生物学相关技术在药剂学教学中的应用探讨
2014-12-30时念秋
时念秋
摘 要:培养具有国际视野、多学科底蕴的药学综合人才是亟待解决的问题,也是药学教育需要反思的问题。在实际教学中引入生物学相关技术对于培养药学综合人才至关重要。笔者结合自身实践,浅谈生物学相关技术在药剂学教学中的应用。
关键词:药剂学 生物学 药学教育
中图分类号:G412 文献标识码:A 文章编号:1674-098X(2014)11(a)-0163-01
在经济全球化的大背景下,中国已经逐渐成为21世纪世界经济的中心。医药业被认为是永远的朝阳产业。而我国医药业与欧美国家还有一定差距,而近邻日韩在医药领域的发展也强于我国。可以说,我国是医药大国,但不是医药强国。我国医药市场潜力巨大,国外制药巨头纷纷落后中国。民族医药工业尽管取得了长足的进步,但仍难以与跨国药业巨头抗衡。如何在新形势下,培养具有国际视野、多学科底蕴的药学综合人才是亟待解决的问题,也是药学教育需要反思的问题。
药剂学是医药研发的最后环节,是药物研发的下游环节。任何有效成分都要做成能够临床使用的具体剂型方可使用。药剂学是门实践性特别强的学科,同时具有知识面广、学科交叉的特点。药剂学主要围绕如何将原料药制成剂型展开,涉及基本剂型、处方设计、合理应用、制备方法和质量评定等内容。如何培养具有国际化视野、高素质的药学专业综合人才是医药全球化的迫切需要,也是药学教育需要解决的关键问题。在新形势下,药剂学的学科广度和深度都有了实质性的变化和延伸。药剂学不但需要进行体外(In vitro)评价,还要在生物体中进行体内(In vivo)试验。很多新型体外模型的发展,极大地加速药剂学质量评价的速度和准确性,如细胞模型、透皮模型、小肠灌流模型等。而体内生物学模型的发展也使药剂学的评价更接近于人体实际情况。综合看来,药剂学的生物学评价已经成为保证制剂质量的重要指标,也成为众多药剂工作者的研究共识。笔者结合自身多年教学及科研经验,谈谈生物学相关技术在药剂学教学中的应用。
1 细胞模型
药剂学的很多评价内容都需要细胞模型,包括药物多药耐药性(MDR)评价、抗增殖能力、药剂学纳米粒子的细胞内化研究、细胞摄取及定位研究等。药物的多药耐药性被认为是抗肿瘤药物制剂疗效降低的主要原因,多药耐药性的产生主要由于细胞表面各种药物外排泵的存在。P-糖蛋白(P-gp)是研究最为广泛的药物溢出泵。构建具有多药耐药性的体外肿瘤细胞模型是研究多药耐药性的关键。一般采用某一类型细胞,经传代培养后,逐量加入耐受的药物,进行适应性培养,经过若干代后,该细胞开始对该药物具有耐受性,药物的摄取量逐渐降低,预示着多药耐药细胞模型的成功构建。抗肿瘤药物需要评价其抗增殖能力,经常采用96孔板进行抗增殖能力的研究。进一步可以基于这些细胞构建肿瘤球模型,进行肿瘤体外药效学评价。纳米粒子药物制剂的内化研究也常借助于细胞模型。纳米粒子的内吞有时需要细胞表面的各类蛋白参与,包括小窝蛋白、网格蛋白等。在细胞中加入内吞抑制剂可以系统地评价纳米粒子的内吞模式,阐明纳米粒子药物进入细胞的机制。此外,经常采用流式细胞术和激光共聚焦扫描显微镜技术来评价药物制剂的细胞摄取情况及在细胞内的定位。需要阐明药物制剂在细胞内的转运特征,包括内涵体的进入、内涵体的逃逸、核定位、胞浆定位、线粒体定位、内质网分布等信息。此外,还可利用细胞模型构建肠道细胞模型、血脑屏障(BBB)模型等。细胞模型的建立大大丰富了药剂学的研究内容和研究深度。在实际药剂学理论教学中,授课教师可根据讲授内容,向学生介绍细胞模型的原理及实际应用,增加学生对药剂学的深入认识。
2 透皮模型及小肠灌流模型
经皮药物制剂是药剂学中一类非常有特点的药物制剂。局部给药可以避免胃肠道的首过效应,避免了药物在胃肠道中受酶、pH值等因素的破坏。由于在体研究药物及其制剂的透皮吸收的复杂性,人们利用离体的透皮模型进行药物透过性的模拟研究。常用于进行透皮实验的动物皮肤包括家兔皮肤、乳猪皮肤、大鼠皮肤等。生物药剂学分类系统(BCS)是1995年出现的新的药物分类学说,主要依据药物的水溶解性和肠道渗透性,将药物分为四类:I类为高溶解性/高渗透性;II类为低溶解性/高渗透性;III类为高溶解性/低渗透性;IV类为低溶解性/低渗透性。研究药物的肠道渗透性与药物在体内的生物利用度密切相关。利用离体小肠灌流模型,可以研究药物的肠道渗透性。小肠灌流模型的使用大大降低了药物的肠道渗透性试验的复杂性,可以更加高效地筛选肠道高渗透性的化合物及药物制剂。在实际的药剂学理论教学或实验教学中,应强调该类模型的原理、使用方法及实际操作等,加强学生对于生物屏障(Bio-barriers)模型的认识和理解,这对学生学习经皮给药制剂理论具有很强的指导意义。
3 分子生物学技术
很多分子生物学技术,如RT-PCR技术、蛋白免疫印迹技术(SDS-PAGE)、电泳技术等都已经在药剂学中得到应用。这些分子生物学技术主要用于药剂学中蛋白、多肽及基因(DNA、RNA与PNA)的药物递送。蛋白和多肽类药物存在的主要问题是不稳定性、易失活特性等。该类药物的体内递送一直是制剂的难点。评价该类药物的稳定性往往需要电泳技术。蛋白多肽类物质在电场的作用下发生迁移,迁移的距离与蛋白多肽类的分子量有关。与标准分子量物质进行对比,可以判断蛋白多肽的降解情况,来定性判断制剂中蛋白多肽的稳定性。RNA干扰(RNAi)技术是指在进化过程中高度保守的、由双链RNA(double-stranded RNA,dsRNA)诱发的、同源mRNA高效特异性降解的现象。由于使用RNAi技术可以特异性剔除或关闭特定基因的表达,所以该技术已被广泛用于探索基因功能和传染性疾病及恶性肿瘤的治疗领域。人们常采用RT-PCR技术扩增基因的含量。RT-PCR即逆转录PCR,是将RNA的逆转录(RT)和cDNA的聚合酶链式扩增反应(PCR)相结合的技术。RT-PCR技术灵敏而且用途广泛,可用于检测细胞组织中基因表达水平、细胞中RNA病毒的含量和直接克隆特定基因的cDNA序列等。这些分子生物学技术为基因药物递送系统的发展提供了可靠的基础。在讲授药剂学中生物技术制药一章时,可以将这些相关的分子生物学技术在教学中进行渗透,不断充实学生的分子生物学基础知识,并与药剂学的相关研究进行结合,培养同时具有生物学知识和药剂学知识背景的药学综合人才。
综上,各种生物学技术在药剂学的实践研究中已经得到了很好的应用。学生对药剂学的理解不应该仅局限在传统的剂型设计中。教师在实际的理论教学中如何渗透各类生物学技术至关重要。在教学中,这些技术的引入对于培养具有国际化视野、多学科基础、高素质的药学综合人才具有重要意义。
参考文献
[1] 胡海梅,黄宏靓,黄树林.生物技术药物药剂与药动学课程的融合教学[J].药学教育,2010,26(4):51-53.
[2] 游剑.探讨新学科在药物制剂教学中的引入[J].海峡药学,2012,24(8):260-262.endprint