APP下载

二肽基肽酶4抑制剂与心血管疾病相关性的研究进展

2015-01-21杨雪

中国心血管病研究 2015年2期
关键词:列汀抑制剂心血管

综 述

二肽基肽酶4抑制剂与心血管疾病相关性的研究进展

目前新型口服降糖药二肽基肽酶4(DPP4)抑制剂以其在肠促胰岛素分解代谢血糖中的作用而被用于糖尿病治疗中。糖尿病是一种以高血糖为特征的代谢性疾病,它的发病机制与遗传因素和免疫功能紊乱等因素有关[1]。2型糖尿病不仅与胰岛素抵抗相关,使患者的胰岛素信号受损,还会增加相关心血管疾病(CVD)风险。二肽基肽酶4不仅能控制血糖,改善胰岛素代谢信号和胰岛素抵抗,还具有潜在的心血管保护作用。

1 DPP4及其家族

DPP4是一种由766个氨基酸组成的多功能蛋白水解酶,凡是氨基酸末端倒数第二位具有脯氨酸或丙氨酸或寡肽均可被DPP4从其N端裂解下二肽,并在体内转为无活性的代谢产物,如胰高血糖素样肽-1(GLP-1)[2]。其家族成员包括 DPP4、DPP8、DPP9和成纤维细胞活化蛋白(FAP)。DPP4广泛存在于血浆、肺、胃肠道、肾脏、淋巴结和结缔组织等体内组织中,并表达于包括上皮细胞、内皮细胞和免疫细胞(如NK细胞、淋巴细胞及单核细胞)等的细胞表面上[3,4]。已证实DPP4在信号传导、细胞-基质相互作用及肽的活性调控方面均起到了非常重要的作用。

2 对血糖的控制作用

肠促胰岛素是一类在肠道生成的具有促胰岛素分泌作用的中等长度直链多肽激素,在人体内分为胰高血糖素样肽 -1(GLP-1)和葡萄糖依赖性促胰岛素分泌多肽(GIP)。GLP-1仅在餐后生成,促进胰岛B细胞分泌胰岛素从而降低血糖,不会诱发低血糖反应。GLP-1可在体外调节胰岛B细胞再生、增殖和存活,这一机制或可起到稳定或逆转病情的作用。它还能够抑制胰岛A细胞分泌胰高血糖素及延迟胃排空从而有利于餐后血糖的控制[5]。GLP-1可被DPP4快速降解并经肾脏清除。因此,通过增强肠促胰岛素的作用机制,产生了两种新的2型糖尿病治疗策略:一种是应用GLP-1激动剂,即肠促胰岛素类似物;另一种是应用DPP4抑制剂(列汀类药物)通过竞争性结合DPP4活化部位,防止内源性肠促胰岛素(GLP-1)被水解,增加其血浆浓度,并延长活性肠促胰岛素的葡萄糖调节作用,取得改善血糖控制、保护胰岛B细胞功能的效果[6]。

3 对心血管系统的影响

从2006年始DPP4抑制剂逐步用于2型糖尿病的临床治疗中。研究表明DPP4抑制剂不仅可以控制血糖水平,其潜在的心血管保护作用也逐渐受到关注[7],并且此类作用可能与GLP-1有相关性。

3.1 与GLP-1相关的心血管保护作用 有确切数据显示,DPP4抑制剂作用下的GLP-1信号能介导心血管保护作用[7]。GLP-1不仅有降低血糖作用,还有减少缺血再灌注损伤及改善心肌收缩等一系列作用。被DPP4抑制剂作用后的GLP-1很可能通过上述途径来实现其心血管保护效果[7]。一项由14例同患糖尿病及心血管疾病的患者参与的小型研究表明,经西他列汀治疗后,患者体内GLP-1水平明显增加,左心室功能及室壁运动均得到提高[8]。Sauve等[9]在高脂饮食且血糖正常的链霉素小鼠(A组)及DPP4抑制剂小鼠(B组)中诱导心肌梗死模型。通过4周跟踪实验后结果显示,DPP4抑制剂小鼠的生存率明显增加,从而证明DPP4抑制剂可激活心肌细胞的存活途径。同一研究中,将已成功诱发左冠状动脉前降支梗死的A组小鼠再给予8周的西他列汀治疗,结果显示,与前所述B组小鼠在左冠状动脉前降支的梗死部位大小及相应蛋白质水平均无明显变化的情况下,给予西列他汀治疗后其存活率显著提高。

因此,DPP4抑制剂有心血管保护作用,但机制相对复杂,可能与GLP-1有一定的相关性[9]。Zhang等[10]将DPP4抑制剂标记的骨髓间充质干细胞片植入心肌梗死后的左心室表面后,发现心脏缺血区域的血管生成和心肌功能恢复均得到很大的改善。DPP4抑制剂实验是通过提高骨髓间充质干细胞趋化因子受体CXCR4的表达,上调基质细胞衍生因子-1α(SDF-1α)水平,刺激间充质干细胞激活,发挥其促进血管修复和再生的作用,从而改善心脏左室功能[10]。

3.2 对血管张力及血压的作用 DPP4抑制剂可能通过其在调节GLP-1和GIP的生物有效性方面的作用来直接影响血管张力和功能。GLP-1受体和DPP4抑制剂在大鼠心血管系统内皮细胞中得以表达[11,12]。DPP4抑制剂的激活和表达通过微血管内皮细胞的高糖水平在体外得以提高[13]。众所周知,GLP-1及艾塞那肽可诱导全身动脉及肺动脉的舒张,并且这一舒张机制与药物剂量和可逆的内皮依赖性有关[14,15]。DPP4抑制剂能够通过提高GLP-1水平,从而引起血管张力的改变。内皮细胞功能改善可能通过与一氧化氮(NO)相关途径来实现[16,17]。体外动脉实验已证实,DPP4抑制剂可不依赖GLP-1受体,而是直接通过NO相关性机制诱导部分血管扩张。NO的释放有赖于磷脂酰肌醇3激酶及钾离子通道[18]。DPP4抑制剂(沙格列汀等)治疗可增加NO的生成并减少ONOO-的释放[19]。

DPP4抑制剂调节血管张力的另一机制,可能是通过神经肽Y信号传导来实现的。DPP4抑制剂底物神经肽Y(1-36)和肽YY(1-36)是内源性 Y(1)的受体配体。Y(1)受体激活可导致血管收缩。DPP4抑制剂可介导裂解形成NPY(3-36)及PYY(3-36),激动内源性Y(2)受体。DPP4抑制剂可能通过调节NPY及PYY降解来影响血管张力。与之相反,NPY(1-36)可通过激活 Y(1)受体而提高对肾血管紧张素Ⅱ的应答。DPP4抑制剂(如西他列汀)可增加NPY的堆积从而促进血管紧张素Ⅱ的缩血管作用[20,21]。与之比较,GLP-1也具有一定的降压作用。研究证明,GLP-1及其类似物对2型糖尿病特别是同时合并高血压的患者可起到降压作用[22]。众所周知,DPP4抑制剂可增强GLP-1的降压效果,但与此同时,还能够促进NPY/PYY介导Y(2)的激活作用。然而许多影响力大的实验无法将血压作为终点指标进行评估,因其可能受到多重因素影响,所以呈现数据有一定困难[22]。Ogawa等[23]研究报告显示,隔日一次的西他列汀治疗可显著降低血红蛋白及收缩压,且两者无明显相关性。西他列汀对非糖尿病且合并轻中度高血压患者也可起到降压作用。给予西他列汀治疗5天后,收缩压及舒张压均有显著降低[24]。另一种DPP4抑制剂(沙格列汀)在2型糖尿病患者的治疗中也显示出降低收缩压及舒张压的作用[25]。

3.3 对动脉粥样硬化的作用 低密度脂蛋白受体基因敲除后的小鼠给予高脂饮食及阿格列汀治疗12周后,动脉斑块的形成显著减少,同时胰岛素抵抗得以改善[26]。高脂饮食可增加DPP4活性,减少对阿格列汀的反应。血压下降在治疗早期即可显现,这与主动脉的乙酰胆碱依赖性舒张有关。DPP4抑制剂治疗可在不改变每周体重及摄食量基础上减少内脏脂肪的聚集,并且伴有血浆细胞因子(TNF-α等)显著减少[26]。主动脉中的浸润细胞CD11b+和 CD206+及脂肪组织中的 CD11b+和CD11c+细胞均显著减少,随之下降的还有炎性基因的表达,因此DPP4抑制剂可有效抑制体外单核细胞的迁移。可溶的外源性DPP4对荧光标记下单核细胞对腹腔的趋化性有明显作用,这一作用可被格列西汀有效抑制。Shirakawa等[27]发现,DPP4抑制剂具有预防脂肪单核细胞浸润、改善胰岛素抵抗及维持糖稳态的作用。利用人单核细胞的体外研究表明,阿格列汀治疗可减少TLR-4介导的促炎症细胞因子=IL-6及IL-1β的生成,表明DPP4抑制剂可通过抑制炎症应答从而抑制动脉粥样硬化形成[28]。

3.4 在降低心血管风险中的潜在作用 2型糖尿病是典型的心血管病风险因素[29,30]。尽管先进的治疗方法使危险因素(如糖尿病患者的血糖、血脂)的处理得以改进,但该患者群体的大量剩余风险仍主张替代治疗。DPP4抑制剂作为降低血糖的治疗方法,作用并非十分显著,目前建议用作糖尿病饮食及药物之外的辅助治疗。DPP4抑制剂用于糖尿病患者的另一益处是可降低心血管风险。目前世界范围内已上市的DPP4抑制剂分别为西格列汀[31](sitagliptin)、维格列汀[32](vildagliptin)、沙格列汀[33](saxagliptin)、阿格列汀[34](alogliptin)、利格列汀[35](linagliptin)、吉格列汀[36](gemigliptin)和替格列汀(teneligliptin)。大多数针对DPP4抑制剂的临床试验表明,DPP4抑制剂可使糖化血红蛋白水平降低0.6%~0.8%[37-41]。这些变化在同时给予二甲双胍、磺脲类及吡格列酮等治疗时更加明显。大多数研究表明,利用稳态模型来评估胰岛B细胞功能指数和空腹胰岛素原,二者较前均有改善,即胰岛素比率可体现出胰岛B细胞功能的改善[41,42]。无论单独用药还是联合用药,DPP4抑制剂均不会对体重造成明显的影响[37,43,44]。

最近一项共8544例患者参与的、纳入18项随机试验的荟萃分析表明,与其他2型糖尿病降糖疗法相比,DPP4抑制剂可显著降低有害的心血管事件发生[45]。一些前瞻性临床对照试验正在就DPP4抑制剂对心血管事件的影响进行研究,并指出此类药物的副作用及低血糖反应的发生率均较低[46]。已报道的DPP4抑制剂的副作用包括胰腺炎、高脂血症、高甘油三酯血症、鼻咽炎、感冒样症状、咳嗽等[40,47]。尽管糖尿病患者胰腺炎发生率较一般人群高,但仍有报道称胰腺炎的发生及淀粉酶/脂肪酶的升高与西他列汀有相关性[48]。然而,多个临床试验表明,DPP4抑制剂导致胰腺炎的概率仍明显低于其他口服降糖药[49]。

综上所述,DPP4抑制剂在控制血糖方面起到核心作用。近期研究[49]表明,除了调节餐后血糖外DPP4抑制剂还具有多效性,并且可能在炎性疾病如动脉粥样硬化的治疗中起作用,因此其潜在的心血管系统的生理学及病理学作用也已成为关注焦点。然而DPP4抑制剂的心血管保护作用是继于改善高血糖后的结果,还是其药物的直接保护作用,目前还没有确切的定论。对于DPP4抑制剂的更好理解在于其降糖效果及潜在的降低心血管疾病风险的作用,但药物在心血管系统作用是否存在选择性和特异性等,目前还不是很清楚,有待于更深入和广泛的研究。

[1]郑刚.逆转糖尿病心血管转归的最新临床试验证据.中国心血管病研究,2010,8:401-404.

[2]Abbott CA,Yu DM,Woollatt E,et al.Cloning,expression and chromosomal localization of a novel human dipeptidyl peptidase(DDP) Ⅳ homolog,DPP8.Eur J Biochem,2000,267:6140-6150.

[3]Yazbeck R,Howarth GS,Abbott CA.Dipeptidyl peptidase inhibitors,an emerging drug class for inflammatory disease?Trends Pharmacol Sci,2009,30:600-607.

[4]Gorrell MD.Dipeptidyl peptidaseⅣ and related enzymes in cell biology and liver disorders.Clin Sci(Lond),2005,108:277-292.

[5]Duez H,Cariou B,Staels B.DPP-4 inhibitors in the treatment of type 2 diabetes.Biochem Pharmacol,2012,83:823-832.

[6]Brubaker PL.Incretin-based therapies:mimetics versus protease inhibitor.Trends indocrinal Metab,2007,18:240-245.

[7]Hausenloy DJ,Yellon DM.GLP-1 therapy:beyond glucose control.Circ Heart Fail,2008,1:147-149.

[8]Read PA,Khan FZ,Heck PM,et al.DPP4 inhibition by sitagliptin improves the myocardial response to dobutamine stress and mitigates stunning in a pilot study of patients with coronary artery disease.Circ Cardiovase Imaging,2010,3:195-201.

[9]Sauve M,Ban K,Momen MA,et al.Genetic deletion or pharmacological inhibition of dipeptidyl peptidase-4 improves cardiovascular outcomes after myocardial infarction in mice.Diabetes,2010,59:1063-1073.

[10]Zhang D,Huang W,Dai B,et al.Genetically manipulated progenitorcellsheetwith diprotin A improvesmyocardial function and repair of infarcted hearts.Am J Physiol Heart Circ Physiol,2010,299:H1339-1347.

[11]Bank K, Hoefer J, Bolz SS, et al.Cardioprotective and vasodilatory actions ofglucagon-like peptide 1 receptordependent and independent pathways.Circulation,2008,6,117:2340-2350.

[12]Matheeussen V,Baerts L,De Meyer G,et al.Expression and spatial heterogeneity of dipeptidyl peptidases in endothelial cells of conduct vessels and capillaries.Biol Chem,2011,392:189-198.

[13]Avogaro A,Fadini GP.The effects of dipeptidyl peptidase-4 inhibition on microvasculardiabetescomplications.Diabetes Care,2014,37:2884-2894.

[14]Wakabayashi T,Kosaka J,Mochii M,et al.C38,equivalent to BM88,is developmentally expressed in maturing retinal neurons and enhances neuronal maturation.J Neurochem,2010,112:1235-1248.

[15]Golpon HA,Puechner A,Welte T,et al.Vasorelaxant effect of glucagon-likepeptide-(7-36)amide and amylin on the pulmonary circulation of the rat.Regul Pept,2001,102:81-86.

[16]Basu A,Charkoudian N,Schrage W,et al.Beneficial effects of GLP-1 on endothelial function in humans:dampening by glyburide but not by glimepiride.Am J Physiol EndocrinolMetab,2007,293:E1289-1295.

[17]Nystrom T,Gonon AT,Sjoholm A,et al.Glucagon-like peptide-1 relaxes rat conduit arteries via an endotheliumindependent mechanism.Regul Pept,2005,125:173-177.

[18]Deacon CF,Plamboeck A,Rosenkilde MM,et al.GIP-(3-42)does not antagonize insulinotropic effects of GIP at physiological concentrations.Am JPhysiolEndocrinolMetab,2006,291:E468-475.

[19]Mason RP,Jacob RF,Kubant R,et al.Effect of enhanced glycemic control with saxagliptin on endothelial nitric oxide release and CD40 levels in obese rats.J Atheroscler Thromb,2011,18:774-783.

[20] Jackson EK, Mi Z. Sitagliptin augments sympathetic enhancement of the renovascular effects of angiotensinⅡin genetic hypertension.Hypertension,2008,51:1637-1642.

[21]Jackson EK,Dubinion JH,Mi Z.Effects of dipeptidyl peptidase iv inhibition on arterial blood pressure.Clin Exp Pharmacol Physiol,2008,35:29-34.

[22]Tanaka T,Nangaku M,Nishiyama A.The role of incretins in salt-sensitive hypertension:the potential use of dipeptidyl peptidase-Ⅳ inhibitors.Curr Opin NephrolHypertens,2011,20:476-481.

[23]Ogawa S,Ishiki M,Nako K,et al.Sitagliptin,a dipeptidyl peptidase-4 inhibitor,decreases systolic blood pressure in Japanese hypertensive patients with type 2 diabetes.Tohoku J Exp Med,2011,223:133-135.

[24]Mistry GC,Maes AL,Lasseter KC,et al.Effect of sitagliptin,a dipeptidylpeptidase-4 inhibitor,on blood pressurein nondiabetic patients with mild to moderate hypertension.J Clin Pharmacol,2008,48:592-598.

[25]Jadzinsky M,Pfutzner A,Paz-Pacheco E,et al.Saxagliptin given in combination with metformin as initial therapy improves glycaemic control in patients with type 2 diabetes compared with either monotherapy:a randomized controlled trial.Diabetes Obes Metab,2009,11:611-622.

[26]Shah Z, Kampfrath T, DeiuliisJA, etal.Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis.Circulation,2011,124:2338-2349.

[27]Shirakawa J,Fujii H,Ohnuma K,et al.Diet-induced adipose tissue inflammation and liver steatosis are prevented by DPP-4 inhibition in diabetic mice.Diabetes,2011,60:1246-1257.

[28]Ta NN,Schuyler CA,Li Y,et al.DPP-4 (CD26)inhibitor alogliptin inhibits atherosclerosis in diabetic apolipoprotein E-deficient mice.J Cardiovasc Pharmacol,2011,58:157-166.

[29]Cox AJ,Hsu FC,Agarwal S,et al.Prediction of mortality using a multi-bed vascular calcification score in the Diabetes Heart Study.Cardiovasc Diabetol,2014,13:160.

[30]Fox CS.Cardiovascular disease risk factors,type 2 diabetes mellitus,and the Framingham Heart Study.Trends Cardiovasc Med,2010,20:90-95.

[31]Kim D,Wang LP,Beconi M,et al.(2R)-4-Oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H) -yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: a potent,orally active dipeptidyl peptidase Ⅳ inhibitor for the treatment of type 2 diabetes.J Med Chem,2005,48:141-51.

[32]Villhauer EB,Brinkman JA,Naderi GB,et al.1-[[(3-Hydroxy-1-adamantyl)amino]acetyl]-2-cyano-(S) -pyrrolidine: a potent, selective, and orally bioavailable dipeptidylpeptidaseⅣ inhibitorwithantihyperglycemic properties.J Med Chem,2003,46:2774-2789.

[33]Augeri DJ,Robl JA,Betebenner DA,et al.Discovery and preclinical profile ofsaxagliptin (BMS-477118):a highly potent, long-acting, orally active dipeptidyl peptidase Ⅳinhibitor for the treatment of type 2 diabetes.J Med Chem,2005,48:5025-5037.

[34]Feng J,Zhang ZY,Wallace MB,et al.Discovery of alogliptin:a potent,selective,bioavailable,and efficacious inhibitor of dipeptidyl peptidase Ⅳ.J Med Chem,2007,50:2297-2300.

[35]Eckhardt M,Langkopf E,Mark M,et al.8-(3-(R)-aminopiperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methylquinazolin-2-ylmethyl)-3,7-dihydropurine-2,6-dione(BI 1356),a highly potent,selective,long-acting,and orally bioavailable DPP-4 inhibitor for the treatment of type 2 diabetes.J Med Chem,2007,50:6450-6453.

[36]Lim KS,Cho JY,Kim BH,et al.Pharmacokinetics and pharmacodynamics of LC15-0444,a novel dipeptidyl peptidase Ⅳ inhibitor,after multiple dosing in healthy volunteers.Br J Clin Pharmaco,2009,68:883-890.

[37]Bergenstal RM,Wysham C,Macconell L,et al.Efficacy and safety of exenatide once weekly versus sitagliptin or pioglitazone as an adjunct to metformin for treatment of type 2 diabetes(DURATION-2):a randomised trial.Lancet,2010,376:431-439.

[38]Pratley RE,Kipnes MS,Fleck PR,et al.Efficacy and safety of the dipeptidyl peptidase-4 inhibitor alogliptin in patients with type 2 diabetes inadequately controlled by glyburide monotherapy.Diabetes Obes Metab,2009,11:167-176.

[39]Pattzi HM,Pitale S,Alpizar M,et al.Dutogliptin,a selective DPP4 inhibitor,improves glycaemic control in patients with type 2 diabetes:a 12-week,double-blind,randomized,placebocontrolled,multicentre trial.Diabetes Obes Metab,2010,12:348-355.

[40]Neumiller JJ,Setter SM.Review of linagliptin for the treatment of type 2 diabetes mellitus.Clin Ther,2012,34:993-1005.

[41]Scheen AJ.DPP-4 inhibitors in the management of type 2 diabetes:a critical review of head-to-head trials.Diabetes Metab,2012,38:89-101.

[42]Scheen AJ.Pharmacokinetics and clinicaluse ofincretinbased therapies in patients with chronic kidney disease and type 2 diabetes.Clin Pharmacokinet,2015,54:1-21.

[43]DeFronzo RA,Burant CF, Fleck P,et al.Efficacy and tolerability of the DPP-4 inhibitor alogliptin combined with pioglitazone,in metformin-treated patients with type 2 diabetes.Clin Endocrinol Metab,2012,97:1615-1622.

[44]Meneghini LF,Orozco-Beltran D,Khunti K,et al.Weight beneficial treatments for type 2 diabetes.J Clin Endocrinol Metab,2011,96:3337-3353.

[45]Patil HR,Al Badarin FJ,Shami HA,et al.Meta-analysis of effect of dipeptidyl peptidase-4 inhibitors on cardiovascular risk in type 2 diabetes mellitus.Cardiol,2012,110:826-833.

[46]Raz I,Hanefeld M,Xu L,et al.Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy in patients with type 2 diabetes mellitus.Diabetologia,2006,49:2564-2571.

[47]Mikhail N.Safety of dipeptidyl peptidase 4 inhibitors for treatment of type 2 diabetes.Curr Drug Saf,2011,6:304-309.

[48]Lando HM, AlattarM, Dua AP.Elevated amylase and lipaselevels in patients using glucagonlike peptide-1 receptor agonists or dipeptidyl-peptidase-4 inhibitors in the outpatient setting.Endocr Pract,2012,18:472-477.

[49]Richard KR,Shelburne JS,Kirk JK.Tolerability of dipeptidyl peptidase-4 inhibitors:a review.Clin Ther,2011,33:1609-1629.

Research progress of dipeptidyl peptidase 4 inhibitor and cardiovascular disease

杨雪(综述) 李玉子(审校)

二肽基肽酶4抑制剂; 2型糖尿病; 心血管疾病

Dipeptidyl peptidase 4 inhibitor; Type 2 diabet; Cardiovascular disease

133000 吉林省延吉市,延边大学附属医院心血管内科

10.3969/j.issn.1672-5301.2015.02.007

R587.1

A

1672-5301(2015)02-0121-05

2014-12-25)

猜你喜欢

列汀抑制剂心血管
“心血管权威发布”公众号简介
“心血管权威发布”公众号简介
“心血管权威发布”公众号简介
COVID-19心血管并发症的研究进展
西格列汀对应用大剂量胰岛素效果欠佳的2型糖尿病的疗效分析
免疫检查点抑制剂相关内分泌代谢疾病
SGLT2抑制剂对血尿酸影响的研究进展
维格列汀与常见降糖药联合治疗2 型糖尿病的研究进展
高效液相色谱法测定维格列汀R型异构体的含量
选择性Bcl-2抑制剂ABT-199对乳腺癌细胞MDA-MB-231的放疗增敏作用