深基坑开挖卸荷对既有桩基侧摩阻力影响分析
2014-09-27龚晓南王继成伍程杰
龚晓南+王继成+伍程杰
文章编号:16742974(2014)06007007
收稿日期:20131125
基金项目:国家自然科学基金资助项目(51078377)
作者简介:龚晓南(1944-),男,浙江金华人,浙江大学教授,中国工程院院士,博士生导师
通讯联系人,E-mail: xngong@hzcnc.com
摘 要:基坑开挖卸荷导致工程桩桩侧极限阻力降低.建立单桩模型,用Mindlin应力解考虑开挖引起的竖向有效应力变化,分别计算开挖前后的桩侧极限阻力.通过某工程案例,将理论结果与其他结果相对比.最后分析了桩侧阻力降低系数随基坑开挖深度、边长、长宽比及桩长的变化规律.结果表明:桩侧阻力降低系数随开挖深度增加先减小而后缓慢增大,存在谷值临界深度,随开挖边长、长宽比增加先减小而后趋于稳定;增加桩长导致桩侧阻力降低系数增大.
关键词:基坑开挖;Mindlin应力解;竖向有效应力;桩侧阻力
中图分类号:TU473.1 文献标识码:A
Effect of Unloading on the Shaft Resistance
of Existing Piles due to Deep Excavation
GONG Xiaonan1, WANG Jicheng1,2, WU Chengjie1
(1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang Univ, Hangzhou,
Zhejiang 310058, China;2. Taizhou Tocational and Technical College, Taizhou, Zhejiang 318000, China)
Abstract: The effect of excavationrelated unloading on the underlying soil will reduce the ultimate pile shaft resistance. In this study, Mindlin's stress solution was used to allow for the variation of vertical effective stresses induced by excavation around a single pile. The ultimate resistances of the pile shaft before and after the excavation were calculated. The results of theoretical calculation were compared with others through a case study. Furthermore, the variations of reduction factors for shaft resistance with excavation depth, excavation length, ratio of length to width and pile length were analyzed. The results showed that reduction factors for shaft resistance decreased firstly and then increased with the increase of excavation depth, and it decreased first and then tended to be stable with the increase of excavation length and ratio of length to width. With the increase of pile length, the reduction factors for shaft resistance increased.
Key words:excavation; Mindlins stress solution; vertical effective stress; pile shaft resistance
基坑开挖一般在成桩之后,而基坑开挖时由于土体卸载打破了原有的平衡状态,引起坑底土体卸荷回弹,并导致桩体承载力折减,这已经成为学者和工程师们的共识.
郦建俊等[1-3]基于上海某变电站深基坑开挖后抗拔桩的实例,通过理论研究、数值分析、现场实测等方法分析了分层软土地基中抗拔桩在深开挖条件下的承载特性;王卫东等[4]通过理论研究以及数值分析,认为基坑开挖卸荷会引起抗拔桩承载力损失;范巍[5]通过有限元法系统地研究了深基坑开挖过程中单桩和群桩的受力特性,通过某工程实例说明了如何对抗拔桩和抗压桩进行验算;胡琦等[6]采用模型试验和数值方法分析了基坑开挖对坑内工程桩承载力和刚度的影响,认为采用覆土条件下测得的桩体承载力和刚度值是不安全的;杨敏等[7]通过理论研究表明,基坑开挖会引起桩体回弹和桩侧正负摩阻力,桩体位移量随着桩长和桩径的增加而减少,中性点随着桩长增加其深度位置逐渐下移;郑刚等[8-10]先后通过数值方法和模型试验分析了开挖对工程桩的承载特性的影响,认为基坑开挖对桩基承载力和桩基刚度分别产生最高达45%和75%的衰减,同时开挖导致超长桩侧阻和端阻异步发挥现象明显,对在非膨胀土和膨胀土中的摩擦型桩的桩基承载力产生不同影响;王成华等[11]通过分析认为开挖后桩身大部分处于受拉状态,桩端附近受压,桩侧阻力从桩身中部开始向下部发挥;而文献[12]则通过工程实例分析了基坑开挖对坑底基桩的影响.
基坑开挖卸荷会引起桩侧阻力和桩端阻力的减小,刘国彬等[13]通过引入残余应力系数概念,将其定义为竖向残余应力与未开挖前竖向初始应力之比,认为在开挖面以下某点其值趋近于1时,说明其处于初始应力状态,没有产生卸荷效应,并建议把残余应力系数为0.95时的深度作为残余应力影响深度,根据上海地区大量工程实例得出了如下经验关系式:
hr=H0.0612H+0.19.(1)
式中:H为基坑开挖深度, m;hr为残余应力影响深度, m.通过计算可以发现,当基坑开挖深度H>5 m时,残余应力影响深度将小于2H,这说明开挖面2H深度以下土体中不产生卸荷效应,也就不存在回弹变形.李超[14]通过研究认为基坑大面积开挖均匀卸荷的情况下,坑底土体回弹变形的极限深度为2H,并认为实际工程中基坑回弹变形的极限深度为1.5H.伍程杰等[15]通过某工程案例的研究发现开挖10 m后,有效桩长为34 m的桩端阻力的损失仅为2.4%.龚晓南等[16]基于平面单桩模型,研究既有建筑下开挖卸荷对原有桩基侧摩阻力的影响,发现开挖深度超过0.5倍桩长时,桩侧阻力损失超过50%.因此本文重点研究基坑开挖在桩侧产生的卸荷效应,分析其对桩侧阻力的影响.
本文建立基坑开挖三维单桩模型,首先通过理论公式推导,得到考虑开挖卸荷效应的桩侧极限阻力计算公式,然后通过某工程案例,分别与工程实测数据、有限元分析结果以及其他方法结果相对比,验证该理论方法的合理性,最后提出桩侧阻力降低系数的概念,并将开挖深度、边长与桩长相比进行归一化,通过算例分析桩侧阻力降低系数随基坑开挖深度、边长、长宽比以及桩长的变化规律.
1 桩侧阻力计算
1.1 桩侧竖向有效应力
假设土体为弹性的,土体中作用矩形均布荷载的Mindlin应力解由王士杰等[17]给出.如图1所示,长度为a,宽度为b的矩形均布荷载作用在均质各向同性弹性半空间内部深度h处,则角点下深度z处的竖向附加应力为:
σ′z=p4π(1-μ)(1-μ)arctanabZ1R1+arctanabZ2R2+
abZ1R21+Z212r21r23R1+abh+3-4μZR22+Z222r22r24R2+
abhZZ2R322R22+r22r42+2R22+r24r44.(2)
式中:p为土体中作用的矩形均布荷载;μ为土体泊松比;Z1=Z-h;Z2=Z+h;r21=a2+Z21;r22=a2+Z22;r23=b2+Z21;r24=b2+Z22;R21=a2+b2+Z21;R22=a2+b2+Z22.
图1Mindlin应力解示意图
Fig.1 Sketch of Mindlins stress solution
设单桩处于基坑中心,基坑开挖长度为2a,开挖宽度为2b,不考虑桩体存在对土体应力场的影响,则在深度h处卸载p引起计算点z处的竖向有效应力减少为:
σz=4σ'z.(3)
在深度h处取微小高度dh的土体,开挖这部分土体引起的卸载即其竖向有效重度γdh,其中γ为土体平均有效重度,即p=γdh,将其代入式(2)则得开挖这部分土体引起计算点z处的竖向有效应力减少量.因此开挖地面下深度H范围内土体引起z处的竖向有效应力减少为:
pt=∫H0σz.(4)
因此基坑开挖卸荷后,地面下深度z处的竖向有效应力为:
σv=γZ-pt.(5)
1.2 桩侧极限阻力
黏性土中,桩侧极限阻力的经典计算公式由Chandler[18]和Burland[19]等给出:
fs=Kσvtan δ.(6)
式中:K为土体侧压力系数;δ为桩土接触面摩擦角.
张乾青等[20]统计了不同条件下的K/K0值,其中K0为静止土压力系数,认为其比值在0.7~4.0之间.本文考虑基坑开挖前桩土体系已充分固结密实,土体应力场已达到平衡,因此开挖卸荷前有:
K=1-sin φ,(7)
式中:φ为土层内摩擦角,开挖卸荷后桩土体系来不及达到新的平衡状态,根据Zheng等[10]的建议,有:
K=1-sin φOCRsin φ.(8)
式中:OCR为土体超固结比,等于开挖前后竖向有效应力之比,成层土体计算时可取土层中点值为这层土体的超固结比值.
文献[20]经过统计,认为不同桩土条件下δ/φ在0.5~1.0之间.本文分析案例处于软土地区,根据Potyondy[21]的建议,取δ=0.6φ.
因此开挖卸荷前桩侧单位面积极限阻力为:
fs=1-sin φγZtan 0.6φ.(9)
开挖卸荷后桩侧单位面积极限阻力为:
fs=1-sin φOCRsin φγZ-pttan 0.6φ.(10)
最终沿整个桩长范围内积分得总的桩侧阻力:
Qs=πd∫LfsdZ.(11)
式中:d为桩体直径;L为桩长,成层土体沿桩长分段积分即可得到基坑开挖前后桩侧极限阻力.
2 案例分析与验证
为了验证1.2节提出的开挖条件下桩侧阻力理论计算式的合理性,本文建立三维有限元模型进行数值分析,并将其结果与本文理论计算结果以及工程实测数据相对比.
2.1 工程概况
本文案例取自文献[12],该工程位于上海某地块,由24层主楼和5层裙房组成,整体设3层地下室.基坑开挖深度12.5~13 m,占地面积约4 771 m2,工程桩采用Φ700钻孔灌注桩,有效桩长30~37 m不等,钢筋笼长均为13 m,总桩数为278根,桩身混凝土C30,排桩围护,3道内支撑.场地土层分布及主要物理力学指标见表1.
表1 土层物理力学参数
Tab.1 Physical and mechanical parameters of soil
层号
名称
层厚
/m
γ(重度)
/(kN•m-3)
Es 0.1-0.2
(压缩模量)/MPa
c
(有效黏聚力)
/kPa
φ
(有效内
摩擦角)/(°)
μ
(泊松比)
①
②
③
④
⑤1a
⑤1b
⑥
⑦1a
⑦1b
填土
褐黄色粉质黏土
灰色淤泥质粉质黏土
灰色淤泥质黏土
灰色黏土
灰色粉质黏土
暗绿色粉质黏土
灰色粉细砂
草黄色粉细砂
1.4
2.0
5.4
7.7
7.8
14.0
3.3
3.1
8.6
18.3
18.4
17.4
17.0
17.9
18.1
19.9
19.4
19.1
2.53
4.17
3.49
2.42
3.52
5.03
7.41
13.76
10.95
0.0
17.9
14.0
13.0
21.0
20.0
31.0
15.5
12.0
25.9
19.8
9.6
10.2
13.6
15.1
13.6
23.9
26.2
0.33
0.33
0.33
0.33
0.33
0.33
0.33
0.30
0.30
2.2 有限元分析
本文采用PLAXIS 3D进行数值模拟,建立三维单桩模型.分析时基坑开挖深度H为13 m,将开挖形状近似处理为方形,边长为69 m,即2a=2b=69 m.单桩位于基坑中心,桩长L取37 m.按照Randolph等[22]的理论单桩影响半径为2.5×37 m×(1-0.33)=62 m,因此取模型边长为120 m,高为60 m,标准固定边界.考虑地下水面在地表面,取土体平均有效重度为18kN/m3-10kN/m3=8 kN/m3,整体模型网格划分及基坑开挖后1/4模型剖面图分别如图2和图3所示.
图2整体模型网格划分
Fig.2 Finite element mesh of entire model
图3 开挖后1/4模型剖面图
Fig.3 Profile of 1/4 model after excavation
模型中土体、工程桩和围护桩均采用实体单元,内支撑采用梁单元.各层土体水平分层、均质各向同性.工程桩、围护桩和内支撑均为线弹性材料,弹性模量为30 GPa,泊松比为0.15.围护墙厚度为1 m,入土深度为28 m.内支撑为3道钢筋混凝土对撑.土体为弹塑性材料,服从HS屈服准则,具体参数见表1.用界面单元模拟桩土相互作用,引入强度折减因子来表征接触面摩擦角取相应土层摩擦角的折减,如此能与1.2节桩侧阻力计算公式相吻合,取得较好的对比效果.具体模拟步骤如下:
1)激活桩和围护结构,模拟桩围护体系重力加载,忽略初始位移场,保存初始应力场;
2)模拟基坑开挖施工,关闭开挖区域土体,激活内支撑,由于本文重点关注开挖前后桩体承载性能,因此假定开挖一步完成;
3)模拟单桩静载试验的整个过程,分级施加轴向荷载,直至得到桩侧阻力的极限值.
2.3 计算结果对比分析
本文案例中的工程桩在基坑开挖完成后,随机抽取3根桩进行堆载法静载试验,其中一根试桩的桩顶荷载沉降曲线如图4所示(对文[12]中图3错误加以纠正),加载到800 kN时桩顶有快速沉降32 mm,之后又趋于正常,最终加载量为4 000 kN.经过桩身取芯检查,发现在桩顶下13 m处附近桩身被拉断,产生20~40 mm的桩身间隙.根据文献[12],用慢速堆载法测试得桩身上部13 m段的极限承载力为1 200 kN.将本案例数据代入1.2节理论计算公式,并借助数值计算软件,得到桩身上部13 m范围内的桩侧极限阻力为1 090 kN,可见与实测结果还是有一定差距,相差9.2%,这是由于理论模型经过了一系列假设简化以达到简明实用的目的,而实测数据受施工因素影响较大.通过2.2节建立的有限元模型,可以得到桩身上部13 m范围内的桩侧极限阻力为1 130 kN,可见介于理论计算结果和实测结果之间.
Q/kN
图4 桩顶实测荷载沉降曲线
Fig.4QS curve for pilehead form test results
表2是沿桩身各土层的桩侧单位极限阻力的几种计算结果的对比,从表中可以看出,本文2种方法的计算结果与规范推荐值和静探指标换算值的总体趋势是一致的,然而越接近坑底开挖面,本文2种方法的计算结果相对越小,与其他2种方法结果差别越大,这是由于本文2种方法都不同程度地考虑了开挖卸荷效应,而其他2种方法是没有考虑的.另外,总体来说有限元法计算结果比理论公式计算结果有所偏大.
表2 桩侧单位极限阻力不同计算结果对比
Tab.2 Comparison of unit ultimate resistance of pile shaft
from different computing resultskPa
土层名称
规范推
荐值[23]
静探指标
换算值[12]
本文理论
公式法
本文有
限元法
④灰色淤泥质黏土
⑤1a灰色黏土
⑤1b灰色粉质黏土
⑥暗绿色粉质黏土
⑦1a灰色粉细砂
27.5
55.5
55.5
36.3
36.025.0
42.5
70.0
46.0
46.0
14.5
37.6
57.9
31.1
36.6
15.1
40.0
59.8
33.7
37.9
3算例分析
为了进一步分析基坑开挖时各参数对桩基侧摩阻力的影响程度,本算例假定弹性半空间内为均质土体,其物理力学参数见2.3节案例⑤1a灰色黏土层,水文条件及桩体同案例.定义桩侧阻力降低系数α为开挖后桩侧极限阻力Q′s与开挖前桩侧极限阻力Qs之比.下面分析基坑在不同开挖深度、开挖边长、开挖长宽比以及桩长时对α的影响.
3.1 开挖深度
设定基坑开挖为方形,开挖边长为100 m,即2a=2b=100 m,下面分析桩侧阻力降低系数随H/L(开挖深度与桩长之比)的变化规律.
图5是桩侧阻力降低系数α随H/L的变化曲线.从图中可以看出,在同一桩长条件下,随着H/L增大即开挖深度增加,桩侧阻力降低系数开始快速减小而后衰减速度变缓,约在H/L=0.6~1.0时达到最小值,然后α值又逐渐缓慢增大,这说明随开挖深度增加桩侧阻力降低系数存在一个谷值临界深度,达到这个深度后土体卸载效应减弱;在同样大小的H/L值条件下,桩体越长桩侧阻力降低系数越
H/L
图5桩侧阻力降低系数随H/L变化曲线
Fig.5 Variation in reduction factors
for shaft resistance withH/L
大,桩体越短α值越小,经仔细对比还可发现开挖深度相同时,桩体越长α值越大,这说明开挖深度相同时增加桩长有利于减小开挖后桩侧阻力的损失.
3.2 开挖边长
设定基坑开挖为方形,开挖深度为10 m,即H=10 m,下面分析桩侧阻力降低系数α随2a/L或2b/L(开挖边长与桩长之比)的变化规律.
图6是桩侧阻力降低系数α随2a/L或2b/L的变化曲线.从图中可以看出,在同一桩长条件下,随着2a/L增大即开挖边长增加,桩侧阻力降低系数开始快速减小而后衰减速度变缓并趋于稳定,当2a/L>4时α值变化很小,基本稳定,这说明达到一定开挖宽度后土体卸载对其影响程度已稳定,同样说明群桩基础基坑开挖后,中心桩的桩侧阻力损失大于边角桩,桩位与基坑边距大于2倍桩长的各基桩其损失相差很小;在同样大小的2a/L值条件下,桩体越长桩侧阻力降低系数越大,桩体越短α值越小,经仔细对比还可发现开挖边长相同时,桩体越长α值越大,这说明开挖边长相同时增加桩长有利于减小开挖后桩侧阻力的损失.
2a/L或2b/L
图6桩侧阻力降低系数随2a/L
或2b/L变化曲线
Fig.6 Variation in reduction factors for shaft
resistance with2a/Lor2b/L
3.3 开挖长宽比
设定基坑开挖深度为10 m,即H=10 m,桩长L=40 m,下面分析桩侧阻力降低系数α随2a/2b (开挖长度与宽度之比)的变化规律.
图7是桩侧阻力降低系数α随2a/2b的变化曲线.从图中可以看出,在同一开挖宽度条件下,随着2a/2b增大即开挖长宽比增加,桩侧阻力降低系数开始急剧减小而后基本不变,当2a/2b>3时α值变化非常小,这说明达到一定开挖长宽比后土体卸载对其影响程度已几乎不变;在同样大小的2a/2b值条件下,开挖宽度越大桩侧阻力降低系数越小,开挖宽度越小α值越大,经仔细对比还可发现开挖长度相同时,开挖宽度越大α值越小,这说明增加开挖长度或宽度,开挖后桩侧阻力的损失增大.
2a/2b
图7 桩侧阻力降低系数随2a/2b变化曲线
Fig.7 Variation in reduction factors
for shaft resistance with2a/2b
4结 论
本文首先推导了开挖条件下桩侧竖向有效应力的计算公式,并基于经典的黏性土中桩侧阻力公式给出了开挖前后桩侧极限阻力计算方法.然后通过一个工程实例,将本文理论计算结果与工程实测数据、有限元分析结果以及其他方法得到的结果相对比,验证了本文理论方法的可靠性.最后应用本文的理论计算方法,分析了工程桩在不同基坑开挖深度、开挖边长、开挖长宽比以及桩长时桩侧阻力降低系数的变化规律.本文通过理论公式推导,结合具体工程案例,比较理论结果和其他结果,并通过算例进行参数讨论,得出如下结论:
1)通过案例分析,本文理论计算结果与实测数据较接近,桩侧阻力偏小,其作为工程前期对工程桩承载特性的预判,不失为一种可取的方法.
2)桩长相等时,桩侧阻力降低系数随开挖深度增加先快速减小而后缓慢增大,约在H/L=0.6~1.0时达到最小值,即α存在谷值临界深度.
3)桩长相等时,桩侧阻力降低系数随开挖边长增加先快速减小而后趋于稳定,当2a/L>4时α值变化很小,群桩基础中心桩α值小于边角桩,与基坑边距大于2L的各基桩其α值相差很小.
4)开挖宽度相等时,桩侧阻力降低系数随开挖长宽比增加先急剧减小而后基本不变,当2a/2b>3时α值变化非常小;开挖长度相等时,开挖宽度越大α值越小.
5)增加桩长有利于减小开挖后桩侧阻力损失;增大开挖长度或宽度导致开挖后桩侧阻力的损失增大.
参考文献
[1] 郦建俊, 黄茂松, 木林隆, 等. 分层地基中扩底桩抗拔承载力的计算方法研究[J]. 岩土力学, 2008, 29(7): 1997-2004.
LI Jianjun, HUANG Maosong, MU Linlong, et al. Research on computation methods of uplift capacity of enlarged base pile in layered soils[J]. Rock and Soil Mechanics, 2008, 29(7): 1997-2004. (In Chinese)
[2] 郦建俊. 深层开挖条件下抗拔桩的承载特性研究[D]. 上海: 同济大学土木工程学院, 2008: 3-5.
LI Jianjun. Study on bearing behavior of uplift piles under deep excavation[D]. Shanghai: College of Civil Engineering, Tongji University, 2008: 3-5. (In Chinese)
[3] 郦建俊, 黄茂松, 王卫东, 等. 软土地基中扩底抗拔中长桩的极限承载力分析[J]. 岩土力学, 2009, 30(9): 2643-2651.
LI Jianjun, HUANG Maosong, WANG Weidong, et al. Analysis of uplift capacity of long enlargedbase pile in soft soil ground[J]. Rock and Soil Mechanics, 2009, 30(9): 2643-2651. (In Chinese)
[4] 王卫东, 吴江斌. 深开挖条件下抗拔桩分析与设计方法[J].建筑结构学报, 2010, 31(5): 202-208.
WANG Weidong, WU Jiangbin. Design and analysis of uplift pile under deep excavation[J]. Journal of Building Structures, 2010, 31(5): 202-208. (In Chinese)
[5] 范巍. 大面积深基坑开挖过程中桩基受力特性研究[D]. 上海: 上海交通大学土木工程系, 2007: 9-10.
FAN Wei. Behavior of pile foundation during largescale deep excavation[D]. Shanghai: Department of Civil Engineering, Shanghai Jiaotong University, 2007: 9-10. (In Chinese)
[6] 胡琦, 凌道盛, 陈云敏, 等. 深基坑开挖对坑内基桩受力特性的影响分析[J]. 岩土力学, 2008, 29(7): 1965-1970.
HU Qi, LING Daosheng, CHEN Yunmin, et al. Study of loading characters of pile foundation due to unloading of deep foundation pit excavation[J]. Rock and Soil Mechanics, 2008, 29(7): 1965-1970. (In Chinese)
[7] 杨敏, 逯建栋. 深开挖基坑回弹引起的坑中桩受力与位移计算[J]. 同济大学学报:自然科学版, 2010, 38(12): 1730-1735.
YANG Min, LU Jiandong. A calculation of behavior of underpinning pile subject to excavation of deep foundation pit[J]. Journal of Tongji University: Natural Science, 2010, 38(12): 1730-1735. (In Chinese)
[8] ZHENG G, DIAO Y, NG C W W. Parametric analysis of the effects of stress relief on the performance and capacity of piles in nondilative soils[J]. Canadian Geotechnical Journal, 2012, 48(9): 1354-1363.
[9] 郑刚, 张立明, 刁钰. 开挖条件下坑底工程桩工作性状及沉降计算分析[J]. 岩土力学, 2011, 32(10): 3089-3096.
ZHENG Gang, ZHANG Liming, DIAO Yu. Analysis of working performance of piles beneath excavation bottom and settlement calculation[J]. Rock and Soil Mechanics, 2011, 32(10): 3089-3096. (In Chinese)
[10]ZHENG G, PENG S Y, NG C W W, et al. Excavation effects on pile behaviour and capacity[J]. Canadian Geotechnical Journal, 2012, 49(12): 1347-1356.
[11]王成华, 刘庆晨. 考虑基坑开挖影响的群桩基础竖向承载性状数值分析[J]. 岩土力学, 2012, 33(6): 1851-1856.
WANG Chenghua, LIU Qingchen. Numerical analysis of vertical bearing behavior of group pile foundation considering pit excavation effect[J]. Rock and Soil Mechanics, 2012, 33(6): 1851-1856. (In Chinese)
[12]朱火根, 孙加平. 上海地区深基坑开挖坑底土体回弹对工程桩的影响[J]. 岩土工程界, 2005, 8(3): 43-46.
ZHU Huogen, SUN Jiaping. Effect of basal soil heave on piles during deep excavation in Shanghai[J]. Geotechnical Engineering World, 2005, 8(3): 43-46. (In Chinese)
[13]刘国彬, 黄院雄, 侯学渊. 基坑回弹的实用计算法[J] .土木工程学报, 2000, 33(4): 61-67.
LIU Guobin, HUANG Yuanxiong, HOU Xueyuan. A practical method for calculating a heave of excavated foundation[J]. China Civil Engineering Journal, 2000, 33(4): 61-67. (In Chinese)
[14]李超. 桩式基础托换在地下加层工程中的应用研究[D]. 南京: 东南大学土木工程学院, 2008: 55-59.
LI Chao. Study on the application of pile foundation underpinning in the basementaddition of existing buildings[D]. Nanjing: College of Civil Engineering, Southeast University, 2008: 55-59. (In Chinese)
[15]伍程杰, 龚晓南, 俞峰, 等. 既有高层建筑地下增层开挖桩端阻力损失[J]. 浙江大学学报:工学版,2014,48(4):671-678.
WU Chengjie, GONG Xiaonan, YU Feng, et al. Loss of pile base resistance induced by further excavation beneath existing highrise buildings[J]. Journal of Zhejiang University: Engineering Science, 2014,48(4):671-678. (In Chinese)
[16]龚晓南, 伍程杰, 俞峰, 等. 既有地下室增层开挖引起的桩基侧摩阻力损失分析[J]. 岩土工程学报, 2013, 35(11): 1957-1964.
GONG Xiaonan, WU Chengjie, YU Feng,et al. Shaft resistance loss of piles due to excavation beneath existing basements[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 1957-1964. (In Chinese)
[17]王士杰, 张 梅, 张吉占. Mindlin应力解的应用理论研究[J]. 工程力学, 2001, 18(6): 141-148.
WANG Shijie, ZHANG Mei, ZHANG Jizhan. Study on the application of theory of Mindlins stress solution[J]. Engineering Mechanics, 2001, 18(6): 141-148. (In Chinese)
[18]CHANDLER R J. The shaft friction of piles in cohesive soils in terms of effective stresses[J]. Civil Engineering and Public Works Review, 1968, 63: 48-51.
[19]BURLAND J B. Shaft friction of piles in clay-a simple fundamental approach[J]. Ground Engineering, 1973, 6(3): 30-42.
[20]张乾青, 李术才, 李利平, 等. 考虑侧阻软化和端阻硬化的群桩沉降简化算法[J]. 岩石力学与工程学报, 2013, 32(3): 615-624.
ZHANG Qianqing, LI Shucai, LI Liping, et al. Simplified method for settlement prediction of pile groups considering skin friction softing and end resistance hardening[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(3): 615-624. (In Chinese)
[21]POTYONDY J G. Skin friction between various soils and construction materials[J]. Geotechnique, 1961, 11(4): 339-345.
[22]RANDOLPH M F, WROTH C P. An analysis of the vertical deformation of pile groups[J]. Geotechnique, 1979, 29(4): 423-439.
[23]DGJ08372012岩土工程勘察规范[S]. 上海: 上海市城乡建设和交通委员会, 2012: 134-135.
DGJ08372012 Code for investigation of geotechnical engineering[S]. Shanghai: Shanghai Urban Construction and Communications Commission, 2012: 134-135. (In Chinese)
[10]ZHENG G, PENG S Y, NG C W W, et al. Excavation effects on pile behaviour and capacity[J]. Canadian Geotechnical Journal, 2012, 49(12): 1347-1356.
[11]王成华, 刘庆晨. 考虑基坑开挖影响的群桩基础竖向承载性状数值分析[J]. 岩土力学, 2012, 33(6): 1851-1856.
WANG Chenghua, LIU Qingchen. Numerical analysis of vertical bearing behavior of group pile foundation considering pit excavation effect[J]. Rock and Soil Mechanics, 2012, 33(6): 1851-1856. (In Chinese)
[12]朱火根, 孙加平. 上海地区深基坑开挖坑底土体回弹对工程桩的影响[J]. 岩土工程界, 2005, 8(3): 43-46.
ZHU Huogen, SUN Jiaping. Effect of basal soil heave on piles during deep excavation in Shanghai[J]. Geotechnical Engineering World, 2005, 8(3): 43-46. (In Chinese)
[13]刘国彬, 黄院雄, 侯学渊. 基坑回弹的实用计算法[J] .土木工程学报, 2000, 33(4): 61-67.
LIU Guobin, HUANG Yuanxiong, HOU Xueyuan. A practical method for calculating a heave of excavated foundation[J]. China Civil Engineering Journal, 2000, 33(4): 61-67. (In Chinese)
[14]李超. 桩式基础托换在地下加层工程中的应用研究[D]. 南京: 东南大学土木工程学院, 2008: 55-59.
LI Chao. Study on the application of pile foundation underpinning in the basementaddition of existing buildings[D]. Nanjing: College of Civil Engineering, Southeast University, 2008: 55-59. (In Chinese)
[15]伍程杰, 龚晓南, 俞峰, 等. 既有高层建筑地下增层开挖桩端阻力损失[J]. 浙江大学学报:工学版,2014,48(4):671-678.
WU Chengjie, GONG Xiaonan, YU Feng, et al. Loss of pile base resistance induced by further excavation beneath existing highrise buildings[J]. Journal of Zhejiang University: Engineering Science, 2014,48(4):671-678. (In Chinese)
[16]龚晓南, 伍程杰, 俞峰, 等. 既有地下室增层开挖引起的桩基侧摩阻力损失分析[J]. 岩土工程学报, 2013, 35(11): 1957-1964.
GONG Xiaonan, WU Chengjie, YU Feng,et al. Shaft resistance loss of piles due to excavation beneath existing basements[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 1957-1964. (In Chinese)
[17]王士杰, 张 梅, 张吉占. Mindlin应力解的应用理论研究[J]. 工程力学, 2001, 18(6): 141-148.
WANG Shijie, ZHANG Mei, ZHANG Jizhan. Study on the application of theory of Mindlins stress solution[J]. Engineering Mechanics, 2001, 18(6): 141-148. (In Chinese)
[18]CHANDLER R J. The shaft friction of piles in cohesive soils in terms of effective stresses[J]. Civil Engineering and Public Works Review, 1968, 63: 48-51.
[19]BURLAND J B. Shaft friction of piles in clay-a simple fundamental approach[J]. Ground Engineering, 1973, 6(3): 30-42.
[20]张乾青, 李术才, 李利平, 等. 考虑侧阻软化和端阻硬化的群桩沉降简化算法[J]. 岩石力学与工程学报, 2013, 32(3): 615-624.
ZHANG Qianqing, LI Shucai, LI Liping, et al. Simplified method for settlement prediction of pile groups considering skin friction softing and end resistance hardening[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(3): 615-624. (In Chinese)
[21]POTYONDY J G. Skin friction between various soils and construction materials[J]. Geotechnique, 1961, 11(4): 339-345.
[22]RANDOLPH M F, WROTH C P. An analysis of the vertical deformation of pile groups[J]. Geotechnique, 1979, 29(4): 423-439.
[23]DGJ08372012岩土工程勘察规范[S]. 上海: 上海市城乡建设和交通委员会, 2012: 134-135.
DGJ08372012 Code for investigation of geotechnical engineering[S]. Shanghai: Shanghai Urban Construction and Communications Commission, 2012: 134-135. (In Chinese)
[10]ZHENG G, PENG S Y, NG C W W, et al. Excavation effects on pile behaviour and capacity[J]. Canadian Geotechnical Journal, 2012, 49(12): 1347-1356.
[11]王成华, 刘庆晨. 考虑基坑开挖影响的群桩基础竖向承载性状数值分析[J]. 岩土力学, 2012, 33(6): 1851-1856.
WANG Chenghua, LIU Qingchen. Numerical analysis of vertical bearing behavior of group pile foundation considering pit excavation effect[J]. Rock and Soil Mechanics, 2012, 33(6): 1851-1856. (In Chinese)
[12]朱火根, 孙加平. 上海地区深基坑开挖坑底土体回弹对工程桩的影响[J]. 岩土工程界, 2005, 8(3): 43-46.
ZHU Huogen, SUN Jiaping. Effect of basal soil heave on piles during deep excavation in Shanghai[J]. Geotechnical Engineering World, 2005, 8(3): 43-46. (In Chinese)
[13]刘国彬, 黄院雄, 侯学渊. 基坑回弹的实用计算法[J] .土木工程学报, 2000, 33(4): 61-67.
LIU Guobin, HUANG Yuanxiong, HOU Xueyuan. A practical method for calculating a heave of excavated foundation[J]. China Civil Engineering Journal, 2000, 33(4): 61-67. (In Chinese)
[14]李超. 桩式基础托换在地下加层工程中的应用研究[D]. 南京: 东南大学土木工程学院, 2008: 55-59.
LI Chao. Study on the application of pile foundation underpinning in the basementaddition of existing buildings[D]. Nanjing: College of Civil Engineering, Southeast University, 2008: 55-59. (In Chinese)
[15]伍程杰, 龚晓南, 俞峰, 等. 既有高层建筑地下增层开挖桩端阻力损失[J]. 浙江大学学报:工学版,2014,48(4):671-678.
WU Chengjie, GONG Xiaonan, YU Feng, et al. Loss of pile base resistance induced by further excavation beneath existing highrise buildings[J]. Journal of Zhejiang University: Engineering Science, 2014,48(4):671-678. (In Chinese)
[16]龚晓南, 伍程杰, 俞峰, 等. 既有地下室增层开挖引起的桩基侧摩阻力损失分析[J]. 岩土工程学报, 2013, 35(11): 1957-1964.
GONG Xiaonan, WU Chengjie, YU Feng,et al. Shaft resistance loss of piles due to excavation beneath existing basements[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 1957-1964. (In Chinese)
[17]王士杰, 张 梅, 张吉占. Mindlin应力解的应用理论研究[J]. 工程力学, 2001, 18(6): 141-148.
WANG Shijie, ZHANG Mei, ZHANG Jizhan. Study on the application of theory of Mindlins stress solution[J]. Engineering Mechanics, 2001, 18(6): 141-148. (In Chinese)
[18]CHANDLER R J. The shaft friction of piles in cohesive soils in terms of effective stresses[J]. Civil Engineering and Public Works Review, 1968, 63: 48-51.
[19]BURLAND J B. Shaft friction of piles in clay-a simple fundamental approach[J]. Ground Engineering, 1973, 6(3): 30-42.
[20]张乾青, 李术才, 李利平, 等. 考虑侧阻软化和端阻硬化的群桩沉降简化算法[J]. 岩石力学与工程学报, 2013, 32(3): 615-624.
ZHANG Qianqing, LI Shucai, LI Liping, et al. Simplified method for settlement prediction of pile groups considering skin friction softing and end resistance hardening[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(3): 615-624. (In Chinese)
[21]POTYONDY J G. Skin friction between various soils and construction materials[J]. Geotechnique, 1961, 11(4): 339-345.
[22]RANDOLPH M F, WROTH C P. An analysis of the vertical deformation of pile groups[J]. Geotechnique, 1979, 29(4): 423-439.
[23]DGJ08372012岩土工程勘察规范[S]. 上海: 上海市城乡建设和交通委员会, 2012: 134-135.
DGJ08372012 Code for investigation of geotechnical engineering[S]. Shanghai: Shanghai Urban Construction and Communications Commission, 2012: 134-135. (In Chinese)