生物炭对农田土壤细菌群落多样性影响的PCR-DGGE分析
2014-09-19何莉莉杨慧敏钟哲科公丕涛刘玉学吕豪豪杨生茂
何莉莉,杨慧敏,2,钟哲科,2,*,公丕涛,刘玉学,吕豪豪,杨生茂
(1. 国家林业局竹子研究开发中心,杭州 310012; 2. 浙江省生物炭工程技术研究中心,杭州 310021; 3. 浙江省农业科学院环境资源与土壤肥料研究所,杭州 310021)
土壤细菌约占土壤微生物总量的70%—90%,主要包括各种细菌生理菌群如固氮菌、甲烷产生菌/氧化菌等,对土壤碳氮元素循环起着重要作用[17]。传统研究细菌的方法主要是室内平板培养法,但大多数细菌不可培养致使其存在一定的局限性[18]。现代分子生物学技术通过直接或间接方法提取土壤DNA,从基因水平研究土壤微生物的多样性[19-20]。本文通过对比常规施肥,秸秆、生物炭与化肥混施等不同施肥处理,研究生物炭对水稻田土壤细菌群落多样性的影响。运用分子生物学技术PCR-DGGE从遗传多样性方面对土壤细菌群落多样性进行表征,旨在揭示生物炭对农田土壤微生物多样性的影响,为生物炭对土壤质量演变及其生产性能提高等提供科学依据。
1 材料与方法
1.1 试验地概况
试验地点位于浙江省海宁市许村镇杨渡村(120°24′23″ E,30°26′07″ N),隶属浙江省农业科学院杨渡试验基地。属亚热带海洋性季风气候,海拔3—4 m,年降雨量1500—1600 mm,蒸发量1000—1100 mm,年平均气温16—17℃,无霜期240—250 d,年日照时数1900— 2000 h,年太阳辐射量100—115 J/cm2。土壤类型归属水稻土类、黄松田土种。
1.2 试验处理
本试验设置6个不同的施肥处理,分别是空白对照(CK1)、常规施肥(CK2)、秸秆还田+常规施肥(T1)、稻杆炭+常规施肥(T2)、稻杆炭+70%常规施肥(T3)及垃圾炭+常规施肥(T4)。种植制度为水稻-油菜轮作,其中,油菜施氮量为150 kg/hm2,化肥施用均按照N∶P2O5∶K2O=2∶1∶1.2实施,氮肥为尿素,磷肥为普通过磷酸钙,钾肥为氯化钾。减量施肥为常规施肥量的70%。随机区组设计,每个处理设置3个重复,小区面积94 m2。
试验始于2011年7月,化肥与秸秆、生物炭一次性施入,生物炭粒径大小为1—2 mm。供试土样于2012年5月29日第1轮油菜收割后采集,取0—20 cm表层土壤,用四分法混匀样品,取1 kg左右带回实验室。去杂过2 mm筛,充分混匀后一份风干供土壤pH、全氮、总有机碳、有效磷和速效钾等测定,另一份鲜样用于土壤DNA提取,-75℃冷冻储存备用。
1.3 供试材料
试验所用的秸秆炭及垃圾炭分别由水稻秸秆、生活垃圾于600℃炭化所得。秸秆炭、垃圾炭的含碳量分别为42.7%、30.3%,比表面积分别为81.8 m2/g、12.9 m2/g。各个区组施肥处理及土壤理化性质如表1所示。
表1 不同施肥处理土壤理化性质
表中同列不同小写字母表示5%水平的差异性显著; 空白对照 (CK1);常规施肥(CK2);秸秆还田+常规施肥 (T1);稻杆炭+常规施肥 (T2);稻杆炭+70%常规施肥(T3);垃圾炭+常规施肥(T4);常规施肥(RF);稻杆 (RS);稻杆炭 (RSC)
Figure with the same small letter is not significant difference at 5% level; Control blank (CK1), Regular fertilizing (CK2)/RF, Straw returning + regular fertilizing (T1), Rice stem carbon+ regular fertilizing (T2), Rice stem carbon+70% regular fertilizing (T3), Garbage carbon+ regular fertilizing (T4), Rice stem(RS), Rice stem carbon(RSC)
1.4 土壤DNA提取及聚合酶链式反应(PCR)
采用上海生工生物工程公司提供的试剂盒(Ezup柱式基因组DNA抽提试剂盒)提取土壤总DNA。PCR引物为细菌通用引物338FC-GC(引物1:5′-CGCCCGCCGCGCGCGGCGG-GCGGGGCGGGG GCACGGGGGGCCTACGGGAGGCAGCAG-3′)和518R(引物2:5′-ATTA-CCGCGGCTGCTGG-3′),均由上海生工生物工程公司提供。
50 μL PCR反应体系: Premix Taq酶25μL;引物1/1 μL、引物2/1 μL;模板1 μL,最后加灭菌水至50 μL。PCR反应条件:94℃预变性2 min;35个循环为94℃变性30 s,55℃退火30 s,72℃延伸30 s;最后补充72℃延伸7min;扩增后的PCR产物用1%琼脂糖凝胶电泳检测。
1.5 变性梯度凝胶电泳(DGGE)
(1)聚丙烯酰胺凝胶浓度是8%,变性梯度从上到下是35%—55%,上样量为45 μL。运行条件为:1×TAE电泳缓冲液,60℃电泳条件下,85 V,16 h。电泳完毕后,用SYBR GREEN避光染色30 min,再用去离子水漂洗。染色后的凝胶用Bio-RAD的GeDoc-2000凝胶成像系统拍照;用Quantity One分析软件分析样品电泳条带的数量、亮度峰值及平均光密度值。各泳道图谱的相似性通过计算戴斯系数比较得出,通过非加权配对算数平均法UPGMA对各泳道进行聚类分析。戴斯系数:
Cs=2j/(a+b)
式中,j是a、b共有的条带数,a、b是各自的条带数,c的范围是从0(没有共同条带)到1(所有条带都相同)。
(2)微生物遗传多样性指数计算方法:
Shannon-Weaver Index指数:
均匀度指数:E=H/lns
式中,Pi=ni/N,ni为DGGE图谱中第i条带的峰密度,N为全部条带峰密度的总和,s为个体所有的条带数,H为Shannon-Weaver Index指数。
2 结果与分析
2.1 DGGE分析16S rDNA V3区片段的PCR产物
细菌PCR产物的DGGE谱图(图1a)可直观的反映各处理对应的条带数目及迁移距离等信息,从中得出不同处理均可分离得到20条以上的电泳条带,且多数条带为不同处理间所共有的,但不同处理之间PCR产物的条带数及亮度存在一定的差异。运用Quantity One软件对图谱进行基本的背景排除,然后经泳道识别、条带识别和配对等步骤,可得到泳道间的对比分析结果图1b(Quantity One软件能识别肉眼无法分清和区分的条带,实图1a与电泳比较图1b编号不一致)。未施肥处理CK1与其他施肥处理相比较,其条带数较少且亮度较浅,未施肥处理CK1的1—3号泳道条带位置及亮度几乎无差异,重复性较好;各施肥处理之间共有条带数较多但亮度差异明显,且各处理的3个样品条带位置几乎一致,只是个别条带亮度一致性较差。如泳道4的编号1条带与泳道5、6的1号条带亮度差异较大,但泳道5号和6号的优势菌群相似性较高。
图1 16S rDNA V3区扩增片段DGGE分析结果(a)及电泳比较图(b)
仔细观察图1a可以发现,条带编号3、4、5、6所代表的菌群是各处理所共有的优势菌群。与未施肥处理相比,施肥处理不同程度的增加了优势菌群代表的条带亮度,如T3处理的4号条带亮度比其他处理亮度明显增加。秸秆还田(T1)处理中编号为1的条带亮度较生物炭处理(T2—T4)处理中编号为1的条带亮度亮,可能是由于秸秆富含易分解利用的碳源,从而促进了该菌群的活动。生物炭处理明显增加了各条带的亮度,且出现了特征菌群,如条带编号7。条带编号2是T3处理的特征菌群,说明施加生物炭与常规施肥相比,改变了土壤细菌群落的结构,提高了细菌群落的多样性。常规施肥与不施肥相比改变了细菌群落的丰度,但对其群落结构影响不大。
2.2 不同施肥处理的土壤细菌群落多样性分析
运用Quantity One软件对DGGE图谱做相似性分析,得到不同处理微生物群落相似性指数(表2)。分析各处理间的相似性矩阵可以发现,不同处理之间的相似性都高于48.6%。其中,常规施肥CK2与空白对照CK1的相似性为61.6%;秸秆还田、稻杆炭、垃圾炭处理的施肥方式(T1—T4)与空白对照CK1的相似性分别为59.2%、56.2%、48.6%、58.1%,与常规施肥的相似性分别为67.7%、62.2%、57.7%、62.7%。王奇赞等[21]认为,不同处理之间相似性高于60%,说明处理之间有很好的相似性。本研究中秸秆还田、稻杆炭、垃圾炭处理与空白对照CK1、稻杆炭减量T3处理与常规施肥的相似性质都低于60%,这表明施入外源物质可能改变了土壤细菌群落结构,而单施化肥对土壤细菌群落影响不大。利用相似性矩阵,通过UPGMA (The Unweighted Pair Group Method with Arithmetic Averages)进行聚类分析(图2)进一步发现:所有处理土壤的微生物群落可分成4类,空白对照单独分为1类,且明显区别于其他处理;施肥处理中,施加稻杆炭的两个处理距离较近聚为1类,垃圾炭与秸秆还田处理聚为1类。原因可能是不同施肥处理改变了土壤微生物的生存环境并影响了相互之间的适应性。
表2 不同处理微生物群落相似性指数
图2 不同处理DGGE谱图的聚类分析
Shannon-Weaver指数为一个可以直观的反映细菌群落遗传多样性的指标,主要包括两个成分:细菌种数和细菌种间的均匀度(E);细菌群落DNA的丰富度(S)可以用细菌种数即电泳条带的数量表征。不同处理间细菌群落的丰富度与Shannon-Weaver Index指数见图3。由图可知,空白对照CK1的微生物丰度及Shannon-Weaver Index指数最低,这与刘恩科等[22]的研究结果类似,长期不施肥而种植作物的土壤可见条带数比化肥与厩肥配施的土壤条带数少32%。秸杆还田、稻杆炭、垃圾炭施肥处理的土壤微生物丰富度高于常规施肥CK2与空白对照处理CK1,约是空白对照处理下的两倍;秸杆还田施肥处理的土壤微生物丰富度低于生物炭处理;生物炭施肥处理中,稻杆炭处理的土壤微生物Shannon-Weaver Index指数略高于垃圾炭处理,这可能由于本试验所用的稻杆炭比表面积比垃圾炭比表面积高约5倍,生物炭大的比表面积及多孔性可为土壤微生物提供适宜的生存环境。统计分析表明微生物多样性指数与丰富度极相关,相关系数为0.939(P=0.000<0.01),不同处理的均匀度指数分别为1.37、1.35、1.36、1.33、1.35、1.38(P>0.05),差异性不显著。
图3 不同处理细菌群落的丰富度与Shannon-Weaver Index指数
2.3 土壤细菌群落与环境因子的相关性分析
用DGGE谱图所得到的细菌群落的条带信息与土壤理化性质进行相关性分析,如表3。细菌群落的结构变化与各理化性质的相关性顺序依次为速效钾>总有机碳>有效磷>全氮>pH。细菌群落的结构变化与土壤速效钾养分含量相关性最大,与总有机碳含量相关性其次。可能原因有与南方酸性土壤有关,其地处湿热地带、高温多雨、土壤的分解与矿化过程较快,土壤元素的迁移及淋溶较强,尤其是钾的流失量较大,土壤含钾量低,而植物秸秆等富含钾元素,回归到土壤改善了土壤质量,促进土壤微生物的生长;矿质元素是构成微生物细胞结构、调节细胞渗透压等微生物生命活动不可缺少的物质。秸秆还田将收割所带走的有机物质及营养元素返还土壤,增加土壤总有机碳,减少土壤侵蚀,提高了土壤质量,为微生物的生长提高适宜的环境。生物炭比表面积大,丰富的孔隙及适宜的pH为微生物的生长提供适宜的生长环境。从表看出,土壤酸碱度与微生物群落结构相关性较小,这可能是由于各处理的土壤pH值处于5.8—6.6之间,差异性很小且处于微生物生长所需的酸碱度范围内,对其结构影响不大。
表3 土壤细菌群落与土壤养分之间的相关性指数
3 结论与讨论
PCR-DGGE技术利用变性梯度分离细菌群落16S rDNA V3片段PCR产物,从而得出数目不等、位置各异的电泳条带。本研究中,6种不同的处理均可分离得到20条以上的电泳条带,说明水稻田土壤细菌群落较为丰富。大部分条带为共有条带,表明了这一部分条带所代表的土壤细菌种类和数量较稳定,基本上不受施肥管理措施的影响,但也有一部分条带受施肥处理的影响增加或缺失,生物炭处理明显增加了各条带的亮度,且出现了特征菌群。
由戴斯系数计算出的6个处理间的相似性系数发现,秸秆还田、生物炭施肥处理与空白对照CK1、稻杆炭减量T3处理和常规施肥的相似性均较低。土壤养分含量和碳源供给是影响微生物群落的主要因素[23],秸杆还田带入大量的无机营养元素和有机物,短期内会促进分解纤维素的微生物群落的生长;生物炭含有的一些低分子易分解有机化合物可以作为微生物的碳源,有利于提高微生物的生物量和活性,且其吸附能力强、孔隙率高,适合作为微生物和养分的载体。本试验施肥处理配施的秸杆和生物炭改变了土壤微生物生存的根际微域环境,从而影响了微生物的组成及其活性。
对DGGE谱图信息进行统计分析发现:生物炭处理的施肥方式的细菌丰富度指数及Shannon-Weaver Index指数最高,约是未施肥处理的2倍;土壤细菌群落结构变化与土壤速效养分、总有机碳含量有较大的相关性。研究表明,将生物炭施加到土壤对土壤的物理[24]、化学及生物特性[25]能产生积极的影响,从而改善了土壤质量为微生物提供了适宜的生存环境。生物炭在土壤中稳定性高、分解速度慢,从长期效应来说,生物炭配施化肥更有利于提高土壤微生物群落多样性[26-27]。
:
[1]Li X H. Fertilization Systems and Sustainable Use of Arable Land [D]. Beijing: The Chinese Academy of Agricultural Sciences, 2005.
[2]Liu Z L, Yu W T, Zhou H, Xu Y G, Huang B T. Effects of long-term fertilization on aggregate size distribution and nutrient content. Soils, 2011, 43(5): 720-728.
[3]Liu Y L. Changes in Soil Properties and Its Relation with Soil Productivity Under Long-Term Fertlization in Paddy Fields [D]. Nanjing: Nanjing Agricalture Univercity, 2007.
[4]Sun N K, Suo D R. Effects of long-term mixed use of organic manure and chemical fertilizers on crop yield and indigenous soil nutrients. Bulletin of Soil and Water Conservation, 2011, 31(4): 42-46.
[5]Tan H W. Effect of three years continuous application of bio-organic fertilizer in sugarcane planting areas. Journal of Southern Agriculture, 2011, 42(8): 940-943.
[6]Kuma K, Goh K M. Management practices of antecedent leguminous and non-leguminous crop residues in relation to winter wheat yields, nitrogen uptake, soil nitrogen mineralization and simple nitrogen balance. European Journal of Agronomy, 2002, 16(4): 295-308.
[7]Liang A Z, Zhang X P, Yang X M, Drury C F. Short-term effects of tillage on soil organic carbon storage in the plow layer of black soil in northeast China. Scientia Agricultura Sinica, 2006, 39(6): 1287-1293.
[8]Zhang Q Z, Wu W L, Wang M X, Zhou Z R, Chen S F. The effects of crop residue amendment and N rate on soil respiration. Acta Ecologica Sinica, 2005, 25(11): 2883-2887.
[9]Grossman JM, O′Neill BE, Tsai SM, Liang B, Neves E, Lehmann J, Thies JE. Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy. Environmental Microbiology, 2010, 60(1): 192-205.
[10]Liu Y X. Effect of Biochar on the Characteristic of Nitrogen Loss and Greenhouse Gas Emission from Soil [D]. Hangzhou: Zhejiang Univercity, 2011.
[11]Laird D A, Fleming P, David D D, Horton R, Wang B Q, Karlen D L. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 2010, 158(3/4): 443-449.
[12]Chen H X, Du Z L, Guo W, Zhang Q Z, Effects of biochar amendment on cropland soil bulk density, cation exchange capacity, and particulate organic matter content in the North China Plain. Chinese Journal of Applied Ecology, 2011, 22(11): 2930-2934.
[13]Lehmann J. Bio-energy in the black. Frontiers in Ecology and the Environment, 2007, 5(7): 381-387.
[14]Rondon M, Lehmann J, Ramírez J, Hurtado M. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with biochar additions. Biology and Fertility of Soils, 2007, 43(6): 699-708.
[15]Hamer U, Marschner B, Brodowski S, Amelung W. Interactive priming of black carbon and glucose mineralization. Organic Geochemistry, 2004, 35(7): 823-830.
[16]Feng Y Z, Xu Y P, Yu Y C, Xie Z B, Lin X G. Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biology and Biochemistry, 2012, 46: 80-88.
[17]Bardghtte R D, Freeman C, OStle N. Microbial contributions to climate change through carbon cycle feedbacks. Mulyidisciplinary Joural of Micbial Ecology, 2008, 2(8): 805-814.
[18]Davis K E R, Joseph S J, Jansen P H. Effects of growth medium, inoculum size and incubation on culturability and isolation of soil bacteria. Applied and Environmental Microbiology, 2005, 71(2): 826-834.
[19]Stefanis C, Alexopoulos A, Voidarou C, Vavias S, Bezirtzoglou E. Principal methods for isolation and identification of soil microbial communities. Folia Microbiologica, 2013, 58(1): 61-68.
[20]Bai L, Zhao M W, Jia J W. Analysis of soil bacterial community composition by 16S rDNA clone library sampling from transgenic carnation. Microbiology, 2012, 39(4): 435-447.
[21]Wang Q Z, Xu Q F, Jiang P K, Qin H. DGGE analysis of PCR of 16S rDNA V3 fragments of soil bacteria community in soil under natural broadleaf forest invaded by Phyllostachy pubescens in Tianmu mountain nature reserve. Acta Pedologica Sinica, 2009, 46(4): 662-669.
[22]Liu E K, Zhao B Q, Li X Y, Jiang R B, Hwat B S. Microbial C and N biomass and soil community analysis using DGGE of 16S rDNA V3 fragment PCR products under different long-term fertilization systems. Acta Ecologica Sinica, 2007, 27(3): 1079-1085.
[23]Xu Z X. The influence of long-term rice straw returned to farmland on yield of winter wheat and soil fertility. Journal of Mountain Agriculture and Biology, 2010, 29(1): 10-13.
[24]Peng X, Ye L L, Wang C H, Zhou H, Sun B. Temperature-and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China. Soil and Tillage Research, 2011, 112(2): 159-166.
[25]Van Z L, Kimber S, Morris S, Chan K Y, Downie A, Rust J, Joseph S, Cowie A. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 2010, 327(1/2): 235-246.
[26]Chan K Y, Van Z L, Meszaros I, Downie A, Joseph S. Agronomic values of greenwaste biochar as a soil amendment. Australian Journal of Soil Research, 2007, 45(8): 629-634.
[27]Yang Y H, Yao J, Hu S, YE Q. Effects of agricultural chemicals on DNA sequence diversity of soil microbial community: a study with RAPD marker. Microbial Ecology, 2000, 39(1): 72-79.
参考文献:
[1]李絮花. 施肥制度与土壤可持续利用 [D]. 北京: 中国农业科学院, 2005.
[2]刘中良, 宇万太, 周桦, 徐永刚, 黄宝同. 长期施肥对土壤团聚体分布和养分含量的影响. 土壤, 2011, 43(5): 720-728.
[3]刘艳丽. 长期施肥下水稻土土壤性质变化及其与生产力的关系研究 [D]. 南京: 南京农业大学, 2007.
[4]孙宁科, 索东让. 有机肥与化肥长期配施对作物产量和灌漠土养分库的影响. 水土保持通报, 2011, 31(4): 42-46.
[5]谭宏伟. 蔗区土壤连续施用生物有机肥效应研究. 南方农业学报, 2011, 42(8): 940-943.
[7]梁爱珍, 张晓平, 杨学明, Drury C F. 耕作方式对耕层黑土有机碳库储量的短期影响. 中国农业科学, 2006, 39(6): 1287-1293.
[8]张庆忠, 吴文良, 王明新, 周中仁, 陈淑峰. 秸秆还田和施氮对农田土壤呼吸的影响. 生态学报, 2005, 25(11): 2883-2887.
[10]刘玉学. 生物质炭输入对土壤氮素流失及温室气体排放特性的影响 [D]. 浙江: 浙江大学, 2011.
[12]陈红霞, 杜章留, 郭伟, 张庆忠. 施用生物炭对华北平原农田土壤容重、阳离子交换量和颗粒有机质含量的影响. 应用生态学报, 2011, 22(11): 2930-2934.
[20]白蓝, 赵明文, 贾军伟. 16S rDNA 克隆文库法探索转基因香石竹对土壤细菌群落的影响. 微生物学通报, 2012, 39(4): 435-447.
[21]王奇赞, 徐秋芳, 姜培坤, 秦华. 天目山毛竹入侵阔叶林后土壤细菌群落16S rDNA V3区片段PCR的DGGE分析. 土壤学报, 2009, 46(4): 662-669.
[22]刘恩科, 赵秉强, 李秀英, 姜瑞波, Hwat B S. 不同施肥制度土壤微生物量碳氮变化及细菌群落16S rDNA V3片段PCR产物的DGGE分析. 生态学报, 2007, 27(3): 1079-1085.
[23]徐祖祥. 长期秸秆还田对冬小麦产量及土壤肥力的影响. 山地农业生物学报, 2010, 29(1): 10-13.