2型糖尿病老年患者血清维生素D水平与代谢的相关性分析
2014-08-19杨晓瑜杨伍灸
杨晓瑜 杨伍灸
[摘要] 目的 探讨2型糖尿病老年患者血清维生素D水平与代谢的相关性。方法 将全部149例2型糖尿病患者按照血清25-(OH)-D含量及肥胖程度分组,对比分析各组糖脂代谢指标及炎症因子。结果 25-(OH)-D缺乏组BMI、HbA1c、C-RP及HOMA-IR含量显著高于不足组,而25-(OH)-D及HDL-C含量显著低于不足组(P<0.05或P<0.01)。肥胖组25-(OH)-D水平与BMI、WC、FPG等指标呈负相关,与HOMA-β及HDL-C呈正相关;而非肥胖组的25-(OH)-D水平与WC、FPG、HbA1c等指标呈负相关,与BMI、FINS、HOMA-β等呈正相关。HbA1c与C-RP是与缺乏25-(OH)-D密切相关的独立危险因素(P均<0.05)。 结论 2型糖尿病老年患者发生25-(OH)-D含量低下较普遍,25-(OH)-D水平低下与多种代谢障碍相关。
[关键词] 2型糖尿病;维生素D;糖脂代谢;炎症因子
[中图分类号] R587.1 [文献标识码] A [文章编号] 1673-9701(2014)20-0005-04
维生素D为脂溶性维生素,在结构上属于类固醇的衍生物。血清25羟维生素D3 [25-hydroxyvitamin D3, 25-(OH)-D3]是维生素D的主要活性形式,在调节机体钙磷代谢方面发挥重要作用[1-3]。有文献[4]报道显示,维生素D缺乏与2型糖尿病密切相关。本文采取横断面研究方法评价2型糖尿病老年患者血清维生素D的缺乏状况,旨在观察维生素D缺乏与糖脂代谢指标及炎症因子的相关性。
1 资料与方法
1.1 一般资料
选择我院2011年8月~2013年8月间收治的149例2型糖尿病患者,所有患者均满足1999年世界卫生组织(WHO)对糖尿病的临床诊断标准,其中男65例,女84例,平均年龄为(66.01±8.71)岁。对全部患者血清中25羟维生素D [25-(OH)-D]含量进行测定,按照患者血清25-(OH)-D含量分成三组:25-(OH)-D<25 nmol/L为缺乏组,共79例;25 nmol/L≤25-(OH)-D≤74 nmol/L为不足组,共62例;25-(OH)-D>74 nmol/L为足够组,共8例。按照肥胖程度(BMI)将全部患者分成两组:BMI≥25 kg/m2者为肥胖组,共83例;BMI<25 kg/m2者为非肥胖组,共66例。两组在性别、年龄方面比较差异不具有统计学意义。全部患者均经门诊治疗后入院,纳入研究前使用磺脲类促泌剂单药实施治疗,低密度胆固醇(LDL-C)水平均在2.6 mmol/L以上,患者均常规给予他汀类药物,均无维生素D类药物及钙剂服用史。将肝、肾功能异常者、高渗性昏迷者、糖尿病酮症或DKA者以及存在骨代谢异常病史者予以排除。全部患者均自愿签订知情同意书,本研究经医院伦理委员会审批通过。
1.2 研究方法
患者入院后对其身高、体重进行准确测定并计算身体质量指数(Body Mass Index,BMI)、腰围(WC)。入院次日晨抽取静脉血,测定空腹血糖(FPG)、高脂血症(TG)、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)、糖化血红蛋白(HbA1c)、空腹胰岛素(FINS)、C-反应蛋白(C-RP)及25-(OH)-D。采用德国西门子公司制造的全自动生化仪对血糖及血脂进行测定;采用美国安捷伦1200高效液相色谱仪测定HbA1c;采用美国贝克曼库尔特化学发光免疫分析仪测定FINS;采用美国贝克曼IMMAGE特定蛋白仪测定C-RP;采用意大利BIOBASE2000全自动酶联免疫分析仪通过酶联免疫吸附法(ELISA)测定25-(OH)-D。通过稳态模式对胰岛素抵抗指数(HOMA-IR)进行评估,公式为:HOMA-IR=FPG×FINS/22.5;通过稳态模式对胰岛β细胞分泌功能(HOMA-β)进行评估,公式为:HOMA-β=20×FINS/(FPG-3.5)[5]。
1.3 观察指标
观察缺乏组、不足组患者及肥胖组与非肥胖组糖脂代谢指标及炎症因子结果,分析2型糖尿病患者25-(OH)-D水平同各指标的相关性。
1.4统计学分析
应用SPSS 17.5统计学软件进行数据处理。计量资料用(x±s)形式表示,两组间比较进行t检验或t检验,计量数据其是否服从正态分布分别采用单因素方差分析及非参数检验。并采取Pearson相关分析及Logistic回归分析,将所得偏态分布资料转换为对数数据后再进行统计学分析。
2 结果
2.1 缺乏组与不足组患者糖脂代谢指标及炎症因子对比结果
缺乏组与不足组在性别及年龄方面相比差异不具有统计学意义。两组间WC、TC、TG、FPG、FINS、HDL-C、HOMA-β水平相比差异无统计学意义(P>0.05)。但缺乏组BMI、HbA1c、C-RP及HOMA-IR含量显著高于不足组,而25-(OH)-D及HDL-C含量显著低于不足组,差异均具有统计学意义(P<0.05或P<0.01)。见表1。
2.2 肥胖组与非肥胖组糖脂代谢指标及炎症因子对比分析
肥胖组受试者的25-(OH)-D含量显著低于非肥胖组(P<0.05),但肥胖组的BMI、WC、HOMA-IR以及FINS水平均显著高于非肥胖组(P<0.01或P<0.05)。见表2。
2.3 2型糖尿病患者25-(OH)-D水平同其他各指标的相关性
将25-(OH)-D作为因变量,其他各指标作为自变量,采取Pearson相关性分析显示,肥胖组25-(OH)-D水平与BMI、WC、FPG等指标呈负相关,与HOMA-β及HDL-C呈正相关;非肥胖组25-(OH)-D水平与WC、FPG、HbA1c等指标呈负相关,而与BMI、FINS、HOMA-β等呈正相关。见表3。endprint
表3 2型糖尿病患者25-(OH)-D水平同其他各指标的相关性[r(P)]
2.4 25-(OH)-D水平与其他各指标的Logistic回归分析
将25-(OH)-D水平作为因变量,将性别、年龄、BMI及WC等作为自变量,采取多因素Logistic回归分析后显示,与缺乏25-(OH)-D密切相关的独立危险因素为HbA1c与C-RP(P均<0.05)。见表4。
表4 25-(OH)-D水平与其他各指标的Logistic回归分析
3 讨论
维生素D属于脂溶性维生素,可通过食物获取,主要通过皮肤中的7脱氢胆固醇(7-dehydrocholesterol)在290~315 nm波长的紫外线照射下进行合成[6]。由外界吸收或自身合成的维生素D,在肝脏组织内可转化为25-(OH)-D3,在肾脏组织中羟化为维生素D的活性形式1,25-(OH)-D3[7]。活性维生素D与细胞内的维生素D受体发生特异性结合而发挥其生物效应[10]。由于25-(OH)-D3在血液中有较高的含量,且半衰期较长,一般3周左右,而1,25-(OH)-D3的半衰期在5h左右,因此25-(OH)-D3更加稳定,所以近年来临床上大多采用测定血液中25-(OH)-D3含量来评估机体维生素D的含量[8]。老年人群的维生素D缺乏现象十分普遍,且与多种慢性疾病的高发病风险密切相关[9,10]。中国人饮食中富含维生素D的食物匮乏,而且加上户外活动以及晒太阳的机会不多等因素均使维生素D缺乏的风险加大。本文结果显示,仅5.4%(8/149)的老年2型糖尿病患者的25-(OH)-D含量处于正常范围内,与国内文献报道的我国老年人群的大规模流行病学研究结果相符[11]。国外文献[12]报道显示,糖尿病患者维生素D含量显著低于非糖尿病患者,血清维生素D含量与2型糖尿病发病密切相关,与维生素D含量低的人群相比,血清维生素D含量高的人群患2型糖尿病的风险下降。本文结果未研究非糖尿病的健康老年人群样本,未对比正常健康人群及糖尿病患者人群维生素D含量的差异。但本文结果显示,在2型糖尿病老年患者中,25-(OH)-D缺乏与血糖控制、肥胖、IR以及患者的炎症状态关系密切,HbA1c与C-RP均是与缺乏25-(OH)-D密切相关的独立危险因素(P均<0.05),这一结果表明在我国2型糖尿病老年患者中,维生素D发挥着关键作用。胰岛β细胞功能异常及胰岛素抵抗是2型糖尿病发病的关键环节,而维生素D对胰岛β细胞的功能及外周器官产生的胰岛素均有作用[13]。文献报道[14]显示,给成人隐匿性自身免疫糖尿病患者提供α-D3能够提高C肽水平,表明维生素D可增强胰岛β细胞的分泌作用。国外文献[15-17]报道显示,维生素D缺乏与胰岛素水平下降有关,但维生素D水平与糖尿病的确切关系尚需大量的高质量研究予以证实。本文结果显示,25-(OH)-D在肥胖与非肥胖2型糖尿病患者中的意义是不同的。在非肥胖2型糖尿病患者中,未见25-(OH)-D与胰岛素抵抗或分泌有关;但在肥胖糖尿病患者中,25-(OH)-D水平下降与FPG、胰岛β细胞分泌功能以及外周胰岛素抵抗密切相关。
总之,25-(OH)-D含量降低在我国2型糖尿病老年患者中非常普遍,维生素D可通过多种途径参与2型糖尿病的病理生理反应,与患者的BMI、糖脂代谢、胰岛β细胞功能以及胰岛素抵抗等关密切相关。因此,我们认为改善维生素D缺乏将使2型糖尿病患者受益,但该结论仍需更大样本的深入研究加以支持。
[参考文献]
[1] Denimal D,Ducros V,Dupré T,et al. Agreement of seven 25-hydroxy vitamin D3 immunoassays and three high performance liquid chromatography methods with liquid chromatography tandem mass spectrometry[J]. Clin Chem Lab Med,2013,24(4):1-10.
[2] Martins-Costa P,Martins H,Bravo F,et al. Comparison of automated methods for measurement of 25-hydroxyvitamin D[J]. Clin Lab,2013,59(7-8):885-891.
[3] Chiang KC,Chen SC,Yeh CN,et al. MART-10,a less calcemic vitamin D analog,is more potent than 1α,25-dihydroxyvitamin D3in inhibiting the metastatic potential of MCF-7 breast cancer cells in vitro[J]. J Steroid Biochem Mol Biol,2013,139(9):54-60.
[4] Liu L,Hu Y,Chui J,et al. Serum vitamin D levels in postmenopausal women with type 2 diabetes mellitus[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban,2013,38(10):1051-1056.
[5] Van den Ouweland JM,Beijers AM,van Daal H,et al. Evaluation of 3-epi-25-hydroxyvitamin D3 cross-reactivity in the roche elecsys vitamin D total protein binding assay[J]. Clin Chem Lab Med,2013,9(9):1-8.endprint
[6] Moghtaderi A,Tamadon GH,Haghighi F. 25-hydroxyvitamin D3 concentration in serum and cerebrospinal Fluid of patients with remitting-relapse multiple sclerosis[J]. Prague Med Rep,2013,114(3):162-171.
[7] Agarwal N,Mithal A,Dhingra V,et al. Effect of two different doses of oral cholecalciferol supplementation on serum 25-hydroxy-vitamin D levels in healthy Indian postmenopausal women: A randomized controlled trial[J]. Indian J Endocrinol Metab,2013,17(5):883-889.
[8] Piccolo BD,Dolnikowski G,Seyoum E,et al. Association between subcutaneous white adipose tissue and serum 25-hydroxyvitamin D in overweight and obese adults[J]. Nutrients,2013,5(9):3352-3366.
[9] Kane L,Moore K,Lütjohann D,et al. Vitamin D3 effects on lipids differ in statin and non-statin-treated humans: Superiority of free 25-OH-D levels in detecting relationships[J]. J Clin Endocrinol Metab,2013,98(11):4400-4409.
[10] Kim TH,Lee B,Kwon E,et al. Regulation of TREM-1 expression by 1,25-dihydroxyvitamin D3 in human mo nocytes/macrophages[J]. Immunol Lett,2013,154(1-2):80-85.
[11] Lu L,Pan A,Lin X,et al. Plasma 25-hydroxyvitamin D concentration and metabolic syndrome among middle-aged and elderly Chinese[J].Diabetes Care,2009,32(2):1278-1283.
[12] Eraslan S,Kizilgul M,Uzunlulu M,et al. Frequency of metabolic syndrome and 25-hydroxyvitamin D3 levels in patients with non-alcoholic fatty liver disease[J]. Minerva Med,2013,104(4):447-453.
[13] Lehmann U,Hirche F,Stangl GI,et al. Bioavailability of vitamin d2 and d3 in healthy volunteers,a randomized placebo-controlled trial[J]. J Clin Endocrinol Metab,2013, 98(11):4339-4345.
[14] Nakayama J,Imafuku S,Mori T,et al. Narrowband ultraviolet B irradiation increases the serum level of vitamin D3 in patients with neurofibromatosis 1[J]. J Dermatol,2013,40(10):829-831.
[15] Shab-Bidar S,Bours SP,Geusens PP,et al. Suboptimal effect of different vitamin D3 supplementations and doses adapted to baseline serum 25-(OH)-D on achieved 25-(OH)-D levels in patients with a recent fracture: A prospective observational study[J]. Eur J Endocrinol,2013, 169(5):597-604.
[16] Nurbazlin M,Chee WS,Rokiah P,et al. Effects of sun exposure on 25(OH)vitamin D concentration in urban and rural women in Malaysia[J]. Asia Pac J Clin Nutr,2013,22(3):391-399.
[17] Chow EC,Durk MR,Maeng HJ,et al. Comparative effects of 1α-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 on transporters and enzymes in fxr(+/+)and fxr(-/-)mice[J]. Biopharm Drug Dispos,2013,34(7):402-416.
(收稿日期:2013-11-25)endprint
[6] Moghtaderi A,Tamadon GH,Haghighi F. 25-hydroxyvitamin D3 concentration in serum and cerebrospinal Fluid of patients with remitting-relapse multiple sclerosis[J]. Prague Med Rep,2013,114(3):162-171.
[7] Agarwal N,Mithal A,Dhingra V,et al. Effect of two different doses of oral cholecalciferol supplementation on serum 25-hydroxy-vitamin D levels in healthy Indian postmenopausal women: A randomized controlled trial[J]. Indian J Endocrinol Metab,2013,17(5):883-889.
[8] Piccolo BD,Dolnikowski G,Seyoum E,et al. Association between subcutaneous white adipose tissue and serum 25-hydroxyvitamin D in overweight and obese adults[J]. Nutrients,2013,5(9):3352-3366.
[9] Kane L,Moore K,Lütjohann D,et al. Vitamin D3 effects on lipids differ in statin and non-statin-treated humans: Superiority of free 25-OH-D levels in detecting relationships[J]. J Clin Endocrinol Metab,2013,98(11):4400-4409.
[10] Kim TH,Lee B,Kwon E,et al. Regulation of TREM-1 expression by 1,25-dihydroxyvitamin D3 in human mo nocytes/macrophages[J]. Immunol Lett,2013,154(1-2):80-85.
[11] Lu L,Pan A,Lin X,et al. Plasma 25-hydroxyvitamin D concentration and metabolic syndrome among middle-aged and elderly Chinese[J].Diabetes Care,2009,32(2):1278-1283.
[12] Eraslan S,Kizilgul M,Uzunlulu M,et al. Frequency of metabolic syndrome and 25-hydroxyvitamin D3 levels in patients with non-alcoholic fatty liver disease[J]. Minerva Med,2013,104(4):447-453.
[13] Lehmann U,Hirche F,Stangl GI,et al. Bioavailability of vitamin d2 and d3 in healthy volunteers,a randomized placebo-controlled trial[J]. J Clin Endocrinol Metab,2013, 98(11):4339-4345.
[14] Nakayama J,Imafuku S,Mori T,et al. Narrowband ultraviolet B irradiation increases the serum level of vitamin D3 in patients with neurofibromatosis 1[J]. J Dermatol,2013,40(10):829-831.
[15] Shab-Bidar S,Bours SP,Geusens PP,et al. Suboptimal effect of different vitamin D3 supplementations and doses adapted to baseline serum 25-(OH)-D on achieved 25-(OH)-D levels in patients with a recent fracture: A prospective observational study[J]. Eur J Endocrinol,2013, 169(5):597-604.
[16] Nurbazlin M,Chee WS,Rokiah P,et al. Effects of sun exposure on 25(OH)vitamin D concentration in urban and rural women in Malaysia[J]. Asia Pac J Clin Nutr,2013,22(3):391-399.
[17] Chow EC,Durk MR,Maeng HJ,et al. Comparative effects of 1α-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 on transporters and enzymes in fxr(+/+)and fxr(-/-)mice[J]. Biopharm Drug Dispos,2013,34(7):402-416.
(收稿日期:2013-11-25)endprint
[6] Moghtaderi A,Tamadon GH,Haghighi F. 25-hydroxyvitamin D3 concentration in serum and cerebrospinal Fluid of patients with remitting-relapse multiple sclerosis[J]. Prague Med Rep,2013,114(3):162-171.
[7] Agarwal N,Mithal A,Dhingra V,et al. Effect of two different doses of oral cholecalciferol supplementation on serum 25-hydroxy-vitamin D levels in healthy Indian postmenopausal women: A randomized controlled trial[J]. Indian J Endocrinol Metab,2013,17(5):883-889.
[8] Piccolo BD,Dolnikowski G,Seyoum E,et al. Association between subcutaneous white adipose tissue and serum 25-hydroxyvitamin D in overweight and obese adults[J]. Nutrients,2013,5(9):3352-3366.
[9] Kane L,Moore K,Lütjohann D,et al. Vitamin D3 effects on lipids differ in statin and non-statin-treated humans: Superiority of free 25-OH-D levels in detecting relationships[J]. J Clin Endocrinol Metab,2013,98(11):4400-4409.
[10] Kim TH,Lee B,Kwon E,et al. Regulation of TREM-1 expression by 1,25-dihydroxyvitamin D3 in human mo nocytes/macrophages[J]. Immunol Lett,2013,154(1-2):80-85.
[11] Lu L,Pan A,Lin X,et al. Plasma 25-hydroxyvitamin D concentration and metabolic syndrome among middle-aged and elderly Chinese[J].Diabetes Care,2009,32(2):1278-1283.
[12] Eraslan S,Kizilgul M,Uzunlulu M,et al. Frequency of metabolic syndrome and 25-hydroxyvitamin D3 levels in patients with non-alcoholic fatty liver disease[J]. Minerva Med,2013,104(4):447-453.
[13] Lehmann U,Hirche F,Stangl GI,et al. Bioavailability of vitamin d2 and d3 in healthy volunteers,a randomized placebo-controlled trial[J]. J Clin Endocrinol Metab,2013, 98(11):4339-4345.
[14] Nakayama J,Imafuku S,Mori T,et al. Narrowband ultraviolet B irradiation increases the serum level of vitamin D3 in patients with neurofibromatosis 1[J]. J Dermatol,2013,40(10):829-831.
[15] Shab-Bidar S,Bours SP,Geusens PP,et al. Suboptimal effect of different vitamin D3 supplementations and doses adapted to baseline serum 25-(OH)-D on achieved 25-(OH)-D levels in patients with a recent fracture: A prospective observational study[J]. Eur J Endocrinol,2013, 169(5):597-604.
[16] Nurbazlin M,Chee WS,Rokiah P,et al. Effects of sun exposure on 25(OH)vitamin D concentration in urban and rural women in Malaysia[J]. Asia Pac J Clin Nutr,2013,22(3):391-399.
[17] Chow EC,Durk MR,Maeng HJ,et al. Comparative effects of 1α-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 on transporters and enzymes in fxr(+/+)and fxr(-/-)mice[J]. Biopharm Drug Dispos,2013,34(7):402-416.
(收稿日期:2013-11-25)endprint