基于遥感和三维分析技术的震后滑坡信息提取研究
2014-12-25张洁何琳潘丹马犇丁娟安徽省地震局安徽合肥230031
张洁何琳潘丹马犇丁娟(安徽省地震局,安徽 合肥230031)
0 引言
我国是一个多地震的国家,也是世界上遭受地震灾害最为深重的国家之一,地震灾害严重威胁着人民的生命财产安全,也成为制约和谐社会发展的一个重要因素。诱发滑坡地震在全国大部分省区都有发生,尤其在山区较多的地区,其中以云南、四川地震滑坡造成的灾害损失最为严重。地震滑坡灾害在我国分布极为广泛,近年来,随着遥感影像分辨率的提高和遥感信息提取技术的发展,遥感技术逐渐成为快速获取地震灾情信息、震后应急和震害快速评估的有效手段。因此,利用现代遥感影像(RS)、遥感图像处理和三维分析(ArcGIS)等技术,高度逼真地呈现地质灾害形状、概略计算滑坡体的表面面积与体积、划定地质灾害影响范围及危害性评估具有现实意义。
1 遥感技术在地震中的应用
近年来,各项新技术新方法应用在地震中,而地理信息系统(GIS)技术、网络技术以及海量数据存储等技术的发展相关的研究方法和技术也日趋成熟,为遥感在地震中的应用提供了技术保障。
第一,利用中低分辨率的遥感影像获取震后灾情的宏观分布情况,以判断地震的影响范围,对活动断层、地震破裂带及次生地质灾害进行调查,分析活动断层的几何特性、构造地貌等。
第二,利用遥感影像可以得到震后房屋的详细破坏情况,以满足灾情的详细判断和震灾评估的精度要求,以便尽可能地获取灾情信息,从而迅速地为专家进行震后评估提供数据源;通过遥感影像的解译,可以估算出山体滑坡的面积、土方,还可以通过遥感监测推断出潜在的滑坡区域,为民众的疏散以及次生灾害的预防提供参考。
第三,雷达卫星采用主动微波遥感方式,不受光照和气候条件的限制,可实现全天候对地物进行观测,初步确定震中位置和推定地震烈度分布,为制定救灾决策提供重要的参考信息。
2 三维分析技术模块简介
数据的表达和显示,是空间数据分析的基础。利用ARCGIS的3D Analyst模块可以创建动态三维地形和交互式地图,从而更好地实现地理数据的可视化和分析处理。
数据的三维可视化,一般通过以下3种方式实现。第一种是叠加影像到空间相应区域的DEM上。第二种是设置图层属性,以三维立体高度反映矢量数据图层中每个特征的字段值大小。第三种是直接使用3D Analyst三维分析模块提供的三维转换工具,将已有矢量数据特征转换到三维空间中。
本文主要采用第一种处理技术,实现数据的转换和三维图像显示,并利用三维分析模块中的aera and volume statistics功能,来初略计算目标物的表面积和体积。
3 数据收集与预处理
3.1 数据收集
研究区以某城市的山区为研究区域,收集的基础地理信息数据主要包括30m分辨率的TM卫星遥感数据、1:50000等高线数据,使用软件包括ERDASIMAGINE 9.2和ARCGIS 9.3等。
图1 研究区遥感影像图
3.2 数据预处理
TM遥感数据处理的内容主要是对原始遥感图像进行图像增强、正射校正、图像裁剪等,提高其识别率,从而满足遥感解译和识别地物的需要。由于原始遥感图像色调对比度不大,灰度级较集中,遥感层次较少,影像分辨力和解译力均较差,不适宜直接应用于遥感解译,因此首先要对遥感影像进行分段线性拉伸处理,对图像进行正射校正以减少地形起伏对遥感影像产生的投影偏差,最后根据实际工作需要对图像进行了分幅剪裁处理。处理后的图像如图所示:
图2 遥感影像数据预处理
DEM数据的生成,是将传统纸质地形图上的信息,通过ARCGIS软件进行数字化处理,将栅格数据转化为矢量数据,实质上是为将扫描得到的图像数据转化为图形线性数据,利用得到的矢量图为基础数据源源,精确定义图形数据中的各种拓扑关系,生成数字表达地形表面形态的属性信息,其数字描述是带有空间位置特征和地形属性特征的数字高程模型(DEM)。对1:50000地形图进行校正并矢量化,得到shp格式矢量图,用ArcToolBox模块中的3D analyst Tool的功能技术,将SHP格式矢量化成DEM-TIN的格式图形文件,再生成由TINDEM转化的地形高程灰阶图。
图3 研究区DEM图
4 滑坡解译与三维可视化
4.1 滑坡的解译
滑坡的解译是斜坡变形现象中最复杂的一种,自然界中的斜坡变形千姿百态,特别是经过长期变形的斜坡,往往是多种变形现象的综合体。遥感影像上滑坡的解译主要是通过影像中色调、阴影、纹理、形态进行,在对滑坡进行解译时,除了直接对滑坡体本身做辨认外,还应对附近斜坡地形、地层岩性、地质构造、植被、水系等进行解译。遥感影像上滑坡体的色调与周围稳定地形有着明显的区别,刚发生不久的地震滑坡,坡体上大都有着松散的堆积物质组成,表面具有较强的波谱反应能力,在影像上呈现浅色调为主,处于变形阶段的滑坡,滑坡体周边一般具有相比滑坡平面形态色调较浅的色环,或在后缘出现浅色线条甚至前缘出现局部的崩塌现象。
4.2 三维遥感立体图形
利用ArcGIS软件的三维扩展功能模块,在ArcScene中,将已形成的DEM数据信息添加到高程图层,遥感影像信息添加到纹理图层,经过透视法叠加组合,从DEM获取高程数据,并设置拉伸系数后,实现三维仿真效果立体图,灾害体的位置、范围等信息表现更准确、清晰展现。
图4 三维立体图
4.3 计算滑坡体表面积和体积
ArcGIS软件具有计算某形体的表面面积和体积的作用功能,利用3D Anyalyst→Surface Anyalyst→area and volume statistics的分析模块,可计算出在指定高程以上或以下,不同形态地质体的表面面积和体积。
文中选取某块区域为滑坡点,通过统计计算其滑坡面积与体积,得出该滑坡体表面面积为1.3×104m2,利用高程值计算估算其体积约为1.82×104-3.25×104m3。
5 结论
通过ArcGIS三维分析技术所提供的各种分析功能模块使用,能够完成简单二维地理信息系统所无法完成的任务。与二维平面地质灾害预测图比较,三维立体地质灾害预测图,可使研究区域内的地形、地貌特征更直观表现,对灾害体的位置、范围等信息表现更准确、清晰展现。文中由于受数据获取难度与精度等限制,选取不具有代表意义的区域为研究对象,但估算滑坡体表面积和体积的方法是可具有普适性,在真实地震中将得到较好的应用。
[1]姜立新,帅向华,等.地震应急指挥管理信息系统的探讨[J].地震,2003,23:115-120.
[2]柳稼航,杨建峰,魏成阶,等.震害信息遥感获取技术历史、现状和趋势[J].自然灾害学报,2004,13(6):4-11.
[3]安立强,张景发.遥感技术在震害调查中的应用现状及发展趋势[J].地震工程与工程振动,2011,31(2):182-188.
[4]侯波.卫星遥感影像三维可视化处理[J].中国体视学与图像分析,2001,6(1):29-32.