免耕和秸秆覆盖对农田土壤温室气体排放的影响
2014-10-22李英臣侯翠翠李勇过治军
李英臣,侯翠翠,李勇,过治军
河南师范大学,河南 新乡 453007
人类活动引起的温室气体浓度增加是全球变暖的主要原因(IPCC,2007)。作为三种主要的温室气体,CO2、CH4和N2O在大气中的浓度不断增加,它们的体积分数分别由工业革命前的约280×10-6、700×10-9、270×10-9增加至 2006 年的381.2×10-6、1782×10-9和 320.1×10-9,分别增加了136%、255%和119%(WMO,2006)。农田土壤是重要的温室气体排放源,由于人类农业活动导致的温室气体排放占温室气体排放量的 10%~12%(IPCC,2007;Lenka和 Lal,2013)。各种农业措施对温室气体排放都有重要的影响(Almaraz等,2009;Kallenbach等,2010;邹晓霞等,2011)。
以减耕或免耕,作物秸秆覆盖和作物轮作为特点的保护性农业,与上世纪 70年代在美国兴起,由于其在提高作物产量、减少机械燃料耗费,缓解土地退化等方面的作用得到大力推广(Govaert等,2009)。目前主要在美国、巴西、阿根廷、加拿大和澳大利亚种植面积较大,在欧洲以及非洲也慢慢被接受而进行推广。作为两种主要的保护性农业措施,免耕和秸秆覆盖被越来越多的应用于农业生产中,在减少水土流失、增加作物产量、增加土壤质量等方面发挥了巨大作用(Blaver等,2009;Duiker和Lal,1999;Kassam等,2012)。截至2009年,全球免耕土地面积已经达到 111×106hm-2,以美国最多,占23.9%,巴西次之(23.0%),再者为阿根廷(17.8%)和加拿大(12.2%),我国目前有1.33×106hm-2,仅为全球的1.2%,不过与2003年相比已增加了12倍(Derpsch等,2010)。但是,相比传统耕作方式,免耕和秸秆覆盖对温室气体排放的综合影响尚不清楚,结果存在争议(Ahamad等,2009;Dendooven等,2012;Regina和Alakukku,2013;Abdalla等,2013)。因此,本文对免耕和秸秆覆盖处理下,土壤3种温室气体CO2、CH4和N2O的排放影响进行综述,揭示2种保护性农业措施对3种温室气体排放的影响机制,并为制定合理的耕作和覆盖措施提供理论支持。
1 免耕和秸秆覆盖对土壤CO2排放的影响
土壤CO2排放主要是由土壤有机质分解、凋落物分解和植物根系呼吸3部分组成(Oorts等,2007)。影响土壤有机质分解的主要因素有土壤温度、土壤湿度、土壤有机碳含量等(Rodrigo等,1997),枯落物分解同时还受枯落物质量和分布位置以及土壤养分含量的影响(Gamier等,2003)。农田CO2排放受多因素影响,耕作和秸秆覆盖是影响农田温室气体排放的重要管理措施(Pandy等,2012)。
耕作方式主要是通过改变土壤有机碳分解环境,如土壤充气环境、破坏土壤团聚体结构,以及改变土壤与秸秆的接触面积等影响土壤 CO2排放(Ussiri和Lal,2009)。大部分研究表明,相对于常规耕作,免耕会降低土壤CO2释放量(表1),原因为频繁的耕作会导致土壤有机碳大量损失,CO2排放量增加;而免耕则有效的控制土壤有机碳损失,减少土壤干扰,降低土壤微生物对活性碳的利用,进而抑制 CO2排放(Almaraz 等,2009;Ussiri和 Lal,2009)。Reicosky和Archer(2007)研究指出随着耕作层深度增加,CO2排放量增加,并明显高于免耕处理(Reicosky和Archer, 2007)。也有研究指出耕作加速土壤有机质氧化,并在耕作后短期内释放大量的 CO2(La Scala等,2006;Omonode等,2007)。同时,常规耕作增加土壤团聚体周转率,加速团聚体有机质分解,而免耕增加团聚体稳定性,有利于难分解有机质的形成(Paustian等,2000)。有学者利用13C自然丰度法研究发现,免耕土壤和常规耕作土壤有机质平均周转时间分别为 73年和 44年(Paustian等,2000)。同时也有研究表明耕作对CO2排放影响不大(Ahamad等, 2009; Elder和Lal, 2008;Regina和 Alakukku,2010)。另外也有部分研究者得出相反的结论,Hendrix等(1988)通过对乔治亚州高粱和大豆地的监测发现,免耕地有更高的CO2排放(Hendrix等, 1988)。这可能与不同农田的土壤温度、土壤湿度以及土壤理化性质不同有关(Rodrigo等, 1997)。气候条件对土壤CO2排放产生一定的影响。在温带季风气候区,季节变化也会对不同耕作方式下温室气体排放产生影响(Al-Kaisi和Yin, 2005; Alvarez 等, 2001; Ussiri和 Lal, 2009)。Ussiri和Lal (2009)研究表明,耕作处理对夏季和秋季平均每天的CO2排放通量影响显著,但是对冬季和春季的影响不大(Ussiri和Lal,2009)。在趋向于使土壤湿润的气候条件下(高的降水量或者低的蒸散发),免耕更有利于降低土壤 CO2排放(Alvarez等,2001; La Scala等,2006; Ussiri和Lal,2009)(表1)。在干燥的气候条件下,耕作对土壤CO2排放的结论不一致(表 1),这表明土壤质地对土壤CO2排放有重要的影响。耕作措施的短期和长期影响的机理有所不同,耕作措施造成的短期影响主要是对土壤的物理干扰作用而产生的;长期影响则可通过改变土壤的物理、化学以及生物性质进而改变土壤CO2排放(Ussiri和Lal,2009)。所以耕作制度对土壤CO2排放的影响需要短期和长期定位实验相结合的方式共同研究。
表1 不同气候条件下免耕和常规耕作对土壤CO2排放的影响Table 1 The effect of no-till and conventional tillage on CO2 emissions in different climates
秸秆覆盖作为另一种重要的保护性耕作措施也会明显影响CO2排放。秸秆本身分解会释放一部分CO2(Bavin等,2009; Oorts等,2007),秸秆覆盖一般增加CO2排放,并随着秸秆覆盖量的增加CO2排放量增大(Lenka和Lal, 2013)。同时秸秆覆盖通过影响土壤理化性质进而影响CO2排放(Kallenbach等,2010)。有研究者认为,长期秸秆覆盖措施下会增加土壤表层 0~10 cm水稳性团聚体含量(>250 μm),这种团聚体的增加与CO2排放有很好的正相关关系(Lenka和 Lal,2013)。Bavin等(2009)通过对玉米-大豆轮作地为期 2年的研究发现,CO2排放量的增加主要是由于覆盖枯落的分解导致的(Bavin等,2009)。经过长时间的秸秆覆盖,0~30 cm的土壤有机碳68%~74%来自于秸秆(Ussiri和Lal,2009)。秸秆分解提供的矿质氮可以为硝化作用提供基质,秸秆也是可利用性碳的主要的来源,碳分解消耗 O2,造成土壤 O2缺乏,造成厌氧环境(Chantigny等,2002)。秸秆覆盖通过降低土壤温度、增加土壤湿度等条件间接影响土壤CO2排放。通常来说,在寒冷干燥的地区,秸秆覆盖会通过增加土壤温度,增加土壤湿度间接增加土壤CO2排放,而在湿润温暖的地区,秸秆覆盖则对土壤CO2排放影响不一致,且与土壤理化性质有关。Al-Kaisi和Yin(2005)通过对比研究免耕条件下,发现无秸秆覆盖处理CO2排放量明显高于秸秆覆盖处理,原因主要有以下几方面:秸秆覆盖在表层降低了土壤温度;覆盖的秸秆阻碍了土壤向大气排放CO2的通道;表层覆盖的秸秆由于与土壤接触面小而导致分解速率低(Al-Kaisi和Yin,2005)。
2 免耕和秸秆覆盖对土壤CH4排放的影响
CH4增温潜势是CO2的25倍,对全球变暖的贡献率仅次于CO2,占23%(IPCC, 2007)。农业土壤对CH4排放也有重要的作用,土壤CH4排放主要是通过在厌氧土壤中的产甲烷菌释放,在往大气传输的过程中受到甲烷氧化菌的作用,只有部分能够进入大气(孙晓新,2009)。耕作措施和秸秆覆盖主要是通过影响土壤湿度、土壤硬度及土壤营养含量等来影响CH4排放(Omonode等,2007;Regina和Alakukku,2010)。大部分研究认为免耕降低CH4排放量或者对 CH4排放量没有显著影响(Ahamad等,2009;Lidaming等,2011;Ussiri和Lal,2009。表2)。原因可能为免耕土壤更稳定,通透性好,有利于甲烷氧化(Ball等,1999),增强甲烷氧化菌活性。农业土壤 CH4的主要排放源为水稻田(Fengjinfei等,2013;Pandey等,2012;邹建文等,2003),有研究者通过对水稻田研究发现免耕降低CH4排放量(Ahamad等,2009)。Feng等(2013)通过对水稻田的研究得出相同的研究结论(Fengjinfei等,2013)。Pandey等(2012)通过对小麦-水稻田轮作地研究发现,减少耕作频率明显降低CH4排放速率(Pandy等,2012)。Li等(2011)通过对中国南方双季水稻田研究发现免耕处理下早稻和晚稻的甲烷排放量分别降低了 29%和 68%(Lidaming等,2011)。干旱地区土壤CH4排放排放量较低,有时表现为 CH4的源,有时表现为 CH4的汇(Bavin等,2009;Elder和Lal,2008;Regina和 Alakukku,2010)。大部分研究认为,在干旱土壤,耕作将增加CH4氧化能力,原因为耕作增加土壤扰动,增加土壤通气条件,使CH4吸收增加(Ball等,1999;Omonode等,2007)。Omonode等(2007)通过对玉米地和玉米-大豆轮作地研究发现犁耕和凿耕的农田为弱的 CH4排放源,免耕农田为弱的CH4的汇(Omonode等,2007)。同时,Kessavalou等(1997)研究发现免耕休闲地比耕作的冬小麦-休闲轮作地CH4排放高,且在春季差异显著,但也有学者研究表明 CH4通量不受耕作方式的影响(Kessavalou等,1997)。同时,有很多研究表明免耕降低 CH4排放(Feng等,2013;Pandey等,2012)。造成这种不同结果的原因可能为在旱地土壤CH4排放量很低,很多时候都无法监测到有效数据,而且受外界干扰因素较多(Bavin等,2009)。
表2 不同气候条件下免耕和常规耕作对土壤CH4排放的影响Table 2 The effect of no-till and conventional tillage on CH4 emissions in different climates
秸秆覆盖增加土壤厌氧条件(Jacinthe和Lal,2005),改变土壤物理性质,增加土壤养分条件等过程间接影响CH4排放(Lenka和Lal,2013)。通常条件下秸秆覆盖增加 CH4排放(Lenka和 Lal,2013;Majing等,2009),但是通过改变覆盖措施会降低CH4排放量(Majing等,2008;Majing等,2009)。Ma等(2008)和Ma等(2009)认为带状覆盖有利于减少CH4排放(Majing等,2008;Majing等,2009)。不同的覆盖作物由于其化学性质不同对CH4排放产生的影响也有所不同。Seneviratne和Van Holm(1998)通过室内模拟实验研究发现,不通的秸秆覆盖处理下CH4排放量都有所增加,但是秸秆覆盖处理之间CH4排放量也有所差异,与秸秆中氮含量有很好的相关关系(Seneviratne和 Van Holm,1998)。
3 免耕和秸秆覆盖对土壤N2O排放的影响
N2O作为一种长效温室气体,增温潜势是CO2的298倍(IPCC,2007)。农业N2O排放量占每年N2O释放入大气总量的 40%~60%(Jarecki等,2009)。土壤N2O气体主要是由土壤微生物的硝化-反硝化作用产生的(Hénault等,2005)。影响N2O排放的主要环境因子为土壤温度、土壤孔隙充水率、土壤矿质氮含量以及可利用碳含量等(Kroeze等,1999)。免耕对N2O排放的影响主要通过对温度,土壤湿度和土壤性质等过程来实现(Flechard等,2007)。免耕对N2O排放的影响有增大,无影响或降低等不同的结论(Ahamad等,2009;Baggs等,2003;Chatskikh和 Olesen,2007;Ussiri和 Lal,2009)(表3)。有研究表明免耕提高N2O排放,尤其是在实施免耕早期(Ball等,1999;Six等,2004),原因为免耕处理下高的土壤密度降低气体扩散能力,增加表层水保持能力,进而增加土壤厌氧环境,使表层土壤潜在的反硝化速率增加(Ball等,2008)。但是也有研究发现传统耕作有更高的 N2O排放(Almaraz等,2009;Elder和 Lal,2008;Mutegi等,2010;Passianoto等,2003),或者两者的排放量没有明显差异(Choudhary等,2002)。Rochette等(2008)通过大量的对比研究发现免耕增加通气条件差土壤的 N2O排放,对通气好的土壤影响不大(Rochette,2008)。Abdalla(2013)通过综述相关文献认为气候条件与土壤对 N2O排放存在着交互作用(Abdalla等,2013)。在干燥的气候条件下,免耕增加通气条件差土壤的N2O排放(Lemke等,2007;Liuxuejun等,2006;Rochette,2008)(表 3),降低通气性好土壤的 N2O排放或者影响不显著(Choudhary等,2002;Haoxiying等,2001;Malhi和 Lemke,2007)。在湿润的气候条件下,不同的土壤性质有不同的结论,并且与是否覆盖秸秆有一定的交互作用(表3)。
秸秆覆盖主要是通过影响土壤湿度和土壤养分状况来改变土壤N2O排放速率(Lenka和Lal,2013)。大部分研究认为秸秆覆盖增加 N2O排放(Almaraz等,2009;Gomes等,2009;Liuchunyan等,2011),原因可能为秸秆覆盖增加土壤中碳源,使本来受碳源限制的土壤硝化-反硝化细菌活性增加(Cuifeng等,2012)。与之研究结果类似,Gomes等(2009)认为作物覆盖提高N2O排放,增加的量与覆盖作物的数量和质量有关(Gomes等,2009),但是也有研究表明,秸秆覆盖对N2O排放的影响不大,影响N2O的主要原因是氮肥施用(Ahamad等,2009;Jarecki等,2009)。同时,有研究者认为,秸秆覆盖对 N2O的影响与土壤湿度和灌溉制度有关(kallenbach等,2010)。Liu等(2011)研究发现,秸秆覆盖对N2O排放的影响与覆盖作物种类有关,小麦秸秆还田明显增加N2O排放量,但是玉米秸秆还田对N2O排放的影响不显著(Liuchunyan等,2011)。秸秆覆盖还可与耕种方式产生相互作用。有研究表明,在无秸秆覆盖的情况下,不同耕作处理N2O排放没有明显差异。但是秸秆覆盖下,传统耕作方式下农田 N2O排放明显高于条耕和少耕处理,秸秆还田使条耕和少耕 N2O排放减少 39%和9%,使传统耕作方式N2O排放量增加35%。由此可见,秸秆覆盖对N2O排放机理复杂,研究结果有很大的不确定性,针对典型区域及不同耕作措施影响下农田土壤N2O排放需要进一步研究。
3 不同气候条件下免耕和常规耕作对土壤N2O排放的影响Table 3 The effect of no-till and conventional tillage on N2O emissions in different climates
4 总结与展望
通过以上对免耕和秸秆覆盖措施对农田三种主要的温室气体(CO2、CH4和 N2O)排放的影响研究发现,与常规耕作相比,免耕总体上能有效减少土壤CO2排放,有利于土壤中CH4氧化,增强甲烷氧化菌活性,进而降低CH4排放,免耕对N2O排放的影响因气候类型和土壤类型等条件的不同而存在结果差异,在干燥的气候条件下,免耕增加通气条件差的土壤的N2O排放,对通气好的土壤影响不大。而在湿润的气候条件下,不同的土壤性质结论不一致。秸秆覆盖促进土壤CO2排放,并随着秸秆覆盖量的增加而增大,但对CH4排放的影响有很大的不确定性,与覆盖方式和覆盖秸秆性质有密切联系,大部分研究认为秸秆覆盖增加N2O排放,但也有研究认为秸秆覆盖对 N2O排放无影响或降低N2O排放量,具体的影响机理需进一步深入研究。
目前,免耕和秸秆覆盖等保护性农业措施逐渐被接受而大面积推广,大部分的研究主要集中在对土壤水分利用率,作物产量,土壤理化性质等方面的研究,对保护性农业措施下温室气体排放的研究相对较少,而且现有这方面的研究主要关注一种或两种温室气体排放,对三种温室气体的综合影响研究并不多见。因此需结合不同土地类型,开展不同气候类型下免耕和秸秆覆盖对三种主要温室气体排放影响的综合研究,预测增温潜势,为不同气候带保护性农业措施下温室气体排放提供基础数据,并为制定合理的耕作和秸秆覆盖措施提供理论支持。加强秸秆覆盖对温室气体的排放的影响研究,运用同位素示踪等技术明确秸秆对温室气体排放的直接和间接影响。根据不同研究区土壤类型和气候条件,探索既可以减少温室气体排放,又可以保持作物产量的合适的秸秆覆盖量和覆盖措施。
ABDALLA M, OSBOME B, LANIGAN G.et al.2013.Conservation tillage systems: a review of its consequences for greenhouse gas emissions [J].Soil Use and Management, 29: 199-209.
AHAMAD S, LI C F, DAI G.Z.et al.2009.Greenhouse gas emission from direct seeding paddy field under different rice tillage systems in central china [J].Soil and Tillage Research, 106: 54-61.
ALI M A, LEE C H, LEE Y B.et al.2009.Silicate fertilization in no-tillage rice farming for mitigation of methane emission and increasing rice productivity [J].Agriculture, Ecosystems and Environment, 132:16-22.
AL-KAISI M M, YIN X.2005.Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn-soybean rotation [J].Journal of Environmental Quality, 34: 437-445.
ALLUVIONE F, HALVORSON A D, DEL GROSSO S J.2009.Nitrogen,tillage, and crop rotation effects on carbon dioxide and methane fluxes from irrigated cropping systems [J].Journal of Environmental Quality,38: 2023-2033.
ALMARAZ J J, ZHOU X M, MABOOD F.et al.2009.Greenhouse gas fluxes associated with soybean production under two tillage systems in southwestern Quebec [J].Soil and Tillage Research, 104: 134-139.
ALVAREZ R, ALVAREZ C R, LORENZO G.2001.Carbon dioxide fluxes following tillage from a mollisol in the Argentine rolling pampa [J].European Journal of Soil Biology, 37: 161-166.
BAGGS E M, STEVENSON M, PIHLATIE M.et al.2003.Nitrous oxide emissions following application of residues and fertilizer under zero and conventional tillage [J].Plant and Soil, 254: 361-370.
BALL B C, CRICHTON I, HORGAN G W.2008.Dynamics of upward and downward N2O and CO2fluxes in ploughed or no-tilled soils in relation to water-filled pore space, compaction and crop presence [J].Soil and Tillage Research, 101: 20-30.
BALL B C, SCOTT A, PARKER J P.1999.Field N2O, CO2and CH4fluxes in relation to tillage, compaction and soil quality in Scotland [J].Soil and Tillage Research, 53: 29-39.
BAVIN T K, GRIFFIS T J, BAKER J M.et al.2009.Impact of reduced tillage and cover cropping on the greenhouse gas budget of a maize/soybean rotation ecosystem [J].Agriculture, Ecosystems and Environment, 134: 234-242.
BLAVET D, DE NONI G, LE BISSONNAIS Y.et al.2009.Effect of land use and management on the early stages of soil water erosion in French Mediterranean vineyards [J].Soil and Tillage Research, 106(1):124-136.
CHANTIGNY M H, ANGERS D A, ROCHETTE P.2002.Fate of carbon and nitrogen from animal manure and crop residues in wet and cold soils [J].Soil Biology and Biochemistry, 34:509-517.
CHATSKIKH D, OLESEN J E.2007.Soil tillage enhanced CO2and N2O emissions from loamy sand soil under spring barley [J].Soil and Tillage Research, 94: 328-337.
CHOUDHARY M A, AKRAMKHANOV A, SAGGAR S.2002.Nitrous oxide emission from a New Zealand cropped soil: tillage effects,spatial and seasonal variability [J].Agriculture, Ecosystems and Environment, 93: 33-43.
COCHRAN V L, SPARROW E P, SCHLENTNER S F.et al.1997.Long-term tillage and crop residue management in the subarctic: fluxes of methane and nitrous oxide [J].Canadian Journal of Soil Science, 77:565-570.
CUI F, YAN G X, ZHOU Z X.et al.2012.Annual emissions of nitrous oxide and nitric oxide from a wheat-maize cropping system on al silt loam calcareous soil in the North China Plain [J].Soil Biology and Biochemistry, 48: 10-19.
CURTIN D, WANG H, SELLES F.et al.2000.Tillage effects on carbon fluxes in continuous wheat and fallow-wheat rotations [J].Soil Science Society of America Journal, 64: 2080-2086.
DENDOOVEN L, GUTÉRREZ-OLIVA V F, PATINO-ZÚNIGA L.et al.2012.Greenhouse gas emissions under conservation agriculture compared to traditional cultivation of maize in the central highlands of Mexico [J].Science of the Total Environment, 431: 237-244.
DERPSCH R, FRIEDRICH T, KASSAM A.et al.2010.Current status of adoption of no-till farming in the world and some of its main benefits[J].International Journal of Agricultural and Biological Engineering, 3(1): 1-25.
DRURY C F, REYNOLDS W D, TAN C S.et al.2006.Emissions of nitrous oxide and carbon dioxide: influence of tillage type and nitrogen placement depth [J].Soil Science Society of American Journal, 70:570-581.
DUIKER S W, LAL R.1999.Crop residue and tillage effects on carbon sequestration in a Luvisol in central Ohio [J].Soil and Tillage Research,52: 73-81.
DUSENBURY M P, ENGEL R E, MILLER P R.et al.2008.Nitrous oxide emissions from a northern great plains soil as influenced by nitrogen management and cropping systems [J].Journal of Environmental Quality, 37: 542-550.
ELDER J W, LAL R.2008.Tillage effects on gaseous emissions from an intensively farmed organic soil in North Central Ohio [J].Soil and Tillage Research, 98: 45-55.
ESCOBAR L F, AMADO T J C, BAYER C.et al.2010.Postharvest nitrous oxide emissions from a subtropical Oxisol as influenced by summer crop residues and their management [J].Revista Brasileira de Ciência do Solo, 34: 435-442.
FENG J F, CHEN C Q, ZHANG Y.et al.2013.Impact of cropping practices on yield-scaled greenhouse gas emissions from rice field in China : A meta-analysis [J].Agriculture, Ecosystems and Environment, 164:220-228.
FLECHARD C, AMBUS P, SKIBA U.et al.2007.Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe [J].Agriculture, Ecosystems and Environment, 121:135-152.
GARNIER P, NÉEL C, AITA C.et al.2003.Modelling carbon and nitrogen dynamics in a bare soil with and without straw incorporation [J].European Journal of Soil Science, 54 (3): 555-568.
GOMES J, BAYER C, COSTA F D S.et al.2009.Soil nitrous oxide emissions in long-term cover crops-based rotations under subtropical climate [J].Soil and Tillage Research, 106: 36-44.
GOVAERTS B, VERHULST N, CASTELLANOS-NAVARRETE A.et al.2009.Conservation agriculture and soil carbon sequestratioin: between myth and farmer reality [J].Critical Reviews in Plant Science, 28:97-122.
HAO X Y, CHANG C, CAREFOOT J M.et al.2001.Nitrous oxide emissions from an irrigated soil as affected by fertilizer and straw management [J].Nutient Cycling in Agroecosystems, 60:1-8.
HÉNAULT C, BIZOUARD F, LAVILLE P.et al.Predicting in situ soil N2O emission using NOE algorithm and soil database.Global Change Biology [J].Global Change Biology, 11: 115-127.
HENDRIX P F, HAN C R, GROFFMAN P M.2005.Soil respiration in conventional and no-tillage agroecosystems under different winter cover crop rotations [J].Soil and Tillage Research, 12: 135-148.
IPCC.Climate Change 2007 (AR4)[EB/OL].[2007].http://www.ipcc.ch/publications and data/publications and data reports.Shtml#1.
JACINTHE P A, LAL R.2005.Labile carbon and methane uptake as affected by tillage intensity in a mollisol [J].Soil and Tillage Research,80: 35-45.
JANTALIA C P, DOS SANTOS H P, URQUIAGA S.et al.2008.Fluxes of nitrous oxide from soil under different crop rotations and tillage systems in the South of Brazil [J].Nutrients Cycling in Agroecosystems, 82: 161-173.
JARECKI M K, PARKIN T B, CHAN A S K.et al.2009.Cover crop effects on nitrous oxide emission from a manure-treated Mollisol [J].Agriculture, Ecosystems and Environment, 134: 29-35.
KALLENBACH C, ROLSTON D E, HORWATH W R.Cover cropping affects soil N2O and CO2emissions differently depending on type of irrigation [J].Agriculture, Ecosystems and Environment, 137: 251-260.
KASSAM A, MOUSSADEK R, FADLAOUI A.et al.2012.Conservation agriculture in the dry Mediterranean climate [J].Field Crops Research,132: 84-94.
KESSAVALOU A, MOSIER A R, DORAN J W.et al.1998.Fluxes of carbon dioxide, nitrous oxide, and methane in grass sod and winter wheat-fallow tillage management [J].Journal of Environmental Quality,27: 1094-1104.
KROEZE C, MOSIER A, BOUWMAN L.1999.Closing the global N2O budget: a retrospective analysis 1500-1994 [J].Global Biogeochemical Cycles, 13: 1-8.
LA SCALA N, BOLONHEZI D, PEREIRA G T.2006.Short-term soil CO2 emission after conventional and reduced tillage of a no-till sugar cane area in southern Brazil [J].Soil and Tillage Research, 91: 244-248.
LEMKE P, REN J, ALLEY R B, et al.Climate change 2007: the physical science basis; summary for policymakers, technical summary and frequently asked questions [C].IPCC, 2007.Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2007:337-383.
LENKA N K, LAL R.2013.Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system[J].Soil and Tillage Research, 126: 78-89.
LI D M, CHENG M, WANG Y.et al.2011.Methane emissions from double-rice cropping system under conventional and no tillage in southeast China [J].Soil and Tillage Research, 113:77-81.
LIU C Y, WANG K, MENG S X.et al.2011.Effects of irrigation,fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat-maize rotation field in northern China[J].Agriculture, Ecosystems and Environment, 140: 226-233.
LIU X J, MOSIER A R, HALVORSON A D.et al.2006.The impact of nitrogen placement on NO, N2O, CH4and CO2fluxes from non-tilled soil compared with conventional-tilled soil [J].Plant and Soil, 280:177-188.
MA J, MA E, XU H.et al.2009.Wheat straw management affects CH4and N2O emissions form rice fields [J].Soil Biology and Biochemistry, 41:1022-1028.
MA J, XU H, YAGI K.et al.2008.Methane emission from paddy soils as affected by wheat straw returning mode [J].Plant Soil, 313: 167-174.
MALHI S S, LEMKE R L.2007.Tillage, crop residue and N fertilizer effects on crop yield, nutrient uptake, soil quality and nitrous oxide gas emissions in a second 4-yr rotation cycles [J].Soil and Tillage Research, 96: 269-283.
METAY A, OLIVER R, SCOPEL E.et al.2007.N2O and CH4emissions from soils under conventional and no-till management practices in Goiania (Cerrados, Brazil) [J].Geoderma, 14: 78-88.
MOUSSADEK R, MRABET R, DAHAN R.et al.2011.Effect of tillage practices on the soil carbon dioxide flux during fall and spring seasons in a Mediterranean Vertisol [J].Journal of Soil Science and Envirionment, 2: 362-369.
MUTEGI J K, MUNKHOLM L J, PETERSEN B M.et al.2010.Nitrous oxide emissions and controls as influenced by tillage and crop residues management strategy [J].Soil Biology and Biochemistry, 42:1701-1711.
OMONODE R A, VYN T J, SMITH D R.et al.2007.Soil carbon dioxide and methane fluxes from long-term tillage systems in continuous corn and corn-soybean rotations [J].Soil and Tillage Research, 95: 182-195.
OORTS K, MERCKX R, GRÉHAN E.et al.2007.Determinants of annual fluxes of CO2and N2O in long-term no-tillage and conventional tillage systems in northern France [J].Soil and Tillage Research, 95: 133-148.
PANDEY D, AGRAWAL M, BOHRA J S.2012.Greenhouse gas emissions from rice crop with different tillage permutations in rice-wheat system[J].Agriculture, Ecosystem and Environment, 159: 133-144.
PARKIN T.B, KASPAR T C.2006.Nitrous oxide emissions from corn-soybean systems in the Midwest [J].Journal of Environmental Quality, 35: 1496-1506.
PASSIANOTO C C, AHRENS T, FEIGL B J.et al.2003.Emissions of CO2,N2O and NO in conventional and no-till management practices in Rondônia, Brazil [J].Biology and Fertility of Soils, 38: 200-208.
PAUSTIAN K, SIX J, ELLIOTT E T.et al.2000.Management options for reducing CO2emissions from agricultural soils [J].Biogeochemistry,48: 147-163.
REGINA K, ALAKUKKU L.2010.Greenhouse gas fluxes in varying soils types under conventional and no-tillage practices [J].Soil and Tillage Research, 109: 144-152.
REICOSKY D, ARCHER D W.2007.Moldboard plow tillage depth and short-term carbon dioxide release [J].Soil and Tillage Research, 94:109-121.
REICOSKY D, REEVES D W, PRIOR S A.et al.1999.Effects of residue management and controlled traffic on carbon dioxide and water loss [J].Soil and Tillage Research, 52: 153-165.
ROCHETTE P.2008.No-till only increases N2O emissions in poorlyaerated soils [J].Soil and Tillage Research, 101: 97-100.
RODRIGO A., RECOUS S., NEEL C.et al.1997.Modeling temperature and moisture effects on C-N transformations in soils: comparison of nine models [J].Ecological Model, 102: 325-339.
SENEVIRATNE G, VAN HOLM L H J.1998.CO2, CH4and N2O emissions from a wetted tropical upland soil following surface mulch application[J].Soil Biology and Biochemistry, 30: 1619-1622.
SIX J, OGLE S M, JAY BREIDT F.et al.2004.The potential to mitigate global warming with no-tillage management is only realized when practiced in the long-term [J].Global Change Biology, 10: 155-160.
USSIRI D A N, LAL R.2009.Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio [J].Soil and Tillage Research, 104:39-47.
World Meteorological Organization.Greenhouse Gas Bulletin [EB/OL].[2006].http://www.wmo.int/pages/prog/ arep/gaw/gaw_home_en.html.
ZHANG J S, ZHANG F P, YANG J H.et al.2011.Emissions of N2O and NH3, and nitrogen leaching from direcrt seeded rice under different tillage practices in central China [J].Agriculture, Ecosystems and Environment, 140: 164-173.
任景全, 王连喜, 陈书涛, 等.2012.免耕与翻耕条件下农田土壤呼吸的比较[J].中国农业气象, 33 (3): 388-393.
孙晓新.2009.小兴安岭沼泽甲烷排放及其对人为干扰的响应[D].哈尔滨:东北林业大学: 87.
邹建文, 黄耀, 宗良纲, 等.2003.稻田CO2、CH4和N2O排放及其影响因素[J].环境科学学报, 23(6): 758-764.
邹晓霞, 李玉娥, 高清竹, 等.2011.中国农业领域温室气体主要减排措施研究分析[J].生态环境学报, 20 (8/9): 1348-1358.