枯草芽孢杆菌水分散粒剂防治黄瓜立枯病效果及对黄瓜的促生作用
2014-11-20黄大野姚经武朱志刚等
黄大野+姚经武+朱志刚等
摘要:研究枯草芽孢杆菌(Bacillus subtilis)水分散粒剂防治黄瓜立枯病效果及对黄瓜的促生作用。盆栽试验表明,1012 CFU/g 枯草芽孢杆菌水分散粒剂对黄瓜立枯病具有良好的防效并具有一定的促生作用。在浓度为2 000 μg/mL和1 000 μg/mL时,对黄瓜立枯萎病的防效为71.48%和52.02%。在浓度为2 000 μg/mL时,黄瓜发芽率、株高、根长和鲜重分别较对照提高了10.57%、28.58%、29.63%和27.46%。
关键词:枯草芽孢杆菌(Bacillus subtilis);水分散粒剂;黄瓜立枯病;促生作用
中图分类号:S436.5 文献标识码:A 文章编号:0439-8114(2014)18-4327-02
立枯丝核菌(Rhizoctonia solani)是一种毁灭性的土传病害病原菌,能侵染多种大田和园艺作物,如棉花、水稻和黄瓜等,并引起严重减产[1-3]。目前预防由立枯丝核菌引起的病害主要依靠栽培技术[4],当危害特别严重时,往往要使用化学杀菌剂[5]。然而,目前的栽培技术和化学防治不能完全有效控制病害的发生,并且化学药剂的使用会造成环境污染。
生物防治是防治立枯病的一种有效和环境友好的方法。多种微生物,如深绿木霉(Trichoderma atroviride)、哈慈木霉(Trichoderma harzianum)、荧光假单胞杆菌(Pseudomonas fluorescens)和枯草芽孢杆菌(Bacillus subtilis)已经被证明能有效防治由立枯丝核菌引起的植物病害,其中,应用最多的是枯草芽孢杆菌[6-9]。目前,国内外已经有多种优良性状的野生菌株登记用于防治多种作物的叶部和土传病害,生产上所使用的剂型多为可湿性粉剂,本研究利用自主研发的枯草芽孢杆菌环保型新剂型水分散粒剂防治黄瓜立枯病,为枯草芽孢杆菌水分散粒剂推广应用于防治黄瓜立枯病奠定基础。
1 材料与方法
1.1 材料
病原菌:立枯丝核菌,由湖北省生物农药工程研究中心分离保存。
供试药剂:1012 CFU/g枯草芽孢杆菌水分散粒剂,由湖北省生物农药工程研究中心研制;枯草芽孢杆菌可湿性粉剂Serenade,由美国AgraQuest公司提供,50%多菌灵可湿性粉剂,由江苏百灵农化股份有限公司生产。
供试植物:黄瓜,品种为中农8号
1.2 方法
1.2.1 枯草芽孢杆菌水分散粒剂防治黄瓜立枯病试验 将立枯丝核菌从保存斜面转到PDA培养基进行活化,27 ℃培养5 d, 随后将其加入含有3%风干燕麦粉的砂土进行混合,接种的混合物在27 ℃和20%湿度条件下培养21 d,然后将培养物以3∶100比例与草炭土混合[10],成为带菌土,用于播种黄瓜。
将黄瓜种子浸泡于3%次氯酸钠水溶液中10 min,然后用无菌水反复冲洗5次。随后将黄瓜种子放于垫有纱布的培养皿中,28 ℃催芽48 h。将发芽种子分别浸种于2 000 μg/mL 枯草芽孢杆菌水分散粒剂、1 000 μg/mL 枯草芽孢杆菌水分散粒剂、500 μg/mL 多菌灵和无菌水中2 h,然后播种于装有带菌土的穴盘中,温室条件下常规管理,播种10 d后观察幼苗发病情况并统计病株数。每个处理3次重复,每个重复20株苗。
1.2.2 枯草芽孢杆菌对黄瓜的促生作用试验 对黄瓜种子进行表面消毒,方法同“1.2.1”,将消毒种子分别浸种于2 000 μg/mL枯草芽孢杆菌水分散粒剂、2 000 μg/mL Serenade和无菌水中,25 ℃浸种24 h后催芽并统计各处理发芽率。每个处理3次重复,每个重复100粒种子。将每个处理芽长一致的种子播种于育苗钵中,温室常规管理,在试验过程中不添加任何营养物质。20 d后测定株高、根长、鲜重,每个处理3次重复,每个重复20株苗。计算种子活力,种子活力=发芽率×(平均根长+平均株高)[11]。
2 结果与分析
盆栽试验结果表明,枯草芽孢杆菌水分散粒剂浸种对黄瓜立枯病具有良好的防治效果(表1),在2 000 μg/mL条件下浸种对黄瓜立枯病的防效达到71.48%,1 000 μg/mL时防效也达到50%以上,防效低于对照化学药剂多菌灵。
枯草芽孢杆菌水分散粒剂对黄瓜具有明显的促生作用(表2),2 000 μg/mL浸种处理,种子发芽率从82.00%提高到90.67%,发芽率、株高、根长和鲜重分别较对照提高了10.57%、28.58%、29.63%和27.46%,并且种子活力有了明显的提高,促生作用与商品化的枯草芽孢杆菌制剂Serenade相当。
3 讨论
枯草芽孢杆菌是一种低毒微生物杀菌剂,对多种作物表现出良好的防病与促生作用[12]。但目前生产上常用的剂型主要是10亿活芽孢/g可湿性粉剂、1 000亿活孢子/g可湿性粉剂,剂型较为单一。可湿性粉剂配制喷洒液时容易发生药粉飞扬,对操作人员造成危害,包装袋内残剩的药粉污染环境,而水分散粒剂则是最具发展前景的剂型之一,可以避免可湿性粉剂中粉尘对操作者的毒害以及对环境的污染,并且性能优异,生物活性较高[13]。
本研究中的枯草芽孢杆菌水分散粒剂是一种较为理想的微生物杀菌剂剂型,其在活体条件下对黄瓜立枯病表现出良好的防病与促生作用,其田间防治效果还有待进一步的研究。同时,对其他病害,特别是叶部病害的防治效果需要进一步的研究,为其进一步的推广应用奠定基础。
参考文献:
[1] OU S H. Rice disease[M]. AUS Kew: the Cambrian News Ltd,1985.
[2] OGOSHI A. Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani Kühn[J]. Annual Review of Phytopathology,1987,25:125-143.
[3] STRASHNOV Y, ELAD Y, SIVAN A, et al. Control of Rhizoctonia solani fruit rot of tomatoes by Trichoderma harzianum Rifai [J]. Crop Protection,1985,4:359-364.
[4] SECOR G A, GUDMESTAD NC. Managing fungal diseases of potato[J]. Canadian Journal of Plant Pathology, 1999, 21: 213-221.
[5] Parry D W. Diseases of potato[A]. Plant pathology in agriculture [M]. UK: Cambridge University Press,1981.
[6] REITHNER B, SCHUHMACHER R, STOPPACHER N, et al. Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk1 differentially affects mycoparasitism and plant protection[J]. Fungal Genetics and Biology:FG&B,2007,44(11): 1123-1133.
[7] HADAR Y, CHET I, HENIS Y. Biological control of Rhizoctonia solani damping-off with wheat bran culture of Trichoderma harzianum[J]. Phytopathology,1979,69:64-68.
[8] NAGARAJKUMAR M, BHASKARAN R, VELAZHAHAN R. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen[J]. Microbiological Research,2004,159(1):73-81.
[9] ASAKA O,SHODA M. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB 14[J]. Applied Microbiology,1996,62(11):4081-4085.
[10] RYU C M, KIM J W, CHOI O, et al. Nature of a root-associated Paenibacillus polymyxa from field-grown winter barley in Korea[J]. Journal of Microbiology and Biotechnology, 2005, 15(5):984-991.
[11] BAKI A A, ANDERSON J D. Vigour determination determination in soyabean seed by multiple criteria[J]. Crop Science,1973,31:630-633.
[12] 任争光,张志勇,魏艳敏.芽孢杆菌防治园艺植物病害的研究进展[J].中国生物防治,2006(Z1):194-198.
[13] 凌世海.浅谈我国农药水分散粒剂的开发[J].安徽化工,2004,30(1):2-4.
[3] STRASHNOV Y, ELAD Y, SIVAN A, et al. Control of Rhizoctonia solani fruit rot of tomatoes by Trichoderma harzianum Rifai [J]. Crop Protection,1985,4:359-364.
[4] SECOR G A, GUDMESTAD NC. Managing fungal diseases of potato[J]. Canadian Journal of Plant Pathology, 1999, 21: 213-221.
[5] Parry D W. Diseases of potato[A]. Plant pathology in agriculture [M]. UK: Cambridge University Press,1981.
[6] REITHNER B, SCHUHMACHER R, STOPPACHER N, et al. Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk1 differentially affects mycoparasitism and plant protection[J]. Fungal Genetics and Biology:FG&B,2007,44(11): 1123-1133.
[7] HADAR Y, CHET I, HENIS Y. Biological control of Rhizoctonia solani damping-off with wheat bran culture of Trichoderma harzianum[J]. Phytopathology,1979,69:64-68.
[8] NAGARAJKUMAR M, BHASKARAN R, VELAZHAHAN R. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen[J]. Microbiological Research,2004,159(1):73-81.
[9] ASAKA O,SHODA M. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB 14[J]. Applied Microbiology,1996,62(11):4081-4085.
[10] RYU C M, KIM J W, CHOI O, et al. Nature of a root-associated Paenibacillus polymyxa from field-grown winter barley in Korea[J]. Journal of Microbiology and Biotechnology, 2005, 15(5):984-991.
[11] BAKI A A, ANDERSON J D. Vigour determination determination in soyabean seed by multiple criteria[J]. Crop Science,1973,31:630-633.
[12] 任争光,张志勇,魏艳敏.芽孢杆菌防治园艺植物病害的研究进展[J].中国生物防治,2006(Z1):194-198.
[13] 凌世海.浅谈我国农药水分散粒剂的开发[J].安徽化工,2004,30(1):2-4.
[3] STRASHNOV Y, ELAD Y, SIVAN A, et al. Control of Rhizoctonia solani fruit rot of tomatoes by Trichoderma harzianum Rifai [J]. Crop Protection,1985,4:359-364.
[4] SECOR G A, GUDMESTAD NC. Managing fungal diseases of potato[J]. Canadian Journal of Plant Pathology, 1999, 21: 213-221.
[5] Parry D W. Diseases of potato[A]. Plant pathology in agriculture [M]. UK: Cambridge University Press,1981.
[6] REITHNER B, SCHUHMACHER R, STOPPACHER N, et al. Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk1 differentially affects mycoparasitism and plant protection[J]. Fungal Genetics and Biology:FG&B,2007,44(11): 1123-1133.
[7] HADAR Y, CHET I, HENIS Y. Biological control of Rhizoctonia solani damping-off with wheat bran culture of Trichoderma harzianum[J]. Phytopathology,1979,69:64-68.
[8] NAGARAJKUMAR M, BHASKARAN R, VELAZHAHAN R. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen[J]. Microbiological Research,2004,159(1):73-81.
[9] ASAKA O,SHODA M. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB 14[J]. Applied Microbiology,1996,62(11):4081-4085.
[10] RYU C M, KIM J W, CHOI O, et al. Nature of a root-associated Paenibacillus polymyxa from field-grown winter barley in Korea[J]. Journal of Microbiology and Biotechnology, 2005, 15(5):984-991.
[11] BAKI A A, ANDERSON J D. Vigour determination determination in soyabean seed by multiple criteria[J]. Crop Science,1973,31:630-633.
[12] 任争光,张志勇,魏艳敏.芽孢杆菌防治园艺植物病害的研究进展[J].中国生物防治,2006(Z1):194-198.
[13] 凌世海.浅谈我国农药水分散粒剂的开发[J].安徽化工,2004,30(1):2-4.