APP下载

简版流调中心抑郁量表在中老年人群中的结构

2014-12-18任杰马爱霞刘国恩

现代商贸工业 2014年10期
关键词:中老年人

任杰 马爱霞 刘国恩

摘要:目的:评价CESD-10中文版在中老年人群中的应用,检验CESD-10量表的因子结构。方法:以CHARLS数据为样本,使用SPSS软件对数据进行探索性因子分析,并结合结构方程模型理论对因子结构的合理性进行验证。结果:探索性因子分析提取出了两个主因子,进一步的验证性因子分析表明,两因子模型中χ2=949.460(P﹤0.000),df=34,NFI=0.948,GFI=0.973,CFI=0.950,RMSEA=0.059。结论:大样本抽样数据证明了该量表两因子结构的合理性,CESD-10可广泛用于中国中老年人群抑郁症的筛查和研究实践中。

关键词:简版流调中心抑郁量表;因子结构;中老年人

中图分类号:F27

文献标识码:A

文章编号:1672—3198(2014)10—0077—03

1背景

抑郁症是中老年人最常见的精神疾病和自杀自残的促发因素,严重影响中老年人的生活质量,同时也给家庭和社会造成沉重的负担。研究发现抑郁症的发病率随着年龄的增长而增加。目前,用于抑郁症筛查的量表有很多,其中Radloff(1977)开发的流调中心抑郁量表(the Center for Epidemiological Studies Depression Scale,CES-D)是广泛用于评估抑郁症状的筛查工具,研究证实CES-D量表具有良好的心理测量学特性,并且与临床诊断高度相关。Radloff(1977)年运用主成分分析法(Principal Component Analysis,PCA),经方差极大正交旋转后首次得出20个项目的CES-D是四因子结构,分别是抑郁情绪(Depressed Affect,DA),积极情绪(Positive Affect,PA),躯体症状与运动迟滞(Somatic and Retarded Activity,SR),以及人际关系(Interpersonal Problems,IP)。Radloff所提出的四因子结构模型在大多数的验证性因子分析(Confirmatory Factor Analysis,CFA)研究中得到了验证。

尽管具有较高的信度和效度,这个量表仍然存在一些明显的不足。首先,该量表占用受访者过多的时间。例如,Kohout等的研究表明,完成一份20个条目的CES-D量表平均需要12分钟的时间,并且有10%的受访者拒绝完成整个量表。此外,在进行大型调查时,问卷常常涉及很多问题,这时简短的量表非常重要。为了解决这一问题,许多学者努力改善CES-D量表,其中Andresen(1994)运用条目总分相关(Item Total Correlation)和删除冗余项(Elimination of Redundant Item)方法开发出了10个条目的量表,即CESD-10。简版量表使受访者更容易接受,并且能在较短的时间内完成,因此增加了应答率。然而,很多研究表明简版CESD-10并不符合上述的四因子结构,他们提出了其他的结论。一项针对中国老年人的调查发现它是三因子的结构,即DA(包括第1、3、6、9项)、PA(包括第5、8项)和SR(包括第2、4、7、10项)。而有些研究发现,CESD-10是两因子结构(DA/SR和PA)。

以上结果表明,关于CESD-10量表的因子结构研究还存在争议,而且不同的社会文化背景也会引起量表结构的差异。本次研究目的是利用全国大样本数据,研究并验证CESD-10量表在中国中老年人群中的因子结构。

2研究方法

2.1数据来源

本研究所用数据来源于中国健康与养老追踪调查(China Health and Retirement Longitudinal Survey,CHARLS)。CHARLS是对中国45岁及以上中老年家庭和个人进行的一项调查。数据包括从广泛的社会经济状况到个人健康状况方面的信息,是一个高质量的、具有全国代表性的微观数据库。为了保证样本的代表性,CHARLS基线调查覆盖了全国150个县级单位,450个村级单位,共10257户家庭的17708个个人。访问对象是年龄在45岁以上(包括45岁)的中国居民及其配偶。

在450个基本抽样单位中,52.67%是农村地区,4733%是城市地区。表1说明了CHARLS样本的年龄与性别构成。在17708份个人数据中,52.1%为女性。大部分样本为低龄老年人,40%的调查对象在60岁及以上,总体上代表中国中老年人群(表1)。

2.2统计方法

一般来说,若研究缺少坚实的理论基础支撑,有关观测变量的内部结构一般先用探索性因子分析(Exploratory Factor Analysis,EFA),产生一个关于内部结构的理论,再在此基础上用验证性因子分析。因此,本文首先利用SPSS17.0对数据进行探索性因子分析,主要目的在于寻找公共因子。在探索性因子分析已经得到因子结构的前提下,再利用AMOS7.0软件对因子结构的合理性进行验证。

2.3数据分析

根据CESD-10中文版的使用规则,评分为4级评分,选项包括“(1)很少或者根本没有(﹤1天)”、“(2)不太多(1-2天)”、“(3)有时或者说有一半的时间(3-4天)”、“(4)大多数的时间(5-7天)”,分别将上述4个选项编码为0、1、2、3。条目5、8为反向条目,均采用反向计分。

CHARLS数据在抑郁量表的10个条目上有缺失值,考虑到样本量足够大,本文采取个案删除法(Listwise Deletion)处理缺失值。处理后,样本量还有15273人。经检验,剩余样本与缺失值的人口资料没有显著性差异,说明删除掉的缺失值具有随机性。随后将样本数据随机分成两半,先用一半数据(共7656人)做探索性因子分析,然后把分析取得的因子用在剩下的一半数据(共7617人)中做验证性因子分析。在进行探索性因子分析之前,需要进行KMO测度和Bartlett球形检验。KMO值越大表示变量间的共同因素越多,越适合进行因子分析。当KMO值小于0.5时,不适合进行因子分析。探索性因子分析将获得每个测量条目与因子之间的因子载荷(Factor Loading),因子载荷越高,表明测量条目与因子之间的关联性越强。本研究中因子提取方法为主成分分析法,旋转方法为方差最大法(Varimax),因子载荷截取点位0.5。

本文采用结构方程模型(Structural Equation Modeling,SEM)进行验证性因子分析,拟合指标选择卡方值χ2(Chi-square)、赋范拟合指数(NFI)、拟合优度指数(GFI)、相对拟合指数(CFI)、近似误差均方根(RMSEA)等来判断模型的拟合程度。一般认为,NFI、GFI和CFI在0.9以上,RMSEA小于0.08时,可认为模型拟合良好,RMSEA小于005时可认为模型高度拟合。

3结果

本文使用SPSS17.0统计软件对数据进行分析,变量相关性检验结果显示KMO值为0.882,且相关系数矩阵中存在大量显著相关关系(p<0.0001),(由于篇幅原因,相关系数矩阵表略去)因此该样本适合做因子分析。经过主成分分析后,保留了前两个主因子,累积可解释49.820%方差,碎石图见图1。

对因子载荷矩阵进行方差最大正交旋转后的结果(表2)表明,条目5(felt hopeful about the future)和条目8(happy)在第二主因子上的载荷较高,分别为0.878、0.745,其他条目在第一主因子上的载荷较高(均大于0.5),表明样本结构的有效性较强。最后,因子得分的协方差矩阵是一个单位矩阵,说明提取的两个公因子是不相关的。

根据探索性因子分析的结果,假设CESD-10是两因子结构,下面通过验证性因子分析来检验因子结构的合理性。通过AMOS7.0软件构建结构方程模型(图2),得到以下结果:

统计指标χ2值为 949.460(P ﹤0.000),自由度df为34,赋范拟合指数(NFI)为 0.948,拟合优度指数(GFI)为0973,比较拟合指数(CFI)为0.950,近似误差均方根(RMSEA)为 0.059。由于 NFI、GFI、CFI 都大于 0.9,且 RMSEA,小于0.08,总的来说,因子模型和样本数据拟合较好。但CFA中χ2/df数值未达到测量学要求,考虑到其他指标均较好,这一情况主要与样本量过大有关。

4讨论

从旋转后的因子载荷矩阵(表1)可以看出,第一主因子在条目1、2、3、4、6、7、9、10上的载荷较高,该因子反映的是消极情绪,可命名为抑郁情绪/躯体症状;第二主因子在条目5、8上的载荷较高,该因子可命名为积极情绪。这与大多数学者的研究结果一致。此外,本文进一步发现,抑郁情绪/躯体症状在条目3(felt depressed)上的载荷最高,为0749,也就是说带来消极情绪的最主要因素是情绪低落,这与人们的经验是一致的;影响积极情绪的主要因素是条目5(felt hopefull about the future)和条目8(happy),而其中对未来充满希望比愉快更重要。

需要指出的是,尽管本研究结果进一步证实了积极情绪和消极情绪是两个独立的结构,但是他们仍然不能从CESD-10量表中分离出来单独用于抑郁症的筛查。况且因子2“积极情绪”只包含有2个条目,也不足以构成一个可用的量表。

本研究将探索性因子分析与验证性因子分析相结合,对中国45岁以上中老年人群进行了大样本抽样研究,检验了CESD-10量表两因子结构的合理性(即DA和SR合并为因子1,PA作为因子2)。这一结论进一步为中文版CESD-10量表的使用提供了证据,CESD-10量表可以减少访问时间、降低应答疲劳、消除量表条目的负面心理暗示。

参考文献

[1]Beekman A T F,Penninx B W J H,Deeg D J H,et al. The impact of depression on the well‐being,disability and use of services in older adults:a longitudinal perspective[J].Acta Psychiatrica Scandinavica,2002,105(1):2027.

[2]Kessler R C,Birnbaum H,Bromet E,et al.Age differences in major depression:results from the National Comorbidity Survey Replication (NCSR)[J]. Psychological medicine,2010,12(2): 225237.

[3]Lewinsohn P M,Seeley J R,Roberts R E,et al. Center for Epidemiologic Studies Depression Scale (CESD) as a screening instrument for depression among communityresiding older adults[J]. Psychology and aging,1997,12(2): 277287.

[4]Radloff L S. The CESD scale a selfreport depression scale for research in the general population[J]. Applied psychological measurement,1977,1(3):385401.

[5]Shafer A B. Meta analysis of the factor structures of four depression questionnaires:Beck,CES‐D,Hamilton,and Zung[J].Journal of clinical psychology,2006,62(1):123146.

[6]Williams C D,Taylor T R,Makambi K,et al.CESD fourfactor structure is confirmed,but not invariant,in a large cohort of African American women[J].Psychiatry Research,2007,150(2):173180.

[7]Zhang B,Fokkema M,Cuijpers P,et al. Measurement invariance of the center for epidemiological studies depression scale (CESD) among chinese and dutch elderly[J].BMC medical research methodology,2011,11(1):74.

[8]Boisvert J A,McCreary D R,Wright K D,et al. Factorial validity of the center for epidemiologic studies‐depression (CES D) scale in military peacekeepers[J]. Depression and Anxiety,2003,17(1):1925.

[9]Knight R G,Williams S,McGee R,et al. Psychometric properties of the Centre for Epidemiologic Studies Depression Scale (CESD) in a sample of women in middle life[J]. Behaviour research and therapy,1997,35(4):373380.

[10]Dick R W,Beals J,Keane E M,et al. Factorial structure of the CESD among American Indian adolescents[J]. Journal of Adolescence,1994,17(1):7379.

[11]Kohout F J,Berkman L F,Evans D A,et al. Two shorter forms of the CESD depression symptoms index[J]. Journal of Aging and Health,1993,5(2):179193.

[12]Shrout P E,Yager T J. Reliability and validity of screening scales: Effect of reducing scale length[J]. Journal of clinical epidemiology,1989,42(1):6978.

[13]Andresen E M,Malmgren J A,Carter W B,et al. Screening for depression in well older adults: Evaluation of a short form of the CESD[J].American journal of preventive medicine,1994.

[14]Cheng S T,Chan A,Fung H H. Factorial structure of a short version of the Center for Epidemiologic Studies Depression Scale[J]. International journal of geriatric psychiatry,2006,21(4):333336.

[15]Boey K W. Cross‐validation of a short form of the CES‐D in Chinese elderly[J]. International journal of geriatric psychiatry,1999,14(8):608617.

[16]Lee A E Y,Chokkanathan S. Factor structure of the 10‐item CES‐D scale among community dwelling older adults in Singapore[J]. International journal of geriatric psychiatry,2008,23(6):592597.

[17]Bradley K L,Bagnell A L,Brannen C L. Factorial validity of the Center for Epidemiological Studies Depression 10 in adolescents[J].Issues in mental health nursing,2010,31(6):408412.

[18]Vandenberg R J,Lance C E. A review and synthesis of the measurement invariance literature: Suggestions,practices,and recommendations for organizational research[J]. Organizational research methods,2000,3(1):470.

[19]周晓宏,郭文静.探索性因子分析与验证性因子分析异同比较[J].科技和产业,2008,8(9):6971.

[20]Bentler P M. Some contributions to efficient statistics in structural models: Specification and estimation of moment structures[J].Psychometrika,1983,48(4):493517.

[21]Bentler P M. Comparative fit indexes in structural models[J]. Psychological bulletin,1990,107(2):238246.

[22]Browne M W,Cudeck R. Alternative ways of assessing model fit[J]. Sociological Methods & Research,1992,21(2):230258.

猜你喜欢

中老年人
中老年人服药切记4不要
慢性疼痛——中老年人难以承受的生命之痛
中老年人食物嵌塞的防治
千里之行,始于足下——浅谈中老年人足部疼痛的常见原因
中老年人应该培养什么样的爱好?
中老年人手麻要警惕6种疾病
中老年人晨醒不适原因多
中老年人健康膳食如何安排
中老年人的网络世界
中老年人冠心病的预防及蒙医护理