APP下载

相对论性非完整系统的Lagrange对称性与守恒量*

2014-09-17张斌方建会张东爱徐瑞莉刘学锋

动力学与控制学报 2014年2期
关键词:张斌对称性广义

张斌 方建会 张东爱 徐瑞莉 刘学锋

(1.中国石油大学(华东)理学院,青岛 266580)(2.甘肃省白银市会宁县大沟中学,白银 730721)

相对论性非完整系统的Lagrange对称性与守恒量*

张斌1†方建会1张东爱2徐瑞莉1刘学锋1

(1.中国石油大学(华东)理学院,青岛 266580)(2.甘肃省白银市会宁县大沟中学,白银 730721)

本文研究相对论性非完整系统的Lagrange对称性,给出相对论性非完整系统Lagrange对称性的判据,得到相对论性非完整系统Lagrange对称性导致的守恒量及其存在条件,最后举例说明结果的应用.

相对论, 非完整系统, Lagrange对称性, 守恒量

引言

对称性原理是物理学中更高层次的法则,对称性原理是近代分析力学的重要分支之一.分析力学中的近代对称性主要有Noether对称性,Lie对称性和Mei对称性.近年来,关于约束力学系统三种对称性及其导致守恒量的研究取得了一系列重要成果[1-7,38].寻求新的对称性是分析力学对称性理论研究的难点和重点[8].Lagrange对称性是有别于三大对称性的一种新型对称性,20世纪六七十年代Currie 等对不同自由度[9,10]Lagrange 函数等价问题的研究是人们对Lagrange对称性的最早探索,上世纪70年代末到90年代,Lutzky等对力学系统的Lagrange函数等价问题做了一系列的研究[11-14],后来将这种Lagrange函数等价关系称为Lagrange对称性[14,15],Lagrange 对称性现已被推广到 Hamilton 等系统[15-26].

20世纪八九十年代,罗绍凯、方建会等将相对论效应引入约束力学系统进行研究[27,28],建立了相对论力学系统的一系列运动微分方程和变分原理[29-32],并且研究了相对论力学系统的对称性理论[33-37].本文结合相对论性非完整力学系统方程的特点,探讨该系统的Lagrange对称性理论,给出相对论性非完整系统Lagrange对称性的判据、得到Lagrange对称性导致守恒量的条件及守恒量的形式.

1 力学系统的运动微分方程

设力学系统由N个静止质量分别为m0i(i=1,…,N)的质点组成,设系统受有g个理想Chetaev型非完整约束

约束方程fβ和变分δs满足Appell-Chetaev条件

则系统的运动微分方程为

为广义非势力,为广义约束反力为系统的相对性Lagrange函数,即

V为系统的广义势能,T*为系统相对论性广义动能

其中c为光速.

2 系统的Lagrange对称性

给定系统(3)的两组动力学函数L*,和,定义和分别为

定义 对受有g个约束方程(1)的系统(3),如果由动力学函数L*,Q*和Λ*确定的

的每一个解都满足由动力学函数,和确定的

反之亦然,则表明系统具有Lagrange对称性.

由式(7)和(10)得

把(11)式代入(9)式得

由定义和(13)式得判据:对于受约束(1)的非完整系统(3),如果两组动力学函数L*,Q*,Λ*和*,满足方程(13),则系统具有 Lagrange对称性.

3 Lagrange对称性导致的守恒量

对于相对论性非完整系统的Lagrange对称性有如下命题:

命题 对受约束(1)的相对论性非完整系统(3),如果两组动力学函数 Q*,Λ*和满足条件

则系统的Lagrange对称性可导致守恒量

其中A为以为元素的矩阵,

m为任意常数.

证明 将(16)式代入(13)式得

对(17)式求关于qs的偏导数得

联立(6)式和(9)式得

将(19)式代入(18)式得

对求关于qk的偏导数

由(16)式得

求(23)式关于qs的偏导数得

由(22)和(24)式得

根据(16)式有

把(25)和(27)式代入(20)式得

将(30)式代入(29)式得

定义矩阵T,A,U,W其元素分别为

将条件(14),(32)和(33)式代入(31)式,得

因为T和为反对称矩阵,U和为对称矩阵,因此对于任意正整数m有

根据矩阵T,U和的特性及矩阵迹的性质得

可得(15)式,命题得证.

推论1: 对于相对论完整系统,如果广义力满足

则系统的Lagrange对称性可以导致守恒量(15).推论2: 对于相对论Lagrange系统,如果系统的广义有势力和Qrv满足

则由系统的Lagrange对称性可以导致守恒量(15).

4 算例

为了验证以上推导,给出以下算例.假设一系统的相对论性广义动能为

约束方程为

则由(4)式和(6)式得

由(3),(42)-(45)式得

将(43)式,(47)和(48)式分别代入(44)式和(45)式得

若有另一相对论性非完整学系统

由(43)式,(47)式,(48)式,(51)式和(52)式可得,Q*和,Λ*满足条件(14),即

故由命题得

5 小结

本文研究了相对论性非完整约束力学系统的Lagrange对称性理论,得到了相对论性非完整系统的Lagrange对称性定义和判据,给出了系统Lagrange对称性导致守恒量的条件和守恒量的形式.本文将Lagrange对称性理论的研究范畴扩展到相对论力学系统领域,对Lagrange对称性的完善和系统具有理论意义.当质点运动速度远小于光速时,本文结论将回归到文献[17]的结果.

1 Guo Y X,Shang M,Luo S K.Poincare-cartan integral invariants of Birkhoffian systems.Applied Mathematics&Mechanics,2003,24(1):68 ~72

2 Mei F X,Xu X J,Zhang Y F.A unified symmetry of Lagrangian system.Acta Mechanica Sinica,2004,20(6):668~671

3 梅凤翔.约束力学系统的对称性与守恒量.北京:北京理工大学出版社,2004(Mei F X.Symmetries and conserved quantities of constrained mechanical systems.Beijing:Beijing Institute of Technology Press,2004(in Chinese))

4 Fang J H,Chen P S,Zhang J.Form invariance and Lie symmetry of variable mass nonholonomic mechanical system.Applied Mathematics&Mechanics,2005,26(2):204~209

5 张伟伟,方建会,张斌.事件空间离散完整系统的Noether理论.动力学与控制学报,2012,10(2):117~120(Zhang W W,Fang J H,Zhang B.Noether theorem of discrete holonomic systems in event space.Journal ofDynamics and Control,2012,2(2):117 ~ 120(in Chinese))

6 Cai J L.Conformal invariance and conserved quantities of general holonomic systems.Chinese Physics Letters,2008,25(5):1523~1526

7 Fu J L,Wang X J,Xie F P.Conserved quantities and conformal mechanico-electrical systems.Chinese Physics Letters,2008,25(7):2413 ~2416

8 梅凤翔.关于力学系统的守恒律.北京理工大学学报,2002,22(2):133~138(Mei F X.On conservation laws of mechanical system.Journal of Beijing Institute of Technology,2002,22(2)133~138(in Chinese))

9 Currie D G,Saletan E J.Q-equivalent particle Hamiltonians.I.The classical one-dimensional case.Journal of Mathematical Physics,1966,7(6):967~974

10 Hojman S,Harleston H.Equivalent Lagrangians:multidimensional case.Journal Mathematical Physics,1981,22(7):1414~1419

11 Sarlet W.Note on equivalent Lagrangians and symmetries.Journal of Physics A:Mathematical and General,1983,16(7):L229~L233

12 Lutzky M.Orgin of non-noether invariants.Physics Letters,1979,75A:8 ~10

13 Sarle W.Symmetries and alternative Lagrangians in higher-order mechanics.Physics Letters,1985,108A(1):14~18

14 Hojman S.Symmetries of Lagrangians and of their equations of motion.Journal of Physics A:Mathematical and General,1984,17(12):2399 ~2412

15 赵跃宇,梅凤翔.力学系统的对称性与不变量.北京:科学出版社,1999(Zhao Yueyu,Mei Fengxiang.Symmetries and invaiants of mechanical systems.Beijing:Science Press,1999(in Chinese))

16 Mei F X,Gang T Q,Xie J F.A symmetry and a conserved quantity for the Birkhoff system.Chinese Physics,2006,15(8):1678~1681

17 Mei F X,Wu H B.Symmtry of Lagranians of nonhomonolic system.Physics Letters A,2008,372:2141~2147

18 梅凤翔,吴惠彬.相对运动动力学系统的Lagrange对称性.物理学报,2009,58(9):5919~5923(Mei F X,Wu H B.Lagrange symmetry for a dynamical system of relative motion.Acta Physica Sinica,2009,58(9):5919 ~5923(in Chinese))

19 Wu H B,Mei F X.Symmetry of Lagrangians of holonomic system in terms of quasi-coordinates.Chinese Physics B,2009,18(8):3145~3149

20 张毅.广义Birkhoff系统的Birkhoff对称性与守恒量.物理学报,2009,58(11):7436~7439(Zhang Y.Birkhoff symmetries and conserved quantities of generalized Birkhoffian systems.Acta Physica Sinica,2009,58(11):7436~7439(in Chinese))

21 张毅,葛伟宽.非Chetaev型非完整系统的Lagrange对称性与守恒量.物理学报,2009,58(11):7447~7451(Zhang Y,Ge W K.Lagrange symmetries and conserved quantities for nonholonomic systems of non-Chetaev’s type.Acta Physica Sinica,2009,58(11):7447 ~ 7451(in Chinese))

22 Wu H B,Mei F X.Symmetry of Lagrangians of nonholonomic systems of non-Chetaev's type.Chinese Physics B,2010,19(3):030303

23 Xia L L,Cai J L.Symmetry of Lagrangians of nnholonomic crollable mchanical systems.Chinese hysics Letters,2010,27(8):080201

24 张毅.非完整力学系统的Hamilton对称性.中国科学:物理学,力学,天文学,2010,40(9):1130~1137(Zhang Y.Symmetry of Hamiltonians of nonholonomic mechanical system.Scientia Sinica Physica.Mechanica&Astronomica,2010,40(9):1130~1137(in Chinese))

25 张斌,方建会,张克军.变质量非完整系统的Lagrange对称性与守恒量.物理学报,2012,61(2):021101(Zhang B,Fang J H,Zhang K J.Symmetry and conserved quantity of Lagrangians for nonholonomic variable mass system.Acta Physica Sinica,2012,61(2):021101(in Chinese))

26 Zhang B,Fang J H,Zhang W W.Symmetry of Lagrangians of holonomic nonconservative system in event space.Chinese Physics B,2012,21(7):070208

27 罗绍凯.相对论性二阶非完整系的广义动力学方程.新疆大学学报(自然科学版)1989,6(4):61~67(Luo S K.The equations of relativistic generalized dynamic of 2-order nonlinear nonholonomic system.Journal of Xinjiang University(Natural Science),1984,6(4):61~67(in Chinese))

28 方建会.一阶非线性非完整系统的相对论性Appell方程.西北师范大学学报(自然科学版),1990,26(4):32~35;45(Fang J H.Relativistic Appell equations of first order nonlinear nonholonomic system.Journal of Northwest Normal Uninversity(Natural Science),1990,26(4):28 ~31,41(in Chinese))

29 罗绍凯.相对论非线性非完整系统动力学理论.上海力学,1991,12(1):61 ~70(Luo S K.On the theory of relativistic analytical dynamics of nonlinear non-holonomic systems.Shanghai Lixue,1991,12(1):61 ~ 70(in Chinese))

30 方建会.变质量非完整系统的相对论性Hamilton原理.上海力学,1993,14(2):78~85(Fang J H.Lagrange symmetries and conserved quantities for nonholonomic system of non - Chetaev's type.Shanghai Journal of Mechanics,1993,14(2):78 ~85(in Chinese))

31 Luo S K.Relativistic variation principles and equations of motion for variable mass controllable mechanical system.Applied Mathematics&Mechanics,1996,17(7):683~692

32 傅景礼,王新民.相对论性Birkhoff系统的Lie对称性和守恒量.物理学报2000,49(6):1023~1027(Fu J L,Wang X M.Lie symmetry and conserved quantities of relativistic Birkhoff systems.Acta Physica Sinica,2000,49(6):1023~1027(in Chinese))

33 方建会.转动变质量系统的相对论性动力学方程和变分原理.物理学报2000,49(6):1028~1030(Fang J H.Relativistic dynamic equation and variational principle for rotational variable mass system.Acta Physica Sinica,2000,49(6):1028~1030(in Chinese))

34 Qiao Y F,Meng J,Zhao S H.Existential theorem of conserved quantities and its inverse for the dynamics of nonholonomic relativistic systems.Chinese Physics,2002,11(9):859~863

35 Luo S K.Form invariance and Noether symmetrical conserved quantity of relativistic Birkhoffian systems.Applied Mathematics&Mechanics,2003,24(4):468 ~478

36 贾利群.转动系统的相对论性分析静力学理论.物理学报 2003,52(5):1039 ~1043(Jia L Q.A theory of relativistic analytical statics of rotational systems.Acta Physica Sinica,2003,52(5):1039 ~1043(in Chinese))

37 Fang J H,Yan X H,Li H,Chen P S.Mei symmetry and Lie symmetry of relativistic Hamiltonian system.Communications in Theoretical Physics,2004,42(1):19 ~22

38 张克军,方建会,李燕,张斌.一般离散完整系统Mei对称性的精确不变量与绝热不变量.动力学与控制报,2010,8(4):311 ~315(Zhang K J,Fang J H,Li Y,Zhang B.Exact invariants and adiabatic invariants of general discrete holonomic system.Journal of Dynamics and Control,2010,8(4):311 ~315(in Chinese))

*The project supported by the Natural Science Foundation of Shandong Province of China(ZR2011AM012),the Scientific Research Program of Independent Innovation of China University of Petroleum(East China)(27R1210006A),and the Postgraduate’s Innovation Foundation of China University of Petroleum(East China)(13CX06005A)

† Corresponding author E-mail:teamup@yeah.net

SYMMETRY AND CONSERVED QUANTITY OF LAGRANGIANS FOR RELATIVISTIC NONHOLONOMIC SYSTEM*

Zhang Bin1†Fang Jianhui1Zhang Dongai2Xu Ruili1Liu Xuefeng1
(1.College of Science,China University of Petroleum(East China),Qingdao266580,China)(2.Dagou Middle School of Huining County in Gansu Province,Baiyin730721,China)

In this paper,we are study the symmetry of Lagrangians and the conserved quantities for a nonholonomic relativistic system.The Criterion of the symmetry for a nonholonomic relativistic system is given.Then the conditions under which there exist a conserved quantity and the form of the conserved quantity are obtained.And finally there is an example to illustrate the application of the results.

relativisitc, nonholonomic system, symmetry of Lagrangians, conserved quantity

17 May 2013,

14 June 2013.

10.6052/1672-6553-2013-074

2013-05-17 收到第 1 稿,2013-06-14 收到修改稿.

*山东省自然科学基金(ZR2011AM012),中国石油大学(华东)自主创新科研计划项目(27R1210006A)和中国石油大学(华东)研究生自主创新科研计划项目(13CX06005A)

E-mail:teamup@yeah.net

猜你喜欢

张斌对称性广义
夕阳家园
一类截断Hankel算子的复对称性
Rn中的广义逆Bonnesen型不等式
巧用对称性解题
横向不调伴TMD患者髁突位置及对称性
《花之恋》
Monolithic all- fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber∗
从广义心肾不交论治慢性心力衰竭
王夫之《说文广义》考订《说文》析论
广义RAMS解读与启迪