Aβ在两种阿尔茨海默病转基因小鼠模型脑杏仁核分布的比较研究
2014-11-14周奕邓志伟艾卫敏等
周奕+邓志伟+艾卫敏+等
摘要目的:比较研究Aβ在两种AD转基因小鼠模型脑杏仁核分布的差异.方法:采用18月龄雄性APP/PSl双转基因(2×TgAD) 小鼠与同龄同性别APP/PSl/tau三转基因(3×TgAD)小鼠,分别进行6E10单克隆抗体免疫组化染色等方法显示Aβ阳性神经元及斑块,观察其分布与形态等的差异,图像分析系统定量比较其量的变化.结果:在杏仁核2×TgAD组Aβ阳性产物主要位于细胞外成为细胞外Aβ(eAβ),形成大量的Aβ阳性斑,Aβ阳性神经元少;而3×TgAD组 Aβ阳性产物主要位于神经元细胞内,成为细胞内Aβ(iAβ),但Aβ阳性斑少见.结论:2×TgAD组与3×TgAD组 Aβ阳性产物在杏仁核分布的差异可能反映了两种AD小鼠模型神经病理等改变的不同.
关键词阿尔茨海默病;转基因小鼠;β淀粉样蛋白;杏仁核
中图分类号R74916文献标识码A文章编号10002537(2014)05002605
AD的病因及发病机制复杂,有多种学说,至今仍未阐明.Aβ学说是目前普遍认同的AD主要发病机制之一:Aβ在脑内异常聚集并纤维化形成SPs,其神经毒性作用可破坏钙离子平衡、诱发氧化应激、激活小胶质细胞产生炎症反应、激活凋亡相关蛋白等启动凋亡程序并导致广泛的神经元丢失,进而形成认知功能损害,出现相应的痴呆症状[68].用于AD研究的动物模型有很多种,且各具特点.其中过度表达人类家族性突变的APP基因和PS1基因的 2×TgAD 小鼠,以及过度表达APP、PS1和tau基因的 3×TgAD 小鼠均能模拟出AD的某些神经生物学特征性改变,然而针对这两种动物模型脑内重要区域Aβ分布的比较还未见报道.本研究通过Aβ单克隆抗体(6E10)免疫组化染色结合形态学分析等方法,比较18月龄 2×TgAD 与 3×TgAD 小鼠杏仁核中Aβ分布的差异,探讨两种AD小鼠模型病理形态等的不同.
3讨论
本研究观察到2×TgAD组杏仁核可见大量6E10免疫阳性斑,这与其他研究者的报道是一致的[911].说明在这类转基因AD小鼠模型中,细胞外Aβ(extracelluar βamyloid ,eAβ)的沉积是其主要的病变.eAβ在AD病理过程中的作用有较多研究报道,主要表现在以下几方面:(1)eAβ可诱发脑内免疫炎症反应.eAβ可激活小胶质细胞和补体系统,释放促炎因子,诱导炎症反应发生,从而导致神经元退行性变[12].人们在AD患者脑中发现,在SPs的核心周围可见聚集的小胶质细胞并与SPs相互交错,小胶质细胞的异常激活同AD的神经病理改变有一定的联系,据此推测eAβ可能是通过免疫炎症反应促进AD的发生.临床流行病学调查表明,长期服用抗炎药物后AD发病率减低,并对认知功能具有保护作用.(2)Nelson 等发现eAβ可使某些抗氧化酶活性降低从而导致氧自由基的浓度异常升高,其可能是诱发AD的机理之一[13].eAβ也可通过其它多种途径诱导蛋白质过氧化物、脂质过氧化物大量产生.这些产物的增加可导致神经元产能障碍,最终启动细胞的凋亡过程.(3)异常增加的eAβ的作用曾经被认为还通过多种方式尤其是诱发细胞凋亡的途径,从而引起神经元退行性变.支持该观点的依据有:与早期家族性AD相关的PS1、PS2、APP基因突变可使eAβ含量增加;Aβ降解酶基因的多态性,其中包括编码人胰岛素降解酶的基因,可能导致AD的发生;实验动物治疗研究发现抗Aβ治疗有一定疗效.因此,清除eAβ及eAβ神经毒性,曾经是AD治疗的主要研究方向.然而,Aβ免疫实验仅起到轻微延缓AD进程的作用并出现了无菌性脑炎的严重副作用而被迫中断[1416].近年来,人们通过对AD转基因小鼠及AD病人的脑组织的研究,发现存在细胞内Aβ,并对AD病理的发展起重要作用.
作者在对3×TgAD组的研究中发现,eAβ阳性斑块小且少,而神经元内有很多6E10阳性产物即细胞内Aβ(intracelluar βamyloid ,iAβ),这种现象还少见报道.近年来,神经元iAβ的存在与作用越来越受到人们的重视,其在AD中的作用也是多方面的:(1)iAβ可影响突触功能[17].Meng等通过尸体解剖发现在AD的早期即出现明显的突触可塑性的改变[18].Gimenez等发现3×TgAD转基因小鼠1到4个月时,皮质、杏仁核等部位的突触间传递丧失了近40%,而通过免疫组化等方式仅能检测到iAβ[19].提示:AD早期在无细胞外斑块形成的情况下iAβ积聚,导致突触的损害.这可以解释老年斑形成和认知障碍之间的不一致性.(2)iAβ可导致线粒体受损[20].线粒体通过氧化磷酸化作用产生能量物质ATP,同时参与维持正常的细胞内钙离子平衡.此外,线粒体在控制细胞凋亡中担当重要角色.线粒体的功能障碍会导致ROS产生过度和细胞色素C的释放,并将促使凋亡肽酶激活因子与细胞凋亡蛋白酶9前原蛋白结合,启动凋亡过程.(3)ZHANG等通过对原代培养的人类神经元细胞内显微注射Aβ可出现P53和Bax蛋白介导的选择性杀伤作用[2122].(4)iAβ多肽与细胞内载脂蛋白E的聚集密切相关,而后者与DNA断裂和细胞溶解有紧密联系.(5)iAβ还可通过减低特异的蛋白磷酸酶活性和(或)增强糖原合成酶活性诱导tau蛋白的异常磷酸化,从而损伤神经元.此外,在自然衰老的恒河猴脑中,Aβ同样被发现于神经元和非神经元细胞内,早于淀粉样斑块的形成;同时证明Aβ寡聚体可以引发神经元退行性变[23].
杏仁核(amygdale)是大脑边缘系统的重要组成部分,其具有调节内脏活动、处理情感反应及记忆等功能[2425].Horínek等通过MRI研究发现在AD的早期诊断中杏仁核与海马有着相同的诊断价值,并且认为两者在短期记忆过程中都担当着重要的角色;当AD出现轻微的精神症状时,杏仁核普遍发生了早期的损害[24].Hampel等研究表明杏仁核不仅是AD脑内重要的病变部位之一,而且其Aβ异常沉积发生的时间可能比海马、皮质等区域更早[25].上述研究表明杏仁核与AD有密切的关系.
作者比较了18月龄时2×TgAD与3×TgAD小鼠模型杏仁核Aβ分布特点.结果发现:2×TgAD组Aβ沉积主要发生在细胞外,3×TgAD组Aβ沉积主要发生在细胞内.在其他脑区也存在类似的表达差异.造成这种差异的原因目前还不清楚,有待深入研究.Aβ与AD的神经病理改变有着密切的关系,但Aβ如何引起神经元退行性变,其最初的作用位点是在细胞外还是细胞内,至今仍存在争议.由于3×TgAD小鼠过度表达的tau基因可能影响Aβ聚集的部位,并且3×TgAD小鼠早期即有明显的神经元死亡、突触丢失及学习记忆行为的改变[26],据此作者推测iAβ的神经毒性可能在神经元退行性改变并导致AD发生的过程中发挥重要作用.
参考文献:
[1]SPERLING R A, AISEN P S, BECKETT L A, et al. Toward defining the preclinical stages of Alzheimers disease: Recommendations from the National Institute on AgingAlzheimers Association workgroups on diagnosticguidelines for Alzheimers disease[J].Alzheimers Dement, 2011,7(3):23592369.
[2]TIAGO S, JOSE T, FERNANDO R. Alzheimers disease, cholesterol, and statins: the junctions of important metabolic pathways[J].Angewandte Chemie, 2013,52(4):728737.
[3]QUERFURTH H W, LAFERLA F M. Alzheimers disease[J]. New Engl J Med, 2010,362(4):329344.
[4]CHRISTIANE R. Alzheimers disease and the amyloid cascade hypothesis: a critical review[J].Int J Alzheimers Dis, 2012,10(1155):808818.
[5]MANGIALASCHE F, SOLOMON A, WINBLAD B, et al. Alzheimers disease: clinical trials and drug development [J].Lancet Neurol, 2010,9(7):702716.
[6]SIMON L. Fleshing out the amyloid cascade hypothesis:the molecular biology of Alzheimers disease[J].Basic Res, 2011,2(2):101110.
[7]DITTE Z C, SOPHIE L K, ANTONIUS F, et al. Transient intraneuronal Abrather than extracellular plaque pathology correlates with neuron loss in the frontal cortex of APP/PS1KI mice[J].Acta Neuropathol, 2008,116(6):647655.
[8]HOLCOMB I, GORDON M N, MCGOWAN E, et al. Accelerated Alzheimertype phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes [J]. Nat Med, 1998,4(1):97100.
[9]SAVONENKO A, XU G M, MELNIKOVA T, et al. Episodiclikememory deficits in the APPswe/PS1△9 mouse model of Alzheimers disease: relationships to beta amyloid deposition and neurotransmitter abnormalities [J]. Neurobiol Dis, 2005,18(3):602617.
[10]DUFF K, ECKMAN C, ZEHR C, et al. Increased amyloidbeta42(43) in brains of mice expressing mutant presenilin 1[J].Nature, 1996,383 (6602):710713.
[11]WEST M J, BACH G, SODERMAN A, et al. Synaptic contact number and size in stratum radiatum CA1 of APP/PS1DeltaE9 transgenic mice[J]. Neurobiol Aging, 2009,30(11):17561776.
[12]ANTERO S, JOHANNA O, ANUK, et al. Inflammation in Alzheimers disease: Amyloidβ oligomers trigger innate immunity defence via pattern recognition receptors[J].Prog Neurobiol, 2009,87(3):181194.
[13]NELSON T J, ALKON D L. Oxidation of cholesterol by amyloid precursor protein and βamyloid peptide[J]. J Biol Chem, 2005,280(8):73777387.
[14]RINNE J O, BROOKS D J, ROSSOR M N, et al. 11CPiB PET assessment of change in fibrillar amyloidbeta load in patients with Alzheimers disease treated with bapineuzumab: a phase 2, doubleblind, Placebocontrolled,ascendingdose study[J].Lancet Neural, 2010,9(4):363372.
[15]SIEMERS E R, FFIEDFICH S, DEAN R A, et al. Safety and changes in plasma and cercbrospinal fluid amyloid beta after a single administration of an amyloid beta monoclonal antibody in subjects with Alzheimer disease [J].Clin Neuropharmacol, 2010,33(2):6773.
[16]FOSTER J K. VERDILE G, BATES K A, et al. Immunization in Alzheimers disease:naive hope or realistic clinical potential[J].Mol Psychiatry, 2009,14(3):239251.
[17]CLAUDIO C. Intracellular and extracellular Aβ, a tale of two neuropathologies [J].Brain Pathol, 2005,15(1):6671.
[18]MENG L, LIYING C, DANIEL H S, et al. The role of intracellular amyloid β in Alzheimers disease[J].Prog Neurobiol, 2007,83(3):131139.
[19]GIMENEZLLORT L, BLAZQUEZ G, CANETEA T, et al. Modeling behavioral and neuronal symptoms of Alzheimers disease in mice: A role for intraneuronal amyloid[J]. Neurosci Biobehav Rev, 2007,31(1):125147.
[20]ALIKHANI N, GUO L, YAN S, et al. Decreased proteolytic activity of the mitochondrial amyloidbeta degrading enzyme, PreP peptidasome, in Alzheimers disease brain mitochondria[J].J Alzheimers Dis, 2011,27(1):65356546.
[21]ZHANG Y, MCLAUGHLIN R, GOODYER C, et al. Selective cytotoxicity of intracellular amyloid beta peptide142 through p53 and Bax in cultured primary human neurons [J]. J Cell Biol, 2002,156(3):519529.
[22]THOMAS A B, HENNING B, KAILAI D, et al. Intraneuronalamyloid is a major risk factornovel evidencefrom the APP/PS1KI mouse model [J].Neurodegenerative Dis, 2008,5(34):140142.
[23]BILLINGS L, ODDO S, GREEN K N, et al. Intraneuronal Aβ causes the onset of early Alzheimers diseaserelated cognitive deficits in transgenic mice[J]. Neuron, 2005,45(5): 675688.
[24]HORNEK D, PETROVICKY P, HORT J, et al. Amygdalar volume and psychiatric symptoms in Alzheimers disease: an MRI analysis[J].Acta Neurol Scand, 2006,113(1):4045.
[25]HAMPEL H, TEIPEL S J, BAYER W, et al. Age transformation of combined hippocampus and amygdale volume improves diagnostic accuracy in Alzheimers disease[J].J Neurol Sci, 2002,194(1):1519.
[26]TOBIAS B, MARTIN F, STEFFEN B, et al. Multiple events lead to dendritic spine loss in triple transgenic Alzheimers disease mice[J].Plos one, 2011,5(11): 477488.
(编辑王健)
[13]NELSON T J, ALKON D L. Oxidation of cholesterol by amyloid precursor protein and βamyloid peptide[J]. J Biol Chem, 2005,280(8):73777387.
[14]RINNE J O, BROOKS D J, ROSSOR M N, et al. 11CPiB PET assessment of change in fibrillar amyloidbeta load in patients with Alzheimers disease treated with bapineuzumab: a phase 2, doubleblind, Placebocontrolled,ascendingdose study[J].Lancet Neural, 2010,9(4):363372.
[15]SIEMERS E R, FFIEDFICH S, DEAN R A, et al. Safety and changes in plasma and cercbrospinal fluid amyloid beta after a single administration of an amyloid beta monoclonal antibody in subjects with Alzheimer disease [J].Clin Neuropharmacol, 2010,33(2):6773.
[16]FOSTER J K. VERDILE G, BATES K A, et al. Immunization in Alzheimers disease:naive hope or realistic clinical potential[J].Mol Psychiatry, 2009,14(3):239251.
[17]CLAUDIO C. Intracellular and extracellular Aβ, a tale of two neuropathologies [J].Brain Pathol, 2005,15(1):6671.
[18]MENG L, LIYING C, DANIEL H S, et al. The role of intracellular amyloid β in Alzheimers disease[J].Prog Neurobiol, 2007,83(3):131139.
[19]GIMENEZLLORT L, BLAZQUEZ G, CANETEA T, et al. Modeling behavioral and neuronal symptoms of Alzheimers disease in mice: A role for intraneuronal amyloid[J]. Neurosci Biobehav Rev, 2007,31(1):125147.
[20]ALIKHANI N, GUO L, YAN S, et al. Decreased proteolytic activity of the mitochondrial amyloidbeta degrading enzyme, PreP peptidasome, in Alzheimers disease brain mitochondria[J].J Alzheimers Dis, 2011,27(1):65356546.
[21]ZHANG Y, MCLAUGHLIN R, GOODYER C, et al. Selective cytotoxicity of intracellular amyloid beta peptide142 through p53 and Bax in cultured primary human neurons [J]. J Cell Biol, 2002,156(3):519529.
[22]THOMAS A B, HENNING B, KAILAI D, et al. Intraneuronalamyloid is a major risk factornovel evidencefrom the APP/PS1KI mouse model [J].Neurodegenerative Dis, 2008,5(34):140142.
[23]BILLINGS L, ODDO S, GREEN K N, et al. Intraneuronal Aβ causes the onset of early Alzheimers diseaserelated cognitive deficits in transgenic mice[J]. Neuron, 2005,45(5): 675688.
[24]HORNEK D, PETROVICKY P, HORT J, et al. Amygdalar volume and psychiatric symptoms in Alzheimers disease: an MRI analysis[J].Acta Neurol Scand, 2006,113(1):4045.
[25]HAMPEL H, TEIPEL S J, BAYER W, et al. Age transformation of combined hippocampus and amygdale volume improves diagnostic accuracy in Alzheimers disease[J].J Neurol Sci, 2002,194(1):1519.
[26]TOBIAS B, MARTIN F, STEFFEN B, et al. Multiple events lead to dendritic spine loss in triple transgenic Alzheimers disease mice[J].Plos one, 2011,5(11): 477488.
(编辑王健)
[13]NELSON T J, ALKON D L. Oxidation of cholesterol by amyloid precursor protein and βamyloid peptide[J]. J Biol Chem, 2005,280(8):73777387.
[14]RINNE J O, BROOKS D J, ROSSOR M N, et al. 11CPiB PET assessment of change in fibrillar amyloidbeta load in patients with Alzheimers disease treated with bapineuzumab: a phase 2, doubleblind, Placebocontrolled,ascendingdose study[J].Lancet Neural, 2010,9(4):363372.
[15]SIEMERS E R, FFIEDFICH S, DEAN R A, et al. Safety and changes in plasma and cercbrospinal fluid amyloid beta after a single administration of an amyloid beta monoclonal antibody in subjects with Alzheimer disease [J].Clin Neuropharmacol, 2010,33(2):6773.
[16]FOSTER J K. VERDILE G, BATES K A, et al. Immunization in Alzheimers disease:naive hope or realistic clinical potential[J].Mol Psychiatry, 2009,14(3):239251.
[17]CLAUDIO C. Intracellular and extracellular Aβ, a tale of two neuropathologies [J].Brain Pathol, 2005,15(1):6671.
[18]MENG L, LIYING C, DANIEL H S, et al. The role of intracellular amyloid β in Alzheimers disease[J].Prog Neurobiol, 2007,83(3):131139.
[19]GIMENEZLLORT L, BLAZQUEZ G, CANETEA T, et al. Modeling behavioral and neuronal symptoms of Alzheimers disease in mice: A role for intraneuronal amyloid[J]. Neurosci Biobehav Rev, 2007,31(1):125147.
[20]ALIKHANI N, GUO L, YAN S, et al. Decreased proteolytic activity of the mitochondrial amyloidbeta degrading enzyme, PreP peptidasome, in Alzheimers disease brain mitochondria[J].J Alzheimers Dis, 2011,27(1):65356546.
[21]ZHANG Y, MCLAUGHLIN R, GOODYER C, et al. Selective cytotoxicity of intracellular amyloid beta peptide142 through p53 and Bax in cultured primary human neurons [J]. J Cell Biol, 2002,156(3):519529.
[22]THOMAS A B, HENNING B, KAILAI D, et al. Intraneuronalamyloid is a major risk factornovel evidencefrom the APP/PS1KI mouse model [J].Neurodegenerative Dis, 2008,5(34):140142.
[23]BILLINGS L, ODDO S, GREEN K N, et al. Intraneuronal Aβ causes the onset of early Alzheimers diseaserelated cognitive deficits in transgenic mice[J]. Neuron, 2005,45(5): 675688.
[24]HORNEK D, PETROVICKY P, HORT J, et al. Amygdalar volume and psychiatric symptoms in Alzheimers disease: an MRI analysis[J].Acta Neurol Scand, 2006,113(1):4045.
[25]HAMPEL H, TEIPEL S J, BAYER W, et al. Age transformation of combined hippocampus and amygdale volume improves diagnostic accuracy in Alzheimers disease[J].J Neurol Sci, 2002,194(1):1519.
[26]TOBIAS B, MARTIN F, STEFFEN B, et al. Multiple events lead to dendritic spine loss in triple transgenic Alzheimers disease mice[J].Plos one, 2011,5(11): 477488.
(编辑王健)