APP下载

一类具有交叉扩散的捕食-食饵模型的局部分歧*

2015-01-01容跃堂王晓丽董苗娜

西安工业大学学报 2015年11期
关键词:食饵捕食者交叉

何 堤,容跃堂,王晓丽,董苗娜

(西安工程大学 理学院,西安710048)

由于种群间的相互影响在种群扩散中起很重要的作用,在实际应用中带有交叉扩散项的情况更能准确的反应捕食活动中捕食者和食饵的关系,因此研究带有交叉扩散项的捕食-食饵模型具有重要意义.近年来,许多学者致力于带有交叉扩散项的捕食-食饵模型的研究,也取得了重要的研究成果.文献[1]利用扰动理论、分歧理论、算子谱理论及Turing理论研究了一类捕食模型正常数平衡态解的稳定性与分歧;文献[2-3]利用局部分歧定理和全局分歧定理研究了一类捕食模型正平衡解的局部分歧以及全局分歧;文献[4]研究了一类带有Holling II功能反应函数的捕食-食饵模型的局部分歧;文献[5]研究了一类具有交叉扩散的捕食模型正解的存在性以及全局分歧.鉴于带有交叉扩散项的捕食-食饵模型具体类型较多,文献[6]研究了该模型无交叉扩散和自扩散的情形,利用分歧理论得到了正解的存在性、局部唯一性和稳定性;文献[7]考虑具有交叉扩散的影响,讨论了模型正解的存在性以及正解的先验估计.然而上述研究并未考虑交叉扩散与自扩散同时存在时捕食者和食饵的关系,为此,文中研究具有交叉扩散和自扩散项的捕食-食饵模型在齐次Dirichlet边界条件下正解的存在性.

1 解的先验估计

式中:Ω为Rn中具有光滑边界∂Ω上的有界区域;Δ为Laplace算子;u,v分别表示食饵和捕食者的分布密度;a,b,c,m1,m2均为正常数;α1,β2为自扩散系数;α2,β1为交叉扩散系数.

考虑式(1)对应的平衡态系统

2 分歧正解的存在性

3 结论

[1] 周冬梅,李艳玲.一类捕食模型正常数平衡态解的稳定性及分歧[J].科学技术与工程,2010,10(23):5615.ZHOU Dong-mei,LI Yan-ling.Stability and Bifurcation of Positive Constant Steady-state Solution for Predator-prey Model [J].Science Technology and Engineering,2010,10(23):5615.(in Chinese)

[2] 李海侠,李艳玲.一类捕食模型正平衡解的整体分歧[J].西北师范大学学报:自然科学版,2006,42(2):8.LI Hai-xia,LI Yan-ling.Bifurcation of Positive Steady-state Solution for a Kind of Predator-prey Model[J].Journal of Northwest Normal University:Natural Science Edition,2006,42(2):8.(in Chinese)

[3] 马晓丽.一类具有交叉扩散的捕食模型的整体分歧[J].西安工业大学学报,2010,30(5):506.MA Xiao-li.Global Bifurcation for a Predator-prey Model with Cross-diffusion[J].Journal of Xi’an Technological University,2010,30(5):506.(in Chinese)

[4] ZHOU J,KIM C G.Positive Solutions for a Lotka-Volterra Prey-predator Model with Cross-diffusion and Holling Type-II Functional Response[J].Science China Mathematics,2014,57(5):991.

[5] 戴婉仪,付一平.一类交叉扩散系统定态解的分歧与稳定性[J].华南理工大学大学报:自然科学版,2005,33(2):99.DAI Wan-yi,FU Yi-ping.Bifurcation and Stability of the Steady-State Solutions to a System with Crossdiffusion Effect[J].Joumal of South China University of Technology:Natural Science Edition,2005,33(2):99.(in Chinese)

[6] 王明新,王旭勃.一个捕食椭圆型方程组正解的存在性、唯一性和稳定性[J].中 国科学:A 辑,2008,38(10):1095.WANG Ming-xin,WANG Xu-bo.The Existence,U-niqueness and Stability of Positive Solutions to a Prey Elliptic System[J].Science in China:Series A,2008,38(10):1095.(in Chinese)

[7] 马晓丽,冯孝周.一类具有交叉扩散的捕食模型正解的存在性[J].安徽大学学报:自然科学版,2011,35(5):26.MA Xiao-li,FENG Xiao-zhou.The Existence of Positive Solutions to a Predator-prey Model with Crossdiffusion [J],Journal of Anhui University:Natural Science Edition,2011,35(5):26.(in Chinese)

[8] 叶其孝,李正元,王明新.反应扩散方程引论[M].北京:科学出版社,2011.YEQi-xiao,LI Zheng-yuan,WANG Ming-xin.Intorduction to Reaction-Diffusion Equations[M].Beijing:Science Press,2011.(in Chinese)

[9] ZHANG C H ,YAN X P.Positive Solutions Bifurcating from Zero Solution in a Lotka-Volterra Competitive System with Cross-Diffusion Effects[J].Appl Math J China Univ,2011,26(3):342.

[10] 谢强军,李艳林.一类捕食模型正平衡解得分支和稳定性[J].陕西师范大学学报:自然科学版,2004,1(32):18.XIE Qiang-jun,LI Yan-lin.Stability and Bifurcation of Positive Steady State Solutions for a Class of Predator-prey Model[J].Journal of Shaanxi Normal University:Natural Science Edition,2004,1(32):18.(in Chinese)

[11] 张航国,容跃堂,党苏娟.一类带有交叉扩散的捕食-食饵模型的全局分歧[J].纺织高校基础科学学报,2013,26(3):338.ZHANG Hang-guo,RONG Yue-tang,DANG Sujuan.Global Bifurcation for a Kind of Predator-prey Model with Cross-diffusion[J].Basic Sciences Journal of Textile Universities,2013,26(3):338.(in Chinese)

[12] LI X L,WEI J J.Stability and Bifurcation Analysis in a System of Four Coupled Neurons with Multiple Delays[J].Acta Mathematicae Applicatae Sinica:EnglishSeries,2013,29(2):425.

猜你喜欢

食饵捕食者交叉
一类具有修正的Leslie-Gower项的捕食-食饵模型的正解
非局部扩散Holling-Tanner捕食者-食饵系统的临界与非临界行波解分析
天生的杀手:鲨鱼
具有两个食饵趋化项的一个Ronsenzwing-MacArthur捕食食饵模型的全局分歧
三种群捕食-食饵模型的分形特征与控制
“六法”巧解分式方程
一类带有交叉扩散的捕食-食饵模型的正解
具有Allee效应随机追捕模型的灭绝性
连数
疯狂的捕食者