可抑制细胞内ATP的产生,从而降低ABC的活性,抑制药物外排,维持细胞内较高药物浓度,达到不断杀灭癌细胞的目的。还有研究表明,3-BrPA可以增强柔红霉素和多柔比星的细胞毒作用,联合应用柔红霉素和3-BrPA可显著抑制MM小鼠肿瘤的生长[39]。此外,3-BrPA还可通过逆转耐药表型机制,改善奥沙利铂和5-FU等化疗药物引起的耐药[40-41]。
3.1.3 乳酸脱氢酶A(LDHA)
LDHA催化糖酵解途径的最后一步反应,将丙酮酸和NADH转化成乳酸和NAD+,对肿瘤的生长起关键作用。抑制癌细胞中LDHA的活性可促进细胞转变为有氧呼吸,从而降低癌细胞在低氧环境下的增殖能力,并且通过升高ROS水平促进细胞凋亡[42-43]。另外,NAD+生成抑制剂FK866和FX11联合应用在异种移植模型中还可使淋巴瘤得到治愈[44]。
众所周知,热休克因子1(heat shock factor 1,HSF1)的基本功能是调节热休克反应,但最近的研究指出,HSF1的非热休克功能对于癌症的发生发展同样重要[46]。Dai等[45]报道HSF1可增加癌细胞对葡萄糖的摄取,增加乳酸生成量以及提高LDHA活性。HSF1是真核生物热休克反应的主要调节因子。有研究表明,上调HSF1和LDHA可促进糖酵解,产生癌症耐药[19]。
3.1.4 丙酮酸脱氢酶
PDH是细胞进行三羧酸循环生成ATP的限速酶,催化丙酮酸转化为乙酰辅酶A。PDH激酶(PDH kinase,PDK)可使PDH磷酸化并抑制其活性,此时它限制了丙酮酸进入线粒体,导致三羧酸循环不能正常进行。PDK有4种亚型(PDK1~4),而其中PDK3在低氧条件下肿瘤细胞的糖酵解过程中起最主要作用。低氧介导的PDK3过多表达显著抑制了癌细胞凋亡,增加了癌细胞对顺铂或紫杉醇的耐药[47-48]。此外,结肠癌患者组织中升高的PDK3水平与癌症的严重程度密切相关,往往有较差的预后[49]。
二氯乙酸(dichloroacetate,DCA)是PDK的一种抑制剂,可使PDK失活从而活化PDH,使细胞代谢由糖酵解转变为有氧呼吸。在临床试验中,DCA和奥美拉唑的联合已显示出协同抗癌疗效[50]。DCA,奥美拉唑和他莫昔芬的联合可完全阻断纤维肉瘤细胞的增殖,而不影响人类正常成纤维细胞的增殖。DCA还可通过诱导更多的线粒体介导的细胞凋亡途径,增加5-氟尿嘧啶的抗癌疗效[51]。此外,DCA还可增强放疗的疗效。曹等[52]报道,DCA和Bcl-2抑制剂协同作用可使野生型以及Bcl-2过度表达型癌细胞对放疗更加敏感。
3.2 针对谷氨酰胺代谢
谷氨酰胺在细胞增殖和能量代谢过程中发挥重要作用。谷氨酰胺分解包括2个步骤:首先在GLS的催化下转化为谷氨酸,然后由谷氨酸脱氢酶催化转化为α-酮戊二酸。哺乳动物中有肾型GLS (GLS1)和肝型GLS(GLS2)。利用13C同位素示踪代谢实验表明,癌细胞利用谷氨酰胺分解提供碳源参与三羧酸循环,而产生的中间体被用作原料参与其他的生物合成过程[53]。谷氨酰胺和亮氨酸联合诱导谷氨酰胺分解可激活哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin 1,mTOR1)信号,从而触发细胞分裂增殖和抑制自噬。mTOR信号通路参与高度恶性产AFP型胃癌(AFPGC)的顺铂耐药[54]。提示增强的谷氨酰胺代谢可能与顺铂耐药有关。
二甲基-2-[5-苯基乙酰基-1,2,4-噻二唑-2-基]乙基硫醚(BPTES),是一种GLS1抑制剂,可抑制癌细胞在有氧条件下的增殖。通过BPTES抑制GLS1的活性,可抑制携带异柠檬酸脱氢酶1(isocitrate dehydrogenase,IDH1)基因突变型胶质细胞瘤细胞的生长。也降低谷氨酰胺和α-酮戊二酸水平,增加糖酵解中间体,从而提高突变型IDH1患者的治疗疗效[55]。
西罗莫司是一种mTORC1抑制剂,可增强顺铂治疗AFPGC的疗效[54]。通过NVP-BEZ235 (PI3K/mTOR抑制剂)抑制mTORC1,可提高化疗药物诸如环磷酰胺、糖胞苷及地塞米松治疗T细胞急性淋巴细胞白血病的疗效。此外,NVP-BEZ235还可敏化长春新碱耐药型Jurkat细胞,这表明通过抑制mTORC1的活性有可能逆转化疗耐药[56]。谷氨酰胺分解会激活mTORC1信号,而应用GLS抑制剂或小干扰(siRNA)抑制谷氨酰胺分解,可降低mTORC1活性,从而使癌细胞对化疗药物敏感[57]。
3.3 针对脂肪酸代谢
脂肪酸可通过从头合成及氧化分解过程为机体提供能量支持。在癌细胞中,脂肪酸的从头合成明显上调,其中发挥主要作用的是脂肪酸合成酶。脂肪酸合成酶在大多数癌症中都高表达,且与癌症较差的预后密切相关。G28UCM是FASN的一种抑制剂,可明显缩小实验动物的移植瘤体积,且不会出现厌食、体质量下降等不良反应[58]。在体外针对曲妥珠单抗耐药细胞株(AU565T)及拉帕替尼耐药细胞株(AU65LR)的实验中,G28UCM和曲妥珠单抗、拉帕替尼联合使用可表现出良好的协同作用[59]。
4 结语
癌细胞通过改变自身物质代谢特点,如增强有氧糖酵解,增加脂肪酸从头合成以及谷氨酰胺代谢来满足自身对能量和生物合成的需求,这些特点可以促进癌细胞增殖,降低药物诱导的细胞凋亡,从而产生癌症耐药。这些事实表明,癌细胞的代谢失调和癌症耐药有密切的关系,以癌细胞代谢过程中关键酶作为靶点,可用来改善癌症耐药从而提高化疗药物对癌症患者的疗效。然而,针对代谢失调引起癌症耐药的分子机制尚未完全清楚,仍需进一步研究。联合癌症化疗和抗代谢治疗,结合个体化治疗理念,将有助于进一步提高癌症患者的疗效。
[1]Holohan C,Van Schaeybroeck S,Longley DB,Johnston PG.Cancer drug resistance:an evolving paradigm[J].Nat Rev Cancer,2013,13(10):714-726.
[2] Coller HA.Is cancer a metabolic disease?[J].Am J Pathol,2014,184(1):4-17.
[3] Seyfried TN,Shelton LM.Cancer as a metabolic disease[J].Nutr Metab(Lond),2010,7:7.
[4] Zhang Y,Yang JM.Altered energy metabolism in cancer:a unique opportunity for therapeutic intervention[J].Cancer Biol Ther,2013 14(2):81-89.
[5]Warburg O.On respiratory impairment in cancer cells[J].Science,1956,124(3215):269-270.
[6] CatalanoV,TurdoA,DiFrancoS,DieliF,TodaroM,Stassi G.Tumor and its microenvironment:a synergistic interplay[J].Semin Cancer Biol,2013,23 (6):522-532.
[7] Dang CV.Links between metabolism and cancer [J].Genes Dev,2012,26(9):877-890.
[8] Zhao Y,Butler EB,Tan M.Targeting cellular metabolism to improve cancer therapeutics[J]. Cell Death Dis,2013,4:e532.
[9]Menendez JA,Lupu R.Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis [J].Nat Rev Cancer,2007,7(10):763-777.
[10] Bauer DE,Hatzivassiliou G,Zhao F,Andreadis C,Thompson CB.ATP citrate lyase is an important component of cell growth and transformation[J]. Oncogene,2005,24(41):6314-6322.
[11] Mohamed A,Deng X,Khuri FR,Owonikoko TK. Altered glutamine metabolism and therapeutic opportunities for lung cancer[J].Clin Lung Cancer,2014,15(1):7-15.
[12] Pawlik TM,Souba WW,Sweeney TJ,Bode BP. Amino acid uptake and regulation in multicellular hepatoma spheroids[J].J Surg Res,2000,91 (1):15-25.
[13] Dang CV.Glutaminolysis:supplying carbon or nitrogen or both for cancer cells?[J].Cell Cycle,2010,9(19):3884-3886.
[14] Kaplan O.Correspondence re:M.Fanciulli et al,Energy metabolism of human LoVo colon carcinoma cells:correlation to drug resistance and influence of lonidamine.Clin Cancer Res,6:1590-1597,2000[J].Clin Cancer Res,2000,6(10):4166-4167.
[15] Wu SH,Bi JF,Cloughesy T,Cavenee WK,Mischel PS.Emerging function of mTORC2 as a core regulator in glioblastoma:metabolic reprogramming and drug resistance[J].Cancer Biol Med,2014,11(4):255-263.
[16] Das V,Kanakkanthara A,Chan A,Miller JH. Potential role of tubulin tyrosine ligase-like enzymes in tumorigenesis and cancer cell resistance[J]. Cancer Lett,2014,350(1-2):1-4.
[17] Liu H,Liu Y,Zhang JT.A new mechanism of drug resistance in breast cancer cells:fatty acid synthase overexpression-mediated palmitate overproduction[J].Mol Cancer Ther,2008,7(2):263-270.
[18] Wang JB,Erickson JW,Fuji R,Ramachandran S,Gao P,Dinavahi R,et al.Targeting mitochondrial glutaminase activity inhibits oncogenic transformation [J].Cancer Cell,2010,18(3):207-219.
[19] Zhao Y,Liu H,Liu Z,Ding Y,Ledoux SP,Wilson GL,et al.Overcoming trastuzumab resistance in breast cancer by targeting dysregulated glucose metabolism[J].Cancer Res,2011,71 (13):4585-4597.
[20] Zhou M,Zhao Y,Ding Y,Liu H,Liu Z,Fodstad O,et al.Warburg effect in chemosensitivity:targeting lactate dehydrogenase-A re-sensitizes Taxol-resistant cancer cells to Taxol[J].Mol Cancer,2010,9:33.
[21]Nuruzzaman M,Zhang R,Cao HZ,Luo ZY. Plant pleiotropic drug resistance transporters:transport mechanism,gene expression,and function [J].J Integr Plant Biol,2014,56(8):729-740.
[22] Murono K,Tsuno NH,Kawai K,Sasaki K,Hongo K,Kaneko M,et al.SN-38 overcomes chemoresistanceofcolorectalcancercells induced by hypoxia,through HIF1alpha[J].Anticancer Res,2012,32(3):865-872.
[23] Flamant L,Notte A,Ninane N,Raes M,Michiels C. Anti-apoptotic role of HIF-1 and AP-1 in paclitaxel exposed breast cancer cells under hypoxia[J]. Mol Cancer,2010,9:191.
[24] CeradiniDJ, KulkarniAR, CallaghanMJ,Tepper OM,Bastidas N,Kleinman ME,et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1[J]. Nat Med,2004,10(8):858-864.
[25]Liu Y,Seipel C,Lopez ME,Nuchtern JG,Brandt ML,et al.A retrospective study of multimodalanalgesictreatmentafterlaparoscopic appendectomy in children[J].Paediatr Anaesth,2012,33(12):1187-1192.
[26] Macheda ML,Rogers S,Best JD.Molecular and cellular regulation of glucose transporter(GLUT)proteins in cancer[J].J Cell Physiol,2005,202 (3):654-662.
[27] Qian Y,Wang X,Liu Y,Li Y,Colvin RA,Tong L,et al.Extracellular ATP is internalized by macropinocytosis and induces intracellular ATP increase and drug resistance in cancer cells[J].Cancer Lett,2014,351(2):242-251.
[28] Monti E,Gariboldi MB.HIF-1 as a target for cancer chemotherapy,chemosensitization and chemoprevention[J].Curr Mol Pharmacol,2011,4(1):62-77.
[29] Cao X,Fang L,Gibbs S,Huang Y,Dai Z,Wen P,et al.Glucose uptake inhibitor sensitizes cancer cells to daunorubicin and overcomes drug resistance in hypoxia[J].Cancer Chemother Pharmacol,2007,59(4):495-505.
[30]McBrayer SK,Cheng JC,Singhal S,Krett NL,Rosen ST,Shanmugam M.Multiple myeloma exhibits novel dependence on GLUT4,GLUT8,and GLUT11:implications for glucose transporterdirected therapy[J].Blood,2012,119(20):4686-4697.
[31] El Mjiyad N,Caro-Maldonado A,Ramírez-Peinado S,Muñoz-Pinedo C.Sugar-free approaches to cancer cell killing[J].Oncogene,2011,30(3):253-264.
[32] Pelicano H,Martin DS,Xu RH,Huang P.Glycolysis inhibition for anticancer treatment[J].Oncogene,2006,25(34):4633-4646.
[33] Nishioka T,Luo LY,Shen L,He H,Mariyannis A,Dai W,et al.Nicotine increases the resistance of lung cancer cells to cisplatin through enhancing Bcl-2 stability[J].Br J Cancer,2014,110(7):1785-1792.
[34]Coloff JL,Macintyre AN,Nichols AG,Liu T,Gallo CA,Plas DR,et al.Akt-dependent glucose metabolism promotes Mcl-1 synthesis to maintain cell survival and resistance to Bcl-2 inhibition[J]. Cancer Res,2011,71(15):5204-5213.
[35] Meynet O,Bénéteau M,Jacquin MA,Pradelli LA,Cornille A,Carles M,et al.Glycolysis inhibition targets Mcl-1 to restore sensitivity of lymphoma cells to ABT-737-induced apoptosis[J].Leukemia,2012,26(5):1145-1147.
[36] Yamaguchi R,Janssen E,Perkins G,Ellisman M,Kitada S,Reed JC.Efficient elimination of cancer cells by deoxyglucose-ABT-263/737 combination therapy[J].PLoS One,2011,6(9):e24102.
[37] Zhao YH,Zhou M,Liu H,Ding Y,Khong HT,Yu D,et al.Upregulation of lactate dehydrogenase A by ErbB2 through heat shock factor 1 promotes breast cancer cell glycolysis and growth [J].Oncogene,2009,28(42):3689-3701.
[38] Geschwind JF,Georgiades CS,Ko YH,Pedersen PL.Recently elucidated energy catabolism pathways provide opportunities for novel treatments in hepatocellular carcinoma[J].Expert Rev Anticancer Ther,2004,4(3):449-457.
[39] Nakano A,Tsuji D,Miki H,Cui Q,El Sayed SM,Ikegame A,et al.Glycolysis inhibition inactivates ABC transporters to restore drug sensitivity in malignant cells[J].PLoS One,2011,6(11):e27222.
[40] Hulleman E,Kazemier KM,Holleman A,Vander-Weele DJ,Rudin CM,Broekhuis MJ,et al.Inhibition of glycolysis modulates prednisolone resistance in acute lymphoblastic leukemia cells[J]. Blood,2009,113(9):2014-2021.
[41] Zhou Y,Tozzi F,Chen J,Fan F,Xia L,Wang J,et al.Intracellular ATP levels are a pivotal determinant of chemoresistance in colon cancer cells[J]. Cancer Res,2012,72(1):304-314.
[42]Fantin VR1,St-Pierre J,Leder P.Attenuation of LDH-A expression uncovers a link between glycolysis,mitochondrial physiology,and tumor maintenance[J].Cancer Cell,2006,9(6):425-434.
[43] Miao P,Sheng S,Sun X,Liu J,Huang G. Lactate dehydrogenase A in cancer:a promising target for diagnosis and therapy[J].IUBMB Life,2013,65(11):904-910.
[44] Le A,Cooper CR,Gouw AM,Dinavahi R,Maitra A,Deck LM,et al.Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression[J].Proc Natl Acad Sci USA,2010, 107(5):2037-2042.
[45] Dai C,Whitesell L,Rogers AB,Lindquist S.Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis[J].Cell,2007,130(6):1005-1018.
[46] Khaleque MA,Bharti A,Sawyer D,Gong J,Benjamin IJ,Stevenson MA,et al.Induction of heat shock proteins by heregulin beta1 leads to protection from apoptosis and anchorage-independent growth[J].Oncogene,2005,24(43):6564-6573.
[47] LuCW,LinSC,ChienCW,LinSC,LeeCT,LinBW,et al.Overexpression of pyruvate dehydrogenase kinase 3 increases drug resistance and early recurrence in colon cancer[J].Am J Pathol,2011,179(3):1405-1414.
[48] Sullivan EJ,Kurtoglu M,Brenneman R,Liu H,Lampidis TJ.Targeting cisplatin-resistant human tumor cells with metabolic inhibitors[J].Cancer Chemother Pharmacol,2014,73(2):417-427.
[49] Lu CW,Lin SC,Chen KF,Lai YY,Tsai SJ. Induction of pyruvate dehydrogenase kinase-3 by hypoxia-induciblefactor-1promotesmetabolic switch and drug resistance[J].J Biol Chem,2008,283(42):28106-28114.
[50]Ishiguro T,Ishiguro R,Ishiguro M,Iwai S.Cotreatmentofdichloroacetate,omeprazoleand tamoxifen exhibited synergistically antiproliferative effect on malignant tumors:in vivo experiments and a case report[J].Hepatogastroenterology,2012,59(116):994-996.
[51] Tong J,Xie G,He J,Li J,Pan F,Liang H. Synergistic antitumor effect of dichloroacetate in combination with 5-fluorouracil in colorectal cancer [J].J Biomed Biotechnol,2011,2011:740564.
[52] Cao W,Yacoub S,Shiverick KT,Namiki K,Sakai Y,Porvasnik S,et al.Dichloroacetate(DCA)sensitizes both wild-type and over expressing Bcl-2 prostate cancer cells in vitro to radiation[J]. Prostate,2008,68(11):1223-1231.
[53] DeBerardinis RJ,Mancuso A,Daikhin E,Nissim I,Yudkoff M,Wehrli S,et al.Beyond aerobic glycolysis:transformed cells can engage in glutamine metabolismthatexceedstherequirementfor protein and nucleotide synthesis[J].Proc Natl Acad Sci USA,2007,104(49):19345-19350.
[54] Kamata S,Kishimoto T,Kobayashi S,Miyazaki M,Ishikura H.Possible involvement of persistent activity of the mammalian target of Rapamycin pathway in the cisplatin resistance of AFP-producinggastric cancer cells[J].Cancer Biol Ther,2007,6 (7):1036-1043.
[55] Seltzer MJ,Bennett BD,Joshi AD,Gao P,Thomas AG,Ferraris DV,et al.Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1[J].Cancer Res,2010,70 (22):8981-8987.
[56]Chiarini F,Grimaldi C,Ricci F,Tazzari PL,Evangelisti C,Ognibene A,et al.Activity of the novel dual phosphatidylinositol 3-kinase/mammalian targetofrapamycininhibitorNVP-BEZ235 against T-cell acute lymphoblastic leukemia[J]. Cancer Res,2010,70(20):8097-8107.
[57] Durán RV,Oppliger W,Robitaille AM,Heiserich L, Skendaj R,Gottlieb E,et al.Glutaminolysis activates Rag-mTORC1 signaling[J].Mol Cell,2012,47(3):349-358.
[58] Zaytseva YY,Rychahou PG,Gulhati P,Elliott VA,Mustain WC,O′Connor K,et al.Inhibition of fatty acid synthase attenuates CD44-associated signaling and reduces metastasis in colorectal cancer[J]. Cancer Res,2012,72(6):1504-1517.
[59] Puig T,Aguilar H,Cufí S,Oliveras G,Turrado C,Ortega-Gutiérrez S,et al.A novel inhibitor of fatty acidsynthaseshowsactivityagainst HER2+breast cancer xenografts and is active in anti-HER2 drug-resistant cell lines[J].Breast Cancer Res,2011,13(6):R131.
(本文编辑:乔虹)
Intervention with drug resistance related to metabolism of cancer cells:advances in research
YAN Chen1,YU De-cai2,JIANG Yong1
(1.Department of Hepatobiliary Surgery,the First People’s Hospital of Changzhou,Changzhou 213003,China;2.Hepatobiliary Surgery,Affiliated Drum Tower Hospital,Medical College,Nanjing University,Nanjing 210000,China)
The metabolic properties of cancer cells diverge significantly from those of normal cells. Energy production in cancer cells is abnormally dependent on aerobic glycolysis.In addition,cancer cells have other metabolic characteristics,such as increasing fatty acid synthesis and glutamine metabolism.Emerging evidences show that many key enzymes in dysregulated Warburg-like glucose metabolism,fatty acid synthesis and glutaminolysis are linked to drug resistance in cancer treatment. For example,lactate dehydrogenase A contributes to paclitaxel/trastuzuma resistance in breast cancer,fatty acid synthase is linked to docetaxel/trastuzumab/adriamycin resistance in breast cancer,and glutaminolysis is linked to cisplatin resistance in gastric cancer.Therefore,targeting cellular metabolism may improve the response to cancer therapeutics,and the combination of chemotherapeutic drugs with cellular metabolism inhibitors may overcome drug resistance in cancer therapy.This review discussed the relationship between dysregulated cellular metabolism and chemotherapy resistance,and the way in which targeting of metabolic enzymes can help overcome the resistance to cancer therapy or enhance the efficacy of common therapeutic agents.
cancer;cellular metabolism;drug resistance
The project supported by Program for the Talents in Science and Education of Jiangsu Province;National Natural Science Foundation of China(30972904/H1617);and the Major Science and Technology Projects of Health Department of Changzhou City(ZD201305)
JIANG Yong,Phn:13809079991,E-mail:yjiang8888@hotmail.com
R963,R979.1
A
1000-3002-(2015)06-0986-07
10.3867/j.issn.1000-3002.2015.06.017
江苏省兴卫工程重点人才项目;国家自然科学基金(30972904/H1617);常州市卫生局重大科技项目(ZD201305)
颜 晨,男,硕士研究生,主要从事肝癌代谢方面的研究。
江 勇,E-mail:yjiang8888@hotmail.com,Phn:13809079991
(2014-12-29接受日期:2015-08-25)