APP下载

浅谈微积分在不等式证明中的应用

2014-11-27贺建平

中小企业管理与科技·中旬刊 2014年11期
关键词:不等式微积分证明

摘要:本文介绍了通过微积分理论、方法求解不等式的过程。这种方法思路简单、无需太多解题技巧,相对于初等方法来说,在求解函数、三角证明和几何证明等问题时更值得推广。

关键词:微积分 不等式 证明 应用

不等式是数学在函数、三角证明、几何证明中的重要内容。在数学学习中,利用初等方法求解不等式,对解题思路、解题技巧的要求较高。而借助微积分理论来求解不等式,往往使问题变得简单。

微积分解不等式相较于初等方法来说,思路更加清晰,而且对解题技巧的要求不是太高。笔者将结合高等数学中的微积分理论,在下文中针对微分中值定理、函数的单调性定理、极值判定定理、级数理论来解决不等式的问题进行详细说明。

1 利用微分中值定理证明不等式

微分中值定理:假设函数y=f(x)满足条件①和条件②:①在区间[a,b]上连续;②在区间(a,b)内可导,则在区间(a,b)内至少存在一点ξ,使得f′(ξ)=■。由于ξ在a,b之间,因此f′(ξ)将有一个取值范围,也就是说■有一个取值范围,由此可得到一个不等式。因此,可利用ξ在(a,b)内的特点证明不等式。利用微分中值定理,证明的关键在于函数和区间的选取。

例1 证明:设0

证:(1)当a=b时,上式显然成立。

(2)当0

故当0

2 利用函数的增减性证明不等式

函数f(x)在区间(a,b)内可导,则f(x)在(a,b)内严格递增(递减)的充要条件:f′(x)>0(或f′(x)<0)。可利用此定理证明不等式。

例2 证明:当x>0时,x-■x■

证:先证sinx0时,f(x)是递减的(个别点处f′(x)=0,不影响f(x)是递减的结论),所以当x>0时,有f(x)

再证左边不等式,令F(x)=sinx-x+■x■,则F(0)=0,F′(x)=cosx-1+■x2(当看不清F′(x)的正负号时可重复上述思路),F′(0)=0,F′′(x)=-sinx+x,由sinx0,所以在x>0时,F′(x)>F′(0)=0,故在x>0时,F(x)>0,即x-■x■0时,x-■x■

3 利用极值证明不等式

函数某领域内取得极大值或极小值,就能够借助极值特点证明不等式。

例3 证明:当x≥0时,nxn-1-(n-1)xn-1?燮0(n>1,n∈N)。

证:令f(x)=nxn-1-(n-1)xn-1,

则f′(x)=n(n-1)xn-2-n(n-1)xn-1=n(n-1)xn-2(1-x)。

令f′(x)=0,得驻点x=1(因为x=0是x≥0的端点,所以x=0不是驻点)且当x<1时,f′(x)>0;当x>1时,f′(x)>0,所以f(1)=0,是极大值也是最大值,从而得:f(x)≤f(1)=0(x≥0),即nxn-1-(n-1)xn-1?燮0。

4 利用函数凹凸性的特点证明不等式

如果函数f(x)是凸函数,则在(a,b)上有■[f(x■)+f(x■)]?燮f■;如果函数f(x)是凹函数,则在(a,b)上有■[f(x■)+f(x■)]?叟f■。利用这一特点证明不等式。

例4 证明:若x>0,y>0,x≠y,则xlnx+ylny>(x+y)ln■

证:设f(t)=tlnt,则t>0,f′(t)=1+lnt,f′′(t)=■>0,因此,函数f(t)=tlnt在(0,+∞)上是凹的;由函数凹性的定义, x>0,y>0,x≠y有xlnx+ylny>(x+y)ln■,由此可证原不等式成立。

5 利用级数证明不等式

按照幂级函数的形式将函数展开,对不等式进行证明。

例5 证明:■

证明:原不等式等价于■

由e■=1+2x+■+…+■+… x∈(0,1)

■=(1+x)(1+x+x2+…)=1+2x+2x2+2x3+…+2xn+… x∈(0,1)

知不等式级数展开式左边的一般项2xn,右边的一般项■;在n?叟3的条件下2>■,所以,当n?叟3,0

有2xn>■,1+■2x■>1+■■。即■

通过以上论述可以得出结论:熟知高等数学的基本理论,并掌握解题方法,不等式的问题就迎刃而解。利用微积分解不等式的方法比初等解题方法更简单,解题思路更清晰,且不需要太多解题技巧,这是它可以进一步推广的优点所在。

参考文献:

[1]顾静相主编.经济数学基础(上册)[M].高等教育出版社,

2003.

[2]同济大学数学系编.高等数学[M].第六版.高等教育出版社,2011.

[3]张党光.高中微积分的教学策略研究[D].陕西师范大学,2013.

作者简介:

贺建平(1964-),女,宝鸡职业技术学院,副教授。

猜你喜欢

不等式微积分证明
获奖证明
判断或证明等差数列、等比数列
集合与微积分基础训练
集合与微积分强化训练
追根溯源 突出本质——聚焦微积分创新题
高中数学不等式易错题型及解题技巧
一道IMO试题的完善性推广
浅谈构造法在不等式证明中的应用
TED演讲:如何学习微积分(续)