APP下载

基于先进调制的高速可见光通信技术

2014-12-13迟楠黄星星王一光

中兴通讯技术 2014年6期

迟楠+黄星星+王一光

中图分类号:TN929.1    文献标志码:A   文章编号:1009-6868 (2014) 06-0016-005

摘要:基于发光二极管(LED)调制带宽限制了可见光通信(VLC)系统传输速率这一问题,从VLC系统的先进调制技术出发,探讨了类平衡-正交频分复用、无载波幅相调制和频域均衡单载波调制3种调制技术。对这3种调制技术原理和实验结果的分析与讨论,验证了先进调制技术在提升VLC系统传输容量上的可行性。

关键词: 可见光通信;正交频分复用;无载波幅相调制;频域均衡单载波调制;类平衡探测

Abstract:We introduce three formats, based on advanced modulation, that improve transmission. These formats are quasi-balanced detection orthogonal frequency-division multiplexing (OFDM), carrier-less amplitude and phase modulation, and single carrier-frequency domain equalization (SC-FDE). We determine the feasibility of these schemes for improving transmission in a VLC system. We analyze the principles of these three modulation formants and provide experimental results.

Keywords: visible light communication; orthogonal frequency division multiplexing; carrier-less amplitude and phase modulation; single carrier-frequency domain equalization; quasi-balanced detection

可见光发光二极管(LED)具有高亮度、高可靠性、能量损耗低和寿命长等许多优良的特性,可用于全色显示、交通信号指示和照明光源等,是公认的下一代绿色照明产品。此外,可见光LED还具有调制性能好、响应灵敏度高的优点,利用LED的这种特性,我们还可以将信号调制到LED所发出的可见光上进行传输。LED可以将照明与数据传输结合起来,促进了一种新型的无线通信技术,即可见光通信(VLC)技术的发展[1]。VLC利用的可见光波段是未受到管制的频谱,无需授权即可使用。与传统的射频无线通信技术相比,VLC具有如下优点[2-4]:

(1)绿色通信,安全环保,没有射频电磁辐射,且LED发出的白光对于人眼安全。

(2)能够同时实现通信与照明。

(3)白光不可穿透墙壁等物体,因此可见光通信具有高度的保密性。

(4)可见光不受射频信号的电磁干扰,可以应用在电磁敏感环境中,如机舱、医院等。

(5)由于频谱无需授权即可使用,所以可见光通信应用灵活,可以单独使用,也可以作为射频无线设备的有效备份。

目前,VLC得到了全球研究者越来越多的关注[5-13]。VLC技术已经取得迅猛发展,传输速率从最开始的几十兆比特每秒[5-6]到500 Mb/s[7]再到800 Mb/s[8],目前已经突破了吉比特每秒[9-10]。随着与VLC相关系统器件的开发,系统通信速率还会有更高的提升。

但是VLC技术通信速率的提高也存在着很多限制因素,其中最主要的挑战是LED有限的调制带宽。目前,普通商用白光LED的3 dB调制带宽都低于10 MHz,这很大程度上限制了VLC系统的传输速率。为突破调制带宽这一“瓶颈”,许多技术都被应用到VLC系统,如系统多维复用技术[11]、预均衡技术[12]、后均衡技术[13]等等,来提升VLC系统传输速率。采用先进调制技术,是克服可见光通信系统调制带宽限制,提升系统传输容量的有效方法。在VLC系统中,可以采用的先进调制技术包括类平衡探测-正交频分复用(OFDM)[14]、无载波幅相调制(CAP)[15]和频域均衡单载波调制技术(SC-FDE)[16]。本文从提升VLC系统传输容量出发,分析这3种先进调制技术的特点与实现方式,实现了高速VLC传输系统。通过对这3种调制技术原理和实验结果的分析与讨论,验证了先进调制技术在提升VLC系统传输容量上的可行性。

1 类平衡探测-正交频分

复用技术

类平衡探测-正交频分复用技术(QBD-OFDM)结合类平衡探测编码技术和OFDM技术[14]。OFDM信号数据被分为多个数据块,每个数据块有两个符号的数据。在相同的数据块,第二个符号中的信号是和第一个符号中的信号在运算符号上是相反的。经过理论推导,发现二阶互调制失真、直流电流、可以完全消除,而且接收机的灵敏度可以提高3 dB,因此可以提高信噪比。

我们采用QBD-OFDM技术,实现了可达到2.1 Gb/s实际物理数据速率,并使传输距离达到2.5 m。图1为所提出的QBD-OFDM实验的原理。实验中,QBD-OFDM信号由任意波形发生器(AWG)产生,经过低通滤波(LPF)、电放大器(EA)和偏置树(Bias Tee)后调制到红绿蓝发光二极管(RGB-LED)不同颜色的芯片上。经过自由空间传输后,在接收端由棱镜聚光后,用滤光片将3个波长的光分开,最后采用雪崩光电二极管(APD)探测器接收。然后进行后端的均衡与解调算法处理。endprint

结合波分复用(WDM)和类平衡探测子载波复用,很好地利用了多色LED的波分复用,提供了更多的传输信道。利用类平衡探测技术很好地避免了OFDM提供更多子载波时的峰均功率比(PAPR)限制,有效提升了多色LED传输速度,提高了系统误码率(BER)性能,同时增加了可见光通信的传输距离。图2给出QBD-OFDM技术和直接探测光正交频分复用(DDO-OFDM)技术的对比。两个子信道带宽为,Sub1:6.25~56.25 MHz,Sub2:56.25~106.25 MHz。每个子信道对应的调制阶数分别为,红光:256正交幅度调制(256QAM)和128正交幅度调制(128QAM),绿光:128QAM和64QAM,蓝光:128QAM和128QAM。因此,红光、绿光和蓝光的数据速率分别为750 Mb/s、650 Mb/s和700 Mb/s,总数据速率达到2.1 Gb/s,实验距离可以达到2.5 m。在距离为0.5 m时,红绿蓝3色对应的Sub1、Sub2两个子信道的BER提升为25.6 dB、31 dB、30.3 dB、25.8 dB、21.8 dB和19.3 dB。当可见光通信系统的通信距离增加时,系统误码率会增加,这是因为距离增加导致系统接收到的光信号减弱,系统信噪比降低,误码率增加。继续增加距离会使BER超过前向纠错码的门限,为使距离增加,就要使系统的传输速率降低。蓝光LED采用QBD-OFDM和DDO-OFDM的对应的Sub1、Sub2两个子信道的星座图如图2(d)的(i)、(ii)、(iii)和(iv)所示。

2 无载波幅相

调制技术

无载波幅度相位调制(CAP)是正交幅度调制的一个变种多阶编码调制技术,可以使用模拟或数字滤波器,实现灵活的子带划分和高阶调制,减少了计算的复杂性和系统结构,在数字用户线路有着广泛的应用。

无载波幅相调制信号可以表示如下:

[st=at?fIt-bt?fQt]    (1)

这里a(t)和b(t)是I路和Q路的原始比特序列经过编码和上采样之后的信号。[fIt=gtcos2πfct] 和[fQt=gtsin2πfct]是对应的整形滤波器的时域函数,它们形成一对希尔伯特变换对。

假设传输信道是理想的,在接收机端两个匹配滤波器的输出可以表示如下:

这里[mIt=fI-t] 和[mQt=fQ-t]是对应的匹配滤波器的脉冲响应。利用对应的匹配滤波器在接收端就可以解调出原始信号。

我们采用了无载波幅相调制技术,结合先进预均衡与后均衡算,后均衡算法采用改进级联多模算法(CMMA),实现了1.35 Gb/s可见光传输系统实验[15]。实验原理图和实验装置图如图3所示。

图4(a)到图4(c)为采用改进CMMA均衡算法所测得BER和距离的关系。实验中,每个波长上采用频分复用技术,将不同用户的信号分别调制到3个子载波上,每个子载波调制信号带宽为25 MHz,调制阶数为64QAM,因此每个子载波的传输速率为150 Mb/s,每个波长的传输速率为450 Mb/s。在发射和接收的距离为30 cm时,经过波分复用后该系统总的传输速率达到1.35 Gb/s。图4(d)对比了CMMA和改进CMMA的性能,改进CMMA性能要优于CMMA,尤其是在第3个子带更为明显。

3 频域均衡单载波调制技术

基于频域均衡的单载波调制技术(SC-FDE)是基于单载波的高频谱效率调制技术,该调制技术频谱效率和OFDM一致,复杂度一致。可见光通信系统是一个非线性非常严重的系统,OFDM存在PAPR的缺点,高PAPR对于可见光系统是一个非常大的缺点,而SC-FDE相比于OFDM具有一定优势,因为SC-FDE拥有更小的PAPR,其调制/解调原理如图5所示。SC-FDE调制技术和OFDM过程基本一致,但SC-FDE技术把IFFT变换从系统发射端移到了系统接收端。

采用SC-FDE技术,使用RGB-LED波分复用技术和高阶调制格式,并在频域采用预均衡和后均衡技术,可以在LED 3 dB带宽只有10 MHz的条件下取得3.25 Gb/s的速率[16]。如图6(a)所示。该速率是在发射和接收距离小于1 cm条件下测得,预均衡后的带宽为125 MHz,红光和绿光都采用512QAM,蓝光则采用256QAM。图6(b)、图6(c)和图6(d)分别为红绿蓝3色BER与距离的关系,并给出了每种颜色光有无预均衡的性能对比。

4 结束语

本文针对可见光通信系统的调制带宽低问题,采用先进调制方式,突破带宽限制,实现可见光通信系统大容量传输。本文分析了类平衡-正交频分复用、无载波幅相调制和频域均衡单载波调制技术。通过对这3种调制技术原理和实验结果的分析与讨论,验证了先进调制技术在提升VLC系统传输容量上的可行性。因此,先进调制格式技术是实现高速VLC系统非常重要的途径。

参考文献

[1] O'BRIEN D, LE M H, ZENG L, et al. Indoor visible light communications: challenges and prospects [C]//Proceedings of the Optical Engineering Applications. International Society for Optics and Photonics, 2008: 709106-709106-9.

[2] LANGER K D, VUCIC J, KOTTKE C, et al. Advances and prospects in high-speed information broadcast using phosphorescent white-light LEDs [C]//Proceedings of the Transparent Optical Networks, 2009. ICTON'09. 11th International Conference on. IEEE, 2009: 1-6.endprint

[3] CUI K, CHEN G, XU Z, et al. Line-of-sight visible light communication system design and demonstration [C]//Proceedings of the Communication Systems Networks and Digital Signal Processing (CSNDSP), 2010 7th International Symposium on. IEEE, 2010: 621-625.

[4] TANAKA Y, HARUYAMA S, NAKAGAWA M. Wireless optical transmissions with white colored LED for wireless home links [C]//Proceedings of the Personal, Indoor and Mobile Radio Communications, 2000. PIMRC 2000. The 11th IEEE International Symposium on. IEEE, 2000, 2: 1325-1329.

[5] LE M H, OBRIEN D. Faulkner et al. High-speed visible light communications using multiple-resonant equalization [J]. IEEE Photon. Technol. Lett. 2008, 20(14): 1243-1245.

[6] LE M H, OBRIEN D, FAULKNER G, et al. 80 Mb/s visible light communications using pre-equalized white LED [C]//Proceedings of the ECOC 2008, 2008: 6.09.

[7] VUCIC J, KOTTKE C, NERRETER S, et al. 513 Mb/s visible light communications link based on DMT-modulation of a white LED [J]. Lightw. Technol. 2010, 28(24): 3512-3518.

[8] CHI N, WANG Y Q, WANG Y G, et al. Ultra-high-speed single red-green-blue light-emitting diode-based visible light communication system utilizing advanced modulation formats [J]. Chinese Opt. Lett. 2014, 12(1):10605.

[9] KHALID A M, COSSU G, CORSINI R, et al. 1 Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation [J]. IEEE Photon. J. 2012, 4(5): 1465-1473.

[10] COSSU G, KHALID A M, CHOUDHURY P, et al. 3.4 Gb/s visible optical wireless transmission based on RGB LED [J]. Opt. Express, 2012, 20(26): B501-B506.

[11] WANG Y Q, YANG C, WANG Y G, et al. Gigabit polarization division multiplexing in visible light communication [J]. Optics Letters, 2014, 39(7): 1823-1826.

[12] FUJIMOTO N, MOCHIZUKI H. 477 Mb/s visible light transmission based on OOK-NRZ modulation using a single commercially available visible LED and a practical LED driver with a pre-emphasis circuit [C]//Proceedings of the National Fiber Optic Engineers Conference. Optical Society of America, 2013: JTh2A. 73.

[13] LI H, CHEN X, HUANG B, et al. High Bandwidth Visible Light Communications Based on a Post-Equalization Circuit [J]. IEEE Photon. Technol. Lett., 2014, 26(2): 119-122.

[14] WANG Y, CHI N, WANG Y, et al. High-speed quasi-balanced detection OFDM in visible light communication [J]. Optics express, 2013, 21(23): 27558-27564.

[15] WANG Y G, TAO L, WANG Y Q, et al. High speed WDM VLC system based on multi-band CAP64 with weighted pre-equalization and modified CMMA based post-equalization [J]. IEEE Communication Letters, 2013, 29(2): 2755-2759.

[16] WANG Y, LI R, WANG Y, et al. 3.25 Gbps Visible Light Communication System based on Single Carrier Frequency Domain Equalization Utilizing an RGB LED [C]//Proceedings of the Optical Fiber Communication Conference. Optical Society of America, 2014: Th1F. 1.endprint

[3] CUI K, CHEN G, XU Z, et al. Line-of-sight visible light communication system design and demonstration [C]//Proceedings of the Communication Systems Networks and Digital Signal Processing (CSNDSP), 2010 7th International Symposium on. IEEE, 2010: 621-625.

[4] TANAKA Y, HARUYAMA S, NAKAGAWA M. Wireless optical transmissions with white colored LED for wireless home links [C]//Proceedings of the Personal, Indoor and Mobile Radio Communications, 2000. PIMRC 2000. The 11th IEEE International Symposium on. IEEE, 2000, 2: 1325-1329.

[5] LE M H, OBRIEN D. Faulkner et al. High-speed visible light communications using multiple-resonant equalization [J]. IEEE Photon. Technol. Lett. 2008, 20(14): 1243-1245.

[6] LE M H, OBRIEN D, FAULKNER G, et al. 80 Mb/s visible light communications using pre-equalized white LED [C]//Proceedings of the ECOC 2008, 2008: 6.09.

[7] VUCIC J, KOTTKE C, NERRETER S, et al. 513 Mb/s visible light communications link based on DMT-modulation of a white LED [J]. Lightw. Technol. 2010, 28(24): 3512-3518.

[8] CHI N, WANG Y Q, WANG Y G, et al. Ultra-high-speed single red-green-blue light-emitting diode-based visible light communication system utilizing advanced modulation formats [J]. Chinese Opt. Lett. 2014, 12(1):10605.

[9] KHALID A M, COSSU G, CORSINI R, et al. 1 Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation [J]. IEEE Photon. J. 2012, 4(5): 1465-1473.

[10] COSSU G, KHALID A M, CHOUDHURY P, et al. 3.4 Gb/s visible optical wireless transmission based on RGB LED [J]. Opt. Express, 2012, 20(26): B501-B506.

[11] WANG Y Q, YANG C, WANG Y G, et al. Gigabit polarization division multiplexing in visible light communication [J]. Optics Letters, 2014, 39(7): 1823-1826.

[12] FUJIMOTO N, MOCHIZUKI H. 477 Mb/s visible light transmission based on OOK-NRZ modulation using a single commercially available visible LED and a practical LED driver with a pre-emphasis circuit [C]//Proceedings of the National Fiber Optic Engineers Conference. Optical Society of America, 2013: JTh2A. 73.

[13] LI H, CHEN X, HUANG B, et al. High Bandwidth Visible Light Communications Based on a Post-Equalization Circuit [J]. IEEE Photon. Technol. Lett., 2014, 26(2): 119-122.

[14] WANG Y, CHI N, WANG Y, et al. High-speed quasi-balanced detection OFDM in visible light communication [J]. Optics express, 2013, 21(23): 27558-27564.

[15] WANG Y G, TAO L, WANG Y Q, et al. High speed WDM VLC system based on multi-band CAP64 with weighted pre-equalization and modified CMMA based post-equalization [J]. IEEE Communication Letters, 2013, 29(2): 2755-2759.

[16] WANG Y, LI R, WANG Y, et al. 3.25 Gbps Visible Light Communication System based on Single Carrier Frequency Domain Equalization Utilizing an RGB LED [C]//Proceedings of the Optical Fiber Communication Conference. Optical Society of America, 2014: Th1F. 1.endprint

[3] CUI K, CHEN G, XU Z, et al. Line-of-sight visible light communication system design and demonstration [C]//Proceedings of the Communication Systems Networks and Digital Signal Processing (CSNDSP), 2010 7th International Symposium on. IEEE, 2010: 621-625.

[4] TANAKA Y, HARUYAMA S, NAKAGAWA M. Wireless optical transmissions with white colored LED for wireless home links [C]//Proceedings of the Personal, Indoor and Mobile Radio Communications, 2000. PIMRC 2000. The 11th IEEE International Symposium on. IEEE, 2000, 2: 1325-1329.

[5] LE M H, OBRIEN D. Faulkner et al. High-speed visible light communications using multiple-resonant equalization [J]. IEEE Photon. Technol. Lett. 2008, 20(14): 1243-1245.

[6] LE M H, OBRIEN D, FAULKNER G, et al. 80 Mb/s visible light communications using pre-equalized white LED [C]//Proceedings of the ECOC 2008, 2008: 6.09.

[7] VUCIC J, KOTTKE C, NERRETER S, et al. 513 Mb/s visible light communications link based on DMT-modulation of a white LED [J]. Lightw. Technol. 2010, 28(24): 3512-3518.

[8] CHI N, WANG Y Q, WANG Y G, et al. Ultra-high-speed single red-green-blue light-emitting diode-based visible light communication system utilizing advanced modulation formats [J]. Chinese Opt. Lett. 2014, 12(1):10605.

[9] KHALID A M, COSSU G, CORSINI R, et al. 1 Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation [J]. IEEE Photon. J. 2012, 4(5): 1465-1473.

[10] COSSU G, KHALID A M, CHOUDHURY P, et al. 3.4 Gb/s visible optical wireless transmission based on RGB LED [J]. Opt. Express, 2012, 20(26): B501-B506.

[11] WANG Y Q, YANG C, WANG Y G, et al. Gigabit polarization division multiplexing in visible light communication [J]. Optics Letters, 2014, 39(7): 1823-1826.

[12] FUJIMOTO N, MOCHIZUKI H. 477 Mb/s visible light transmission based on OOK-NRZ modulation using a single commercially available visible LED and a practical LED driver with a pre-emphasis circuit [C]//Proceedings of the National Fiber Optic Engineers Conference. Optical Society of America, 2013: JTh2A. 73.

[13] LI H, CHEN X, HUANG B, et al. High Bandwidth Visible Light Communications Based on a Post-Equalization Circuit [J]. IEEE Photon. Technol. Lett., 2014, 26(2): 119-122.

[14] WANG Y, CHI N, WANG Y, et al. High-speed quasi-balanced detection OFDM in visible light communication [J]. Optics express, 2013, 21(23): 27558-27564.

[15] WANG Y G, TAO L, WANG Y Q, et al. High speed WDM VLC system based on multi-band CAP64 with weighted pre-equalization and modified CMMA based post-equalization [J]. IEEE Communication Letters, 2013, 29(2): 2755-2759.

[16] WANG Y, LI R, WANG Y, et al. 3.25 Gbps Visible Light Communication System based on Single Carrier Frequency Domain Equalization Utilizing an RGB LED [C]//Proceedings of the Optical Fiber Communication Conference. Optical Society of America, 2014: Th1F. 1.endprint