多功能半纤维素酶的构建及其酶解应用分析
2014-10-20彭静静
彭静静
摘要:以前期构建的来源于嗜热厌氧乙醇菌(Thermoanaerobacter ethanolicus JW200)的双活性阿拉伯/木糖苷酶(XarB)和来源于疏棉状嗜热丝孢菌(Thermomyces lanuginosus DSM 5826)木聚糖酶A(XynA)融合酶为基础,在融合酶的两个催化结构域间插入多肽Linker,并通过优化Linker组成和长度避免催化结构域互相之间的干扰,以增强融合酶的催化效率。通过酶解燕麦木聚糖和麦麸试验发现,带有多肽Linker的融合酶催化效率得到了提高。
关键词:半纤维素;阿拉伯/木糖苷酶;木聚糖酶;热激表达载体pHsh;酶解
中图分类号:Q78 文献标识码:A 文章编号:0439-8114(2014)16-3933-03
Abstract:The trifunctional enzyme(XarB-S-XynA) associatied with xylosidasearabinosidase (XarB) of Thermoanaerobacter ethanolicus and xylanase (XynA) of Thermomyces lanuginosus was produced in E. coli to study the effects of the physical association of the fusion partners on the enzymatic efficiency. Recombinants XarB, XynA and XarB-S-XynA were purified to homogeneity and characterized. The fusion enzyme was inserted between the two catalytic domains of the polypeptide linker. Mutual interferences between the catalytic domain were avoided to enhance the catalytic efficiency of the fusion enzyme by optimizing the composition and length linker. The trifunctional hemicellulase was tested for degradating oat spelt xylan and wheat bran. Catalytic efficiency of trifunctional enzyme was improved by poly- peptide Linker.
Key words:hemicelluloses; arabinosidase-xylosidase; xylanase; heat shock expression vector pHsh; enzymolysis
农业废弃物是指农业生产和农副产品加工后的剩余物,主要包括农作物或果树的秸秆或枝条、杂草、落叶、果实外壳、玉米芯、甘蔗渣、麦麸皮、玉米麸等,其主要化学成分为纤维素、半纤维素、木质素等。我国是一个农业大国,每年秸秆产量达6.7亿t,占世界秸秆总产量的20%~30%[1]。利用富含木聚糖类半纤维素的农业废弃物提取木糖(生产木糖醇)和制备低聚木糖的研究也成为当前该领域的研究前沿和热点问题。虽然已有上百种木聚糖酶被克隆或被提纯,并且这些酶在底物特异性热稳定性及酶反应的底物范围等方面都各有优势,但是相对于半纤维素结构及其降解的复杂特点,仅靠细菌所产的单一酶类仍不能实现农业废弃物的高效利用,也不能满足工业生产的需要。双重活性的重组酶XarB与木聚糖酶协同作用而彻底降解阿拉伯木聚糖,是工业酶制剂的理想酶源,从而为构建多功能半纤维素融合酶提供很好的酶材料[2]。在不改变酶自身优良性质的条件下,如果将有关的水解酶融合串联成一个具有多种水解酶活性的多功能酶,或通过融合标签回收重复利用酶,来提高融合酶的酶解效率,将大大简化了工序和降低成本[3-5]。
本研究以极端嗜热菌(Thermophilic lanuginosus)为材料,利用热激表达载体pHsh,将木聚糖酶基因(xynA)融合于双活性阿拉伯/木糖苷酶(XarB)的C端,构建了融合酶表达质粒pHsh-xarB-xynA,为酶法降解半纤维素的工业化生产提供有效的技术路线和解决方案。
1 材料与方法
1.1 材料
大肠杆菌(E. coli)DH10B、JM109,PCR所用扩增酶及T4 DNA磷酸激酶均购于宝生物工程(大连)有限公司;木瓜蛋白酶(≥50万IU)购自北京索莱宝科技有限公司;α-淀粉酶(≥4 000 IU)购自北京奥博星生物技术有限责任公司。
热激表达载体pHsh由泰山学院生物与酿酒工程学院构建并保存,该表达载体是由大肠杆菌σ32因子调控,包括一个热激启动子和终止子,通过热激诱导外源基因表达[6-9]。
含有嗜热厌氧乙醇菌(T. ethanolicus JW200)的双活性阿拉伯/木糖苷酶(XarB)基因的质粒pHsh-xarB和含有来源于疏棉状嗜热丝孢菌(T.lanuginosus DSM 5826)木聚糖酶A(XynA)基因的质粒pHsh-xynA以及同时含有这两个基因的质粒pHsh-xarB-xynA均为泰山学院生物与酿酒工程学院构建并保存。
1.2 方法
1.2.1 重组表达质粒pHsh-xarB-s-xynA的构建 根据长度为12个氨基酸的连接肽L1(SAGSSAAGSGSG)相应的碱基序列设计xynA-N的N端引物,即为xynA-s-N:5-CCCGATATCAGCendprint
GCGGGCAGCAGCGCGGCGGGCAGCGGCAGCGGC
ATGCAGACTACCCCGAAC-3,下划线为EcoR V酶切位点;xynA-C:5-CCGCTCGAGGCCAACGTCAG
CAACA -3,下划线为XhoⅠ酶切位点。以xynA-s-N和xynA-C为引物,重组表达质粒pHsh-xynA为模板,PCR扩增pHsh-s-xynA片段。根据GenBank中嗜热厌氧乙醇菌(T. ethanolicus JW200)双活性阿拉伯/木糖苷酶(XarB)的基因序列(GenBank accession no. AF135015)设计引物xarB-N和xarB-C:xarB-N:5'- GCAAGCCATTATATTTAGATTC-3';xarB-C:5'-CTATTTATTCTCTACCCTTAC-3';以重组表达质粒pHsh-xarB为模板,扩增基因xarB,为提高所扩增片段的保真性,用Pyrobest DNA聚合酶对模板进行扩增, PCR产物用T4 DNA磷酸激酶进行磷酸化处理。将以上所得片段用T4 DNA连接酶16 ℃连接6~12 h后,将连接产物转化入大肠杆菌DH10B。挑取阳性克隆,提取质粒用XhoⅠ限制性内切酶单酶切验证,并将阳性质粒送至上海美吉生物技术公司测序。
1.2.2 重组蛋白的表达与纯化 将重组质粒pHsh-xarB、pHsh-xynA、pHsh-xarB-xynA、pHsh-xarB-s-xynA电转化到大肠杆菌JM109中,挑取重组单菌落接种于含100 μg/mL的Amp的LB培养液中30 ℃振荡培养。当培养至OD600 nm为0.6~0.8时转入42 ℃水浴摇床进行热激表达继续培养8 h后离心收集菌体。用50 mmol/L pH 7.5的Tris-HCl缓冲液洗涤细胞2次,并用相同缓冲液重悬细胞,置于冰浴中用超声波破碎仪破碎细胞。细胞碎片于12 000 r/min离心10 min,去除上清液即为粗酶液。将粗酶液在60 ℃热处理30 min后,4 ℃、12 000 r/min离心30 min去除变性蛋白。
1.2.3 游离酶及融合酶的燕麦木聚糖(OSX)和去淀粉麦麸(WB)酶解试验 分别称取燕麦木聚糖(OSX)400 mg和去淀粉麦麸(WB)200 mg溶于5 mL 100 mmol/L的磷酸缓冲液(pH 6.2)中,分别加入纯化的游离酶和融合酶形成XynA、XarB-XynA、XarB-S-XynA、XarB+XynA处理,以不加入任何融合酶对照。为了进一步检测不同反应时间释放的还原糖量,分别将各反应体系放置于65 ℃下反应1、 3、 5、 8、 12 h后取样,并利用DNS法测还原糖浓度。
2 结果与分析
2.1 重组表达质粒pHsh-xarB-s-xynA的构建
以xynA-s-N和xynA-C为引物,重组质粒pHsh-xynA为模板,PCR扩增出带有连接肽(s)的线性pHsh-s-xynA,约3 000 bp(图1A),将经磷酸化处理后的xarB经电泳检测,基因大小为2 300 bp(图1A)。将pHsh-s-xynA和磷酸化处理后的xarB进行连接,阳性转化子抽提质粒,采用XhoⅠ单酶切表达质粒pHsh-xarB-s-xynA后释放出5 300 bp左右的条带(图1B),测序结果显示两个基因已正确插入到正确位置。
2.2 重组多功能半纤维素酶的表达
将重组质粒pHsh-xarB,pHsh-xynA,pHsh-xarB-s-xynA电转化到大肠杆菌JM109,中挑取重组单菌落接种于含100 μg/mL的Amp的LB培养液中30 ℃振荡培养。当培养至OD600 nm为0.6~0.8时转入42 ℃水浴摇床进行热激表达继续培养8 h后离心收集菌体。SDS-PAGE分析结果(图2)表明,含有质粒pHsh-xarB的重组菌能产生86 ku的特异性条带,含有质粒pHsh-xynA的重组菌能产生22 ku的特异性条带。本试验构建的重组菌能产生约108 ku的特异条带,与预期的蛋白相对分子质量(86 ku+22 ku)一致,表明成功构建带有连接肽的多功能半纤维素酶。
2.3 融合酶的酶解试验
燕麦木聚糖(OSX)作为酶解底物时(图3A),在65 ℃下酶解12 h,游离酶XynA释放的还原糖浓度为7.1 mg/mL;而XarB+XynA酶解12 h释放的还原糖浓度为8.1 mg/mL;XarB-XynA酶解12 h释放的还原糖浓度为6.8 mg/mL;XarB-S-XynA酶解12 h释放的还原糖浓度为7.4 mg/mL。所以以燕麦木聚糖(OSX)为酶解底物时,XarB+XynA的酶解效率最高。
去淀粉麦麸作为酶解底物时(图3B),在65 ℃下酶解12 h,游离酶XynA释放的还原糖浓度为0.8 mg/mL;而XarB+XynA酶解12 h释放的还原糖浓度为1.0 mg/mL;XarB-XynA酶解12 h释放的还原糖浓度为1.2 mg/mL;XarB-S-XynA酶解12 h释放的还原糖浓度为1.4 mg/mL。综合分析可知,以去淀粉麦麸作为酶解底物时,XarB-XynA的酶解效率高于游离酶的组合XarB+XynA,更高于游离酶XynA单独酶解作用,而添加了一段多肽Linker的XarB-S-XynA能够增强融合酶XarB-XynA的酶解效率,在试验组中释放还原糖浓度达到最高。
3 小结与讨论
木聚糖主链和侧链含有不同的侧枝,主要有乙酰基、阿拉伯糖基和葡萄糖醛酸基等。木聚糖完全降解需要多种水解酶的协同作用,当内切木聚糖酶随机作用木聚糖时便受到这些基团的空间阻碍,而不能到达所作用的木糖苷键,所形成的产物只能是带侧枝的低聚糖。在不改变酶自身优良性质的条件下,如果将有关的水解酶融合串联成一个具有多种水解酶活性的多功能酶,或通过融合标签回收重复利用酶,来提高融合酶的综合效率[10,11],将大大简化了工序和降低成本。因此本研究将木聚糖降解需要的多种水解酶进行基因融合,力求使用基因工程和蛋白质工程手段得到多功能高效率耐高温的木聚糖降解的融合酶。目前常用的连接肽是柔性Linker,其主要组分是甘氨酸(Gly)和丝氨酸(Ser),并且考虑到连接肽在表达宿主中的稳定性,本研究设计了连接肽氨基酸序列为SAGSSAAGSGSG。在优选的两个催化结构域XarB和XynA间插入Linker连接肽构建了融合酶XarB-S-XynA,试验结果表明,该融合酶有着比其他融合酶更高的热稳定性和酶解效率,其生物活性能够得到改善,表明在只含有Gly和Ser的连接肽中加入Ala,使融合酶XarB-xynA的功能得到优化,该方法是有效可行的。endprint
参考文献:
[1] BASTAWDE K B. Xylan structure, microbial xylanase, and their mode of action [J]. World J Microbiol Biotechnol,1992, 8:353-368.
[2] YIN E K., LE Y L, PEI J J, et al. High-level expression of the xylanase from Thermomyces lanuginosus in Escherichia coli [J]. World J Microbiol Biotechnol, 2008, 24 (2): 275-280.
[3] MAKRIDES S C. Strategies for achieving high-level expressionof genes in Escherichia coli [J]. Microbiol Rev, 1996, 60 (3): 512-538.
[4] SPAG A, WOUTERS J, LAMBERT C, et al. The endoxylanases from family 11: Computer analysis of protein sequences reveals important structure and phylogenetic relationships[J]. J Biotechnol. 2002, 95 (2): 109-131.
[5] BANEYX F. Recombinant protein expression in Escherichia coli[J]. Curr Opin Biotechnol, 1999, 10(5): 411-421.
[6] 蒋钰瑶,何嘉荣,王未未,等.新型大肠杆菌高效表达载体pHsh的构建与应用[J].微生物学通报,2012,39(3):394-400.
[7] WU H W, PEI J J, WU G G, et al. Overexpression of GH10 endoxylanase XynB from T. maritima in E. coli by a novel vector with potential for industrial application[J]. Enzyme Microb Technology, 2008, 42(3): 230-234.
[8] SHAO W L, WU H W, PEI J J. Novel expression vector system regulated by sigma32 and methods for using it to produce recombinant protein[P]. US patent:US 2007/0254335A1.2007-11-07.
[9] WU H W, PEI J J, JIANG Y, et al. pHsh vectors, a novel expression system of Escherichia coli for the large-scale production of recombinant enzymes[J]. Biotechnology Letters,2010,42(3):795-801.
[10] JIN M A, YOUNG K K,WOO J L, et al. Evaluation of a novel bifunctional xylanase–cellulose constructed by gene fusion[J]. Enzyme Microb Technol, 2005, 36(7):989-995.
[11] LU P, FENG M G, LI W F, et al. Construction and characterization of a bifunctional fusion enzyme of Bacillus-sourced β-glucanase and xylanase expressed in Escherichia coli[J]. FEMS Microbiol Lett, 2006, 261(2): 224-230.endprint
参考文献:
[1] BASTAWDE K B. Xylan structure, microbial xylanase, and their mode of action [J]. World J Microbiol Biotechnol,1992, 8:353-368.
[2] YIN E K., LE Y L, PEI J J, et al. High-level expression of the xylanase from Thermomyces lanuginosus in Escherichia coli [J]. World J Microbiol Biotechnol, 2008, 24 (2): 275-280.
[3] MAKRIDES S C. Strategies for achieving high-level expressionof genes in Escherichia coli [J]. Microbiol Rev, 1996, 60 (3): 512-538.
[4] SPAG A, WOUTERS J, LAMBERT C, et al. The endoxylanases from family 11: Computer analysis of protein sequences reveals important structure and phylogenetic relationships[J]. J Biotechnol. 2002, 95 (2): 109-131.
[5] BANEYX F. Recombinant protein expression in Escherichia coli[J]. Curr Opin Biotechnol, 1999, 10(5): 411-421.
[6] 蒋钰瑶,何嘉荣,王未未,等.新型大肠杆菌高效表达载体pHsh的构建与应用[J].微生物学通报,2012,39(3):394-400.
[7] WU H W, PEI J J, WU G G, et al. Overexpression of GH10 endoxylanase XynB from T. maritima in E. coli by a novel vector with potential for industrial application[J]. Enzyme Microb Technology, 2008, 42(3): 230-234.
[8] SHAO W L, WU H W, PEI J J. Novel expression vector system regulated by sigma32 and methods for using it to produce recombinant protein[P]. US patent:US 2007/0254335A1.2007-11-07.
[9] WU H W, PEI J J, JIANG Y, et al. pHsh vectors, a novel expression system of Escherichia coli for the large-scale production of recombinant enzymes[J]. Biotechnology Letters,2010,42(3):795-801.
[10] JIN M A, YOUNG K K,WOO J L, et al. Evaluation of a novel bifunctional xylanase–cellulose constructed by gene fusion[J]. Enzyme Microb Technol, 2005, 36(7):989-995.
[11] LU P, FENG M G, LI W F, et al. Construction and characterization of a bifunctional fusion enzyme of Bacillus-sourced β-glucanase and xylanase expressed in Escherichia coli[J]. FEMS Microbiol Lett, 2006, 261(2): 224-230.endprint
参考文献:
[1] BASTAWDE K B. Xylan structure, microbial xylanase, and their mode of action [J]. World J Microbiol Biotechnol,1992, 8:353-368.
[2] YIN E K., LE Y L, PEI J J, et al. High-level expression of the xylanase from Thermomyces lanuginosus in Escherichia coli [J]. World J Microbiol Biotechnol, 2008, 24 (2): 275-280.
[3] MAKRIDES S C. Strategies for achieving high-level expressionof genes in Escherichia coli [J]. Microbiol Rev, 1996, 60 (3): 512-538.
[4] SPAG A, WOUTERS J, LAMBERT C, et al. The endoxylanases from family 11: Computer analysis of protein sequences reveals important structure and phylogenetic relationships[J]. J Biotechnol. 2002, 95 (2): 109-131.
[5] BANEYX F. Recombinant protein expression in Escherichia coli[J]. Curr Opin Biotechnol, 1999, 10(5): 411-421.
[6] 蒋钰瑶,何嘉荣,王未未,等.新型大肠杆菌高效表达载体pHsh的构建与应用[J].微生物学通报,2012,39(3):394-400.
[7] WU H W, PEI J J, WU G G, et al. Overexpression of GH10 endoxylanase XynB from T. maritima in E. coli by a novel vector with potential for industrial application[J]. Enzyme Microb Technology, 2008, 42(3): 230-234.
[8] SHAO W L, WU H W, PEI J J. Novel expression vector system regulated by sigma32 and methods for using it to produce recombinant protein[P]. US patent:US 2007/0254335A1.2007-11-07.
[9] WU H W, PEI J J, JIANG Y, et al. pHsh vectors, a novel expression system of Escherichia coli for the large-scale production of recombinant enzymes[J]. Biotechnology Letters,2010,42(3):795-801.
[10] JIN M A, YOUNG K K,WOO J L, et al. Evaluation of a novel bifunctional xylanase–cellulose constructed by gene fusion[J]. Enzyme Microb Technol, 2005, 36(7):989-995.
[11] LU P, FENG M G, LI W F, et al. Construction and characterization of a bifunctional fusion enzyme of Bacillus-sourced β-glucanase and xylanase expressed in Escherichia coli[J]. FEMS Microbiol Lett, 2006, 261(2): 224-230.endprint