小学数学应用题教学“实际化”的思考与实践
2015-01-13季有胜
季有胜
【摘 要】国家数学课程新标准指出:应用题教学要让学生“了解数学知识与学生的生活经验、现实世界及其他学科的联系,体会数学的价值;了解数学的内在联系,经历从不同的角度研究同一问题的过程,初步获得对数学的整体认识;通过课题学习和实践活动,初步学会综合运用知识和方法解决实际问题,探索有关的数学规律。”基于这一目标,我们从应用题教学“实际化”的角度,进行了探索和实践。
【关键词】认知结构;逻辑思维;解题策略
一直以来,应用题教学都被广大教师所重视,并把它作为培养学生逻辑思维能力和解决实际问题能力的重要途径。然而,所得到的结果却是学生学得枯燥,思维定势模式化,解决实际问题的能力差。究其原因,不外乎这么几条:一是教学内容严重脱离学生生活实际,适时性不强,很难激起学生的求知欲望;二是教师的创新意识不强,为教应用题而教应用题,偏重书本知识,把教材作为教学的唯一依据。这种吃力不讨好的教学行为,与“培养具有创新意识和实践能力的人才”的教育理念是格格不入的。因此,应用题教学到了洗心革面的时候了。
一、应用题教学题材要符合学生的生活实际
由于现有教材的滞后原因,教材中的不少应用题严重脱离了学生的生活实际和经验,给学习带来了很大困难。著名数学家华罗庚说:“人们对数学产生枯燥无味、神秘难懂的印象,原因之一便是脱离实际。”学生的数学认知结构的形成,首先必须依赖于学生的实践活动,也就是使数学知识产生的背景成为学生看得见、摸得着、听得到的现实,使数学抽象知识成为有源之水,有本之木,从而帮助学生建立正确的数学概念。
数学源于生活,生活中充满数学,生活也离不开数学。作为教师,要善于挖掘生活中的数学素材,让数学贴近学生实际生活,使学生发现数学就在我的身边,从而真正感受到数学的价值。但在提炼过程中,也要防止题材的低级化和庸俗化,使题材在思想上和教学上都具有真实意义。
我们在教学中,把那些枯燥的、脱离学生实际的应用题还原为取之于学生的生活实际,并具有一定真实意义的数学问题,以此来沟通“数学与现实生活”的联系,激发学生学习应用题的兴趣,并让他们在研究现实问题过程中理解、学习和发展数学。
二、应用题教学手段要符合学生认知实际
在处理应用题教学内容的同时,我们对应用题教学的手段也作了一些有益的探索。学生能否构建起应用题的结构、数量关系和解题方法这一思维框架,很大程度上取决于应用题教学手段是否符合学生的认知实际。“纯文字化”的应用题,加剧了数学思维的抽象性。因此,我们在探索过程中,首先对应用题的呈现形式作了一些尝试。改变过去“纯文字化”的模式,有机地将情境图、卡通画、统计表、数据单等引进应用题教学。如在第二册学习差比应用题时,给学生一张数据单,告诉学生今天学校有客人来参观,想知道我们全校各班的人数,我们只有自己知道,才能告诉客人。下面小组合作,把各班人数算出来。
学生很快就有了结果。让学生讲讲你是怎么想的,在此基础上,师生共同把应用题的数量关系进行了概括,改变了以前那种“和谁同样多的部分 + 比谁多的部分”烦琐的语言,让学生感知二(1)班的人数就是求“比45多3的数”,三(1)班的人数就是求“比45少7的数”。在构建起这一思维框架后,抽象思维能力也就得到了发展。
三、应用题教学应培养学生解决实际问题的能力
应用题教学是学生综合运用数学知识的“场所”,是对学生用数学知识解决生活实际问题能力的检验。生活是丰富多彩的,生活问题不是一成不变的,生活问题也不是替你准备好一切所要解答的条件和方法。但传统的应用题教学,给学生烙下一个误区,那就是所有数学问题都具有完整的条件和问题,每个条件都是有用的,每个问题都有解,而且答案是唯一的。著名的“船长今年几岁”这一另人深思的笑话在不同地区不同学生身上重现。长期的思维定势,使学生对缺少条件或者条件隐含的题目无从下手。因此,我们在应用题教学中,从培养学生解决实际问题能力入手,以应用题结构的开放化和解题策略的多样化作为突破口。
(1)应用题结构开放化用开放的结构取代现行教材中“封闭”的结构,使学生在发散性、多角度的思维活动中提高解决实际问题的能力。
其一,提供条件性开放题(缺条件、多条件、隐含条件、条件未知)。如:“同学们去参观科普展览,要用两辆大客车,一个去了多少人。”
其二,提供结论性开放题(少问题、多种问题、多种结果)。如:“甲、乙两车分别从相距200千米的A、B两地同时出发,甲车每小时行60千米,乙车每小时行45千米,两小时后两车相距多少千米?”由于没说明两车的行驶方向,因此要从各个角度考虑问题。
其三,提供综合性开放题(条件散乱的数学问题、应用多种知识的课题学习和实践活动)。
(2)解题策略多样化应用题改革的原则不是求难,而是求活。在教学中,要适当提供一题多解、一题多答或综合性的应用题,要求学生除用常规思路解题以外,还要让学生多角度、多方位的思考问题,沟通不同知识间的内在联系,养成多向思维的习惯,寻求最佳的解题策略。